Пример #1
0
 def validate(self, reader):
     validateFiles = reader.testdata
     triggers = reader.classtestTriggers
     onsets = reader.classtestOnsets
     finOnsets = reader.classtestFinOnsets
     [validateData,
      validateLabels] = utilities.dataLoadFromEDF(self, validateFiles,
                                                  triggers, onsets,
                                                  finOnsets, self.params)
     numChannels = validateData.shape[1]
     numSamples = validateData.shape[0]
     sumFvecLen = 0
     for ch in range(numChannels):
         if not (self.params.fDiaps is None):
             self.params.lowFreq = self.params.fDiaps[ch][0]
             self.params.highFreq = self.params.fDiaps[ch][1]
         tmpVec = utilities.get1DFeatures(
             np.squeeze(self.trainData[0, ch, :]), self.params)
         sumFvecLen = sumFvecLen + len(tmpVec)
     fVecs = np.zeros((numSamples, sumFvecLen))
     for k in range(numSamples):
         #print('Validate Sample ', k, ' of ', numSamples)
         curFvec = np.zeros((0))
         for i in range(numChannels):
             if not (self.params.fDiaps is None):
                 self.params.lowFreq = self.params.fDiaps[i][0]
                 self.params.highFreq = self.params.fDiaps[i][1]
             chVec = utilities.get1DFeatures(
                 np.squeeze(validateData[k, i, :]), self.params)
             curFvec = np.concatenate((curFvec, chVec), axis=0)
         fVecs[k, :] = curFvec
     #Norm!
     for i in range(fVecs.shape[0]):
         fVecs[i, :] = (fVecs[i, :] -
                        self.trainResult.mean) / self.trainResult.std
     fTransformed = fVecs
     if self.params.usePCA:
         fTransformed = self.trainResult.pcaOp.transform(fVecs)
     if (not self.params.finalClassifier is None):
         fTransformed = utilities.applyClassifier(
             self.params.finalClassifier, self.trainResult.finalOp,
             fTransformed)
     result = np.zeros((fTransformed.shape[0]))
     for i, fvec in enumerate(fTransformed):
         if not (self.params.distanceFun is None):
             result[i] = self.params.distanceFun(
                 self.trainResult.trainTransformedVecs,
                 self.trainResult.trainLabels, fvec, self.params)
         else:
             result[i] = fTransformed[i]
     classRates, confMat = utilities.calcStats(validateLabels, result)
     #print('Class Rates:\n', classRates)
     #print('Confusion Matrix: \n', confMat)
     return classRates, confMat
Пример #2
0
 def validate(self, reader):
     validateFiles = reader.testdata
     triggers = reader.classtestTriggers
     onsets = reader.classtestOnsets
     finOnsets = reader.classtestFinOnsets
     [validateData,
      validateLabels] = utilities.dataLoadFromEDF(self, validateFiles,
                                                  triggers, onsets,
                                                  finOnsets, self.params)
     numChannels = validateData.shape[1]
     numSamples = validateData.shape[0]
     tmpVec = utilities.get1DFeatures(np.squeeze(validateData[0, 0, :]),
                                      self.params)
     fvecLen = len(tmpVec)
     fVecs = np.zeros((numSamples, numChannels, fvecLen))
     for k in range(numSamples):
         #print("Fvec: " + str(k) + " of " + str(numSamples))
         for i in range(numChannels):
             fVecs[k, i, :] = utilities.get1DFeatures(
                 np.squeeze(validateData[k, i, :]), self.params)
     #Norm!
     fTransformed = np.zeros(
         (fVecs.shape[0], fVecs.shape[1] * fVecs.shape[2]))
     if (self.params.usePCA):
         fTransformed = np.zeros(
             (fVecs.shape[0], fVecs.shape[1] * self.params.numPC))
     for i in range(numChannels):
         chanVecs = np.squeeze(fVecs[:, i, :])
         for k in range(chanVecs.shape[0]):
             chanVecs[k, :] = (chanVecs[k, :] - self.trainResult.mean[i]
                               ) / self.trainResult.std[i]
         if (self.params.usePCA):
             fTransformed[:, i * self.params.numPC:(i + 1) *
                          self.params.numPC] = self.trainResult.pcaOp[
                              i].transform(chanVecs)
         else:
             fTransformed[:, i * fVecs.shape[2]:(i + 1) *
                          fVecs.shape[2]] = chanVecs
     if (not self.params.finalClassifier is None):
         fTransformed = utilities.applyClassifier(
             self.params.finalClassifier, self.trainResult.finalOp,
             fTransformed)
     result = np.zeros((fTransformed.shape[0]))
     for i, fvec in enumerate(fTransformed):
         if not (self.params.distanceFun is None):
             result[i] = self.params.distanceFun(
                 self.trainResult.trainTransformedVecs,
                 self.trainResult.trainLabels, fvec, self.params)
         else:
             result[i] = fTransformed[i]
     classRates, confMat = utilities.calcStats(validateLabels, result)
     #print('Class Rates:\n', classRates)
     #print('Confusion Matrix: \n', confMat)
     return classRates, confMat
def autoSelectComps(ClassifierParams, reader, compThresh, minCompsNum = None):
    trainFiles = reader.traindata
    triggers = reader.trainTriggers
    onsets = reader.trainOnsets
    finOnsets = reader.trainFinOnsets

    trainData, labels, trainonsets, trainfinOnsets = utilities.continuousFromEDF(trainFiles, triggers, onsets,
                                                                                 finOnsets, ClassifierParams)
    useIca = ClassifierParams.useICA
    if (minCompsNum is None):
        minCompsNum = 2
    # if ClassifierParams.usePCA:
    #     if not (ClassifierParams.numPC is None):
    #         if (minCompsNum<ClassifierParams.numPC):
    #             minCompsNum = ClassifierParams.numPC + 1
    icaMatFileName = ClassifierParams.icaFile
    if useIca:
        if (icaMatFileName is None) or not (os.path.isfile(icaMatFileName)):
            calcAndSaveICA(ClassifierParams, reader, icaMatFileName)
        icaMat = scipy.io.loadmat(icaMatFileName)['T']
        dataToProcess_ = np.matmul(icaMat, trainData)
        print('Got ICA!')
    else:
        dataToProcess_ = trainData
    [trainData, labels] = utilities.dataLoadFromContinuous(ClassifierParams, dataToProcess_, labels, trainonsets,
                                                                     trainfinOnsets)

    numChannels = trainData.shape[1]
    numSamples = trainData.shape[0]
    tmpVec = utilities.get1DFeatures(np.squeeze(trainData[0, 0, :]), ClassifierParams)
    fvecLen = len(tmpVec)
    fVecs_ = np.zeros((numSamples, numChannels, fvecLen))
    for k in range(numSamples):
        # print("Fvec: " + str(k) + " of " + str(numSamples))
        for i in range(numChannels):
            fVecs_[k, i, :] = utilities.get1DFeatures(np.squeeze(trainData[k, i, :]),
                                                      ClassifierParams)

    # choosing components
    N = trainData.shape[2]
    NFFT = int(math.pow(2, int(math.ceil(math.log(N, 2)))))
    T = 1.0 / ClassifierParams.Fs
    freqs = fftfreq(NFFT, T)
    freqs = freqs[1:NFFT // 2]
    idx = np.where((freqs > ClassifierParams.lowFreq) * (freqs < ClassifierParams.highFreq))
    freqs = freqs[idx]
    print('Calcuating individual components and frequencies...')
    comps, diaps = autoSpectralChoose(fVecs_, labels, freqs, minFreq=1.5, maxFreq=18, freqWin=3, t=compThresh, minCompsNum=minCompsNum)
    return comps, diaps
Пример #4
0
 def processChunk(self, rawTest):
     testChunk = utilities.preprocessDataChunk(rawTest, self)
     numChannels = testChunk.shape[0]
     curFvec = np.array([])
     for ch in range(numChannels):
         if not (self.params.fDiaps is None):
             self.params.lowFreq = self.params.fDiaps[ch][0]
             self.params.highFreq = self.params.fDiaps[ch][1]
         chVec = utilities.get1DFeatures(
             np.squeeze(self.trainData[0, ch, :]), self.params)
         curFvec = np.concatenate((curFvec, chVec))
     # Norm!
     curFvec = (curFvec - self.trainResult.mean) / self.trainResult.std
     fTransformed = np.expand_dims(curFvec, 0)
     if self.params.usePCA:
         fTransformed = self.trainResult.pcaOp.transform(fTransformed)
     if (not self.params.finalClassifier is None):
         fTransformed = utilities.applyClassifier(
             self.params.finalClassifier, self.trainResult.finalOp,
             fTransformed)
     if not (self.params.distanceFun is None):
         result = self.params.distanceFun(
             self.trainResult.trainTransformedVecs,
             self.trainResult.trainLabels, fTransformed, self.params)
     else:
         result = fTransformed
     return result
Пример #5
0
    def train(self, reader, doBalanceLabels):

        trainFiles = reader.traindata
        triggers = reader.classtrainTriggers
        onsets = reader.classtrainOnsets
        finOnsets = reader.classtrainFinOnsets

        [self.trainData,
         self.labels] = utilities.dataLoadFromEDF(self, trainFiles, triggers,
                                                  onsets, finOnsets,
                                                  self.params)

        if (doBalanceLabels):
            [self.trainData,
             self.labels] = utilities.balance_labels(self.trainData,
                                                     self.labels)

        numChannels = self.trainData.shape[1]
        numSamples = self.trainData.shape[0]
        fvecLen = len(self.params.channelSelect)
        fVecs = np.zeros((numSamples, fvecLen))
        for k in range(numSamples):
            #print("Fvec: " + str(k) + " of " + str(numSamples))
            for i in range(fvecLen):
                sample = np.squeeze(self.trainData[k, i, :])
                if not (self.params.fDiaps is None):
                    self.params.lowFreq = self.params.fDiaps[i][0]
                    self.params.highFreq = self.params.fDiaps[i][1]
                specVal = np.mean(utilities.get1DFeatures(
                    sample, self.params))  #!!!!!!!
                fVecs[k, i] = specVal
        #Shuffle!
        inds = np.random.permutation(fVecs.shape[0])
        fVecs = fVecs[inds, :]
        labels = self.labels[inds]
        self.trainResult.mean = np.mean(fVecs, 0)
        self.trainResult.std = np.std(fVecs, 0)
        #Norm!

        for i in range(fVecs.shape[0]):
            fVecs[i, :] = (fVecs[i, :] -
                           self.trainResult.mean) / self.trainResult.std
        fTransformed = fVecs
        # PCA!
        if self.params.usePCA:
            pcaTransform = PCA(self.params.numPC)
            pcaTransform.fit(fVecs)
            self.trainResult.pcaOp = pcaTransform
            fTransformed = pcaTransform.transform(fVecs)
        #LDA!
        if not (self.params.finalClassifier is None):
            [Op, fTransformed
             ] = utilities.trainClassifier(self.params.finalClassifier,
                                           fTransformed, labels)
            self.trainResult.finalOp = Op
        if not (self.params.distanceFun is None):
            self.trainResult.trainTransformedVecs = fTransformed
        self.trainResult.trainLabels = labels
Пример #6
0
 def validate(self, reader):
     validateFiles = reader.testdata
     triggers = reader.classtestTriggers
     onsets = reader.classtestOnsets
     finOnsets = reader.classtestFinOnsets
     [validateData,
      validateLabels] = utilities.dataLoadFromEDF(self, validateFiles,
                                                  triggers, onsets,
                                                  finOnsets, self.params)
     numChannels = validateData.shape[1]
     numSamples = validateData.shape[0]
     fvecLen = len(self.params.channelSelect)
     fVecs = np.zeros((numSamples, fvecLen))
     for k in range(numSamples):
         #print("Fvec: " + str(k) + " of " + str(numSamples))
         for i in range(fvecLen):
             sample = np.squeeze(validateData[k, i, :])
             if not (self.params.fDiaps is None):
                 self.params.lowFreq = self.params.fDiaps[i][0]
                 self.params.highFreq = self.params.fDiaps[i][1]
             specVal = np.mean(utilities.get1DFeatures(sample, self.params))
             fVecs[k, i] = specVal
     #Norm!
     for i in range(fVecs.shape[0]):
         fVecs[i, :] = (fVecs[i, :] -
                        self.trainResult.mean) / self.trainResult.std
     fTransformed = fVecs
     if self.params.usePCA:
         fTransformed = self.trainResult.pcaOp.transform(fVecs)
     if (not self.params.finalClassifier is None):
         fTransformed = utilities.applyClassifier(
             self.params.finalClassifier, self.trainResult.finalOp,
             fTransformed)
     result = np.zeros((fTransformed.shape[0]))
     for i, fvec in enumerate(fTransformed):
         if not (self.params.distanceFun is None):
             result[i] = self.params.distanceFun(
                 self.trainResult.trainTransformedVecs,
                 self.trainResult.trainLabels, fvec, self.params)
         else:
             result[i] = fTransformed[i]
     classRates, confMat = utilities.calcStats(validateLabels, result)
     #print('Class Rates:\n', classRates)
     #print('Confusion Matrix: \n', confMat)
     return classRates, confMat
Пример #7
0
    def train(self, reader, doBalanceLabels):
        trainFiles = reader.traindata
        triggers = reader.classtrainTriggers
        onsets = reader.classtrainOnsets
        finOnsets = reader.classtrainFinOnsets
        [self.trainData,
         self.labels] = utilities.dataLoadFromEDF(self, trainFiles, triggers,
                                                  onsets, finOnsets,
                                                  self.params)
        if (doBalanceLabels):
            [self.trainData,
             self.labels] = utilities.balance_labels(self.trainData,
                                                     self.labels)
        numChannels = self.trainData.shape[1]
        numSamples = self.trainData.shape[0]
        sumFvecLen = 0
        for ch in range(numChannels):
            if not (self.params.fDiaps is None):
                self.params.lowFreq = self.params.fDiaps[ch][0]
                self.params.highFreq = self.params.fDiaps[ch][1]
            tmpVec = utilities.get1DFeatures(
                np.squeeze(self.trainData[0, ch, :]), self.params)
            sumFvecLen = sumFvecLen + len(tmpVec)
        fVecs = np.zeros((numSamples, sumFvecLen))
        for k in range(numSamples):
            #print('Train Sample ', k, ' of ', numSamples)
            curFvec = np.zeros((0))
            for i in range(numChannels):
                if not (self.params.fDiaps is None):
                    self.params.lowFreq = self.params.fDiaps[i][0]
                    self.params.highFreq = self.params.fDiaps[i][1]
                chVec = utilities.get1DFeatures(
                    np.squeeze(self.trainData[k, i, :]), self.params)
                curFvec = np.concatenate((curFvec, chVec), axis=0)
            fVecs[k, :] = curFvec
        #Shuffle!
        inds = np.random.permutation(fVecs.shape[0])
        fVecs = fVecs[inds, :]
        labels = self.labels[inds]
        self.trainResult.mean = np.mean(fVecs, 0)
        self.trainResult.std = np.std(fVecs, 0)
        #Norm!

        for i in range(fVecs.shape[0]):
            fVecs[i, :] = (fVecs[i, :] -
                           self.trainResult.mean) / self.trainResult.std
        # PCA!
        fTransformed = fVecs
        if self.params.usePCA:
            pcaTransform = PCA(self.params.numPC)
            pcaTransform.fit(fVecs)
            self.trainResult.pcaOp = pcaTransform
            fTransformed = pcaTransform.transform(fVecs)
        #LDA!
        if not (self.params.finalClassifier is None):
            [Op, fTransformed
             ] = utilities.trainClassifier(self.params.finalClassifier,
                                           fTransformed, labels)
            self.trainResult.finalOp = Op
        self.trainResult.trainLabels = labels
        if not (self.params.distanceFun is None):
            self.trainResult.trainTransformedVecs = fTransformed
Пример #8
0
    def train(self, reader, doBalanceLabels):
        trainFiles = reader.traindata
        triggers = reader.classtrainTriggers
        onsets = reader.classtrainOnsets
        finOnsets = reader.classtrainFinOnsets
        [self.trainData,
         self.labels] = utilities.dataLoadFromEDF(self, trainFiles, triggers,
                                                  onsets, finOnsets,
                                                  self.params)
        if (doBalanceLabels):
            [self.trainData,
             self.labels] = utilities.balance_labels(self.trainData,
                                                     self.labels)
        numChannels = self.trainData.shape[1]
        numSamples = self.trainData.shape[0]
        tmpVec = utilities.get1DFeatures(np.squeeze(self.trainData[0, 0, :]),
                                         self.params)
        fvecLen = len(tmpVec)
        fVecs = np.zeros((numSamples, numChannels, fvecLen))
        for k in range(numSamples):
            #print("Fvec: " + str(k) + " of " + str(numSamples))
            for i in range(numChannels):
                fVecs[k, i, :] = utilities.get1DFeatures(
                    np.squeeze(self.trainData[k, i, :]), self.params)
        #Shuffle!
        inds = np.random.permutation(fVecs.shape[0])
        fVecs = fVecs[inds, :, :]
        labels = self.labels[inds]

        #Norm!
        for i in range(fVecs.shape[1]):
            chanVecs = np.squeeze(fVecs[:, i, :])
            self.trainResult.mean.append(np.mean(chanVecs, 0))
            self.trainResult.std.append(np.std(chanVecs, 0))
            for k in range(chanVecs.shape[0]):
                chanVecs[k, :] = (chanVecs[k, :] - self.trainResult.mean[i]
                                  ) / self.trainResult.std[i]
            fVecs[:, i, :] = chanVecs
        fTransformed = np.zeros(
            (fVecs.shape[0], fVecs.shape[1] * fVecs.shape[2]))
        if (self.params.usePCA):
            fTransformed = np.zeros(
                (fVecs.shape[0], fVecs.shape[1] * self.params.numPC))
        # PCA or reshaping:
        for i in range(numChannels):
            chanVecs = np.squeeze(fVecs[:, i, :])
            if (self.params.usePCA):
                curPcaTransform = PCA(self.params.numPC)
                curPcaTransform.fit(chanVecs)
                self.trainResult.pcaOp.append(curPcaTransform)
                fTransformed[:, i * self.params.numPC:(i + 1) *
                             self.params.numPC] = curPcaTransform.transform(
                                 chanVecs)
            else:
                fTransformed[:, i * fVecs.shape[2]:(i + 1) *
                             fVecs.shape[2]] = chanVecs
        #LDA!
        if not (self.params.finalClassifier is None):
            [Op, fTransformed
             ] = utilities.trainClassifier(self.params.finalClassifier,
                                           fTransformed, labels)
            self.trainResult.finalOp = Op
        if not (self.params.distanceFun is None):
            self.trainResult.trainTransformedVecs = fTransformed
        self.trainResult.trainLabels = labels
Пример #9
0
    def train(self, reader, doBalanceLabels):

        trainFiles = reader.traindata
        triggers = reader.classtrainTriggers
        onsets = reader.classtrainOnsets
        finOnsets = reader.classtrainFinOnsets
        [self.trainData, self.labels] = utilities.dataLoadFromEDF(self, trainFiles, triggers, onsets, finOnsets,
                                                                  self.params)
        if (doBalanceLabels):
            [self.trainData, self.labels] = utilities.balance_labels(self.trainData, self.labels)

        numChannels = self.trainData.shape[1]
        numSamples = self.trainData.shape[0]

        if self.mode == 'IndepChan':
            tmpVec = utilities.get1DFeatures(np.squeeze(self.trainData[0, 0, :]), self.params)
            sumFvecLen = len(tmpVec)
            print(sumFvecLen, self.trainData.shape)
            print(self.trainData[0, 0, :])
        if self.mode == 'CustomFreqs':
            sumFvecLen = len(self.params.channelSelect)
            print(sumFvecLen, '\n', self.params.channelSelect)
        if self.mode == 'Classic':
            sumFvecLen = 0
            for i in range(numChannels):
                if not (self.params.fDiaps is None):
                    self.params.lowFreq = self.params.fDiaps[i][0]
                    self.params.highFreq = self.params.fDiaps[i][1]
                tmpVec = utilities.get1DFeatures(np.squeeze(self.trainData[0, i, :]), self.params)
                sumFvecLen = sumFvecLen + len(tmpVec)
                #print(sumFvecLen, '\n', self.trainData[0, i, :], '\n', tmpVec)

        fVecs = np.zeros((numSamples, numChannels, sumFvecLen))


        #Fastovets
        #indepchan     [nchan = 75 x nvecs = 335 x vecLen = 49] 139
        #classic        [nchan = 75 x nvecs = 335 x vecLen = 49] 2293
        #custom         [nchan = 75 x nvecs = 335 x vecLen = 29]
        #tmpVec.shape = 16


        for k in range(numSamples):  #cust classic = 1
            curFvec = np.zeros((0))
                # print("Fvec: " + str(k) + " of " + str(numSamples))
            for i in range(numChannels):
                if not (self.params.fDiaps is None):
                    self.params.lowFreq = self.params.fDiaps[i][0]
                    self.params.highFreq = self.params.fDiaps[i][1]
                tmpVec = utilities.get1DFeatures(np.squeeze(self.trainData[k, i, :]), self.params)
                if self.mode == 'IndepChan':
                    fVecs[k, i, :] = tmpVec  #"""КАК НАСЧЕТ ТОГО, ЧТОБЫ СОБЛЮДАТЬ РАЗМЕРНОСТЬ FVECS?""" [k, i, :]
                if self.mode == 'CustomFreqs':
                    specVal = np.mean(tmpVec)  # !!!!!!! was not meaned while sumfveclen was counted!
                    fVecs[k, i, 0] = specVal #[k, i]
                if self.mode == 'Classic':
                    curFvec = np.concatenate((curFvec, tmpVec), axis=0)
            if self.mode == 'Classic':
                fVecs[k, i, :] = curFvec #[k, :]

        # Shuffle!
        inds = np.random.permutation(fVecs.shape[0])
        fVecs = fVecs[inds, :, :]
        labels = self.labels[inds]

        #print(self.trainResult.mean, self.trainResult.std)

        # Norm!
        if self.mode == 'Classic' or self.mode == 'CustomFreqs':
            self.trainResult.mean = np.mean(fVecs, 0)
            self.trainResult.std = np.std(fVecs, 0)
            for i in range(fVecs.shape[0]):
                fVecs[i, :, :] = (fVecs[i, :, :] - self.trainResult.mean) / self.trainResult.std
            fTransformed = fVecs
            #PCA
            if self.params.usePCA: #cycle! as in INDEPCHAN
                for i in range(fVecs.shape[1]):
                    tmp = np.zeros((fVecs.shape[0], fVecs.shape(2)))
                    tmp = fVecs(:, i, :)
                    pcaTransform = PCA(self.params.numPC)
                    pcaTransform.fit(tmp)
                    self.trainResult.pcaOp = pcaTransform
                fTransformed = pcaTransform.transform(tmp)
Пример #10
0
    def validate(self, reader):
        validateFiles = reader.testdata
        triggers = reader.classtestTriggers
        onsets = reader.classtestOnsets
        finOnsets = reader.classtestFinOnsets
        [validateData, validateLabels] = utilities.dataLoadFromEDF(self, validateFiles, triggers, onsets, finOnsets,
                                                               self.params)
        numChannels = validateData.shape[1]
        numSamples = validateData.shape[0]

        if self.mode == 'IndepChan':
            tmpVec = utilities.get1DFeatures(np.squeeze(validateData[0, 0, :]), self.params)
            sumFvecLen = len(tmpVec)
        if self.mode == 'CustomFreqs':
            sumFvecLen = len(self.params.channelSelect)
        if self.mode == 'Classic':
            sumFvecLen = 0
            for i in range(numChannels):
                if not (self.params.fDiaps is None):
                    self.params.lowFreq = self.params.fDiaps[i][0]
                    self.params.highFreq = self.params.fDiaps[i][1]
                tmpVec = utilities.get1DFeatures(np.squeeze(validateData[0, i, :]), self.params)
                sumFvecLen = sumFvecLen + len(tmpVec)

        fVecs = np.zeros((numSamples, numChannels, sumFvecLen))

        for k in range(numSamples):  #cust classic = 1
            curFvec = np.zeros((0))
                # print("Fvec: " + str(k) + " of " + str(numSamples))
            for i in range(numChannels):
                if not (self.params.fDiaps is None):
                    self.params.lowFreq = self.params.fDiaps[i][0]
                    self.params.highFreq = self.params.fDiaps[i][1]
                tmpVec = utilities.get1DFeatures(np.squeeze(self.trainData[k, i, :]), self.params)
                if self.mode == 'IndepChan':
                    fVecs[k, i, :] = tmpVec  #"""КАК НАСЧЕТ ТОГО, ЧТОБЫ СОБЛЮДАТЬ РАЗМЕРНОСТЬ FVECS?""" [k, i, :]
                if self.mode == 'CustomFreqs':
                    specVal = np.mean(tmpVec)  # !!!!!!! was not meaned while sumfveclen was counted!
                    fVecs[k, i, 0] = specVal #[k, i]
                if self.mode == 'Classic':
                    curFvec = np.concatenate((curFvec, tmpVec), axis=0)
            if self.mode == 'Classic':
                fVecs[k, i, :] = curFvec #[k, :]

        # Norm!
        if self.mode == 'Classic' or self.mode == 'CustomFreqs':
            self.trainResult.mean = np.mean(fVecs, 0)
            self.trainResult.std = np.std(fVecs, 0)
            for i in range(fVecs.shape[0]):
                fVecs[i, :, :] = (fVecs[i, :, :] - self.trainResult.mean) / self.trainResult.std
            fTransformed = fVecs
            # PCA
            if self.params.usePCA:
                fTransformed = self.trainResult.pcaOp.transform(fVecs)
        #Norm!
        if self.mode == 'IndepChan':
            fTransformed = np.zeros((fVecs.shape[0], fVecs.shape[1] * fVecs.shape[2]))
            # PCA
            if (self.params.usePCA):
                fTransformed = np.zeros((fVecs.shape[0], fVecs.shape[1] * self.params.numPC))
            for i in range(numChannels):
                chanVecs = np.squeeze(fVecs[:, i, :])
                for k in range(chanVecs.shape[0]):
                    chanVecs[k, :] = (chanVecs[k, :] - self.trainResult.mean[i]) / self.trainResult.std[i]
                if (self.params.usePCA):
                    fTransformed[:, i * self.params.numPC:(i + 1) * self.params.numPC] = self.trainResult.pcaOp[
                        i].transform(chanVecs)
                else:
                    fTransformed[:, i * fVecs.shape[2]:(i + 1) * fVecs.shape[2]] = chanVecs


        if (not self.params.finalClassifier is None):
            fTransformed = utilities.applyClassifier(self.params.finalClassifier, self.trainResult.finalOp,
                                                     fTransformed)
        result = np.zeros((fTransformed.shape[0]))

        for i, fvec in enumerate(fTransformed):
            if not (self.params.distanceFun is None):
                result[i] = self.params.distanceFun(self.trainResult.trainTransformedVecs, self.trainResult.trainLabels,
                                                    fvec, self.params)
            else:
                result[i] = fTransformed[i]
        classRates, confMat = utilities.calcStats(validateLabels, result)
        # print('Class Rates:\n', classRates)
        # print('Confusion Matrix: \n', confMat)
        return classRates, confMat