Пример #1
0
class MembershipFunctionPiecewiseLinear(FunctionPiecewiseLinear):
    function_undefined = FunctionHorizontalLinear(0)

    def __call__(self, time=None):
        if time is None:
            time = self.input_list

        return invoke_function_on(
            super(MembershipFunctionPiecewiseLinear, self).__call__, time)
Пример #2
0
    def __init__(self, dictionary_input_output):
        cdf_input_list, cdf_output_list = convert_dict_to_sorted_lists(
            dictionary_input_output)
        list.__init__(self, cdf_input_list)
        TimeInterval.__init__(self, self[0], self[-1], 2)
        self.cdf = FunctionPiecewiseLinear(dictionary_input_output,
                                           function_undefined=FUNCTION_ZERO)
        self.cdf.dictionary_bounds_function[(self.b,
                                             POSITIVE_INFINITY)] = FUNCTION_ONE
        pdf_output_list = []
        dictionary_bounds_function = {}
        for bounds in sorted(self.cdf.dictionary_bounds_function):
            a, b = bounds
            if a in [NEGATIVE_INFINITY, POSITIVE_INFINITY
                     ] or b in [NEGATIVE_INFINITY, POSITIVE_INFINITY]:
                continue
            pdf_y_intercept = fabs(self.cdf.derivative((a + b) / 2.0))
            pdf_output_list.append(pdf_y_intercept)
            dictionary_bounds_function[bounds] = FunctionHorizontalLinear(
                pdf_y_intercept)
            #dictionary_bounds_function[bounds] = FunctionLinear(
            #    x_0=a, y_0=pdf_y_intercept - pdf_y_intercept / 2.0,
            #    x_1=b, y_1=pdf_y_intercept + pdf_y_intercept / 2.0)

        self.pdf = FunctionComposite(dictionary_bounds_function,
                                     function_undefined=FUNCTION_ZERO,
                                     domain=self,
                                     is_normalised=True)

        self.roulette_wheel = []
        #center_of_mass_lower_bound = 0
        #center_of_mass_set = False

        self._mean = 0
        for bounds in sorted(self.pdf.dictionary_bounds_function):
            (a, b) = bounds
            if a in [NEGATIVE_INFINITY, POSITIVE_INFINITY
                     ] and b in [NEGATIVE_INFINITY, POSITIVE_INFINITY]:
                continue
            cdf = self.cdf.dictionary_bounds_function[bounds]
            pdf = self.pdf.dictionary_bounds_function[bounds]
            share = cdf(b)
            self.roulette_wheel.append((a, b, share))

            #if not center_of_mass_set and share > 0.5:
            #    self._center_of_mass = UnixTime(self._calculate_center_of_mass(center_of_mass_lower_bound, b))
            #    center_of_mass_set = True
            #center_of_mass_lower_bound = b

            self._mean += (a + b) / 2.0 * pdf(a) * (b - a)
Пример #3
0
    def function_convolution(self, dist_1, dist_2, bins=50):
        a_1, b_1, a_2, b_2 = 0, 0, 0, 0
        if dist_1 in self.bounds:
            a_1, b_1 = self.bounds[dist_1]
        else:
            a_1, b_1 = calculate_bounds_of_probability_distribution(dist_1)
            self.bounds[dist_1] = a_1, b_1
        if dist_2 in self.bounds:
            a_2, b_2 = self.bounds[dist_2]
        else:
            a_2, b_2 = calculate_bounds_of_probability_distribution(dist_2)
            self.bounds[dist_2] = a_2, b_2

        if (type(dist_1.dist), type(dist_2.dist)) == (uniform_gen,
                                                      uniform_gen):
            return self.function_convolution_uniform((a_1, b_1), (a_2, b_2))

        convolution_bounds_a, convolution_bounds_b = min(a_1,
                                                         a_2), max(b_1, b_2)

        delta = fabs(convolution_bounds_a - convolution_bounds_b) / bins
        convolution_interval = TimeInterval(convolution_bounds_a,
                                            convolution_bounds_b, bins)
        x = [dist_1.pdf(t) for t in convolution_interval]
        y = [dist_2.pdf(t) for t in reversed(convolution_interval)]

        c = convolve(x, y)
        dictionary_convolution = {}
        for t in xrange(len(c)):
            dictionary_convolution[delta * t] = c[t]
        bias = calculateCenterMass(
            dictionary_convolution)[0] + dist_2.mean() - dist_1.mean()
        dictionary_convolution_biased = {}
        for t in dictionary_convolution:
            dictionary_convolution_biased[t - bias] = dictionary_convolution[t]

        convolution_function = FunctionPiecewiseLinear(
            dictionary_convolution_biased, FunctionHorizontalLinear(0))
        return convolution_function.normalised()