Пример #1
0
	def getAnswer(self):
	
		primeLimit = 10000
		primes = utility.getPrimes(primeLimit)
		
		i = 0
		n = 1
		numPrime = 0
		numTotal = 1
		while True:
			i += 1
			
			for j in xrange(4):
				n = n + 2 * i
				
				if n >= primeLimit * primeLimit:
					primeLimit *= 2
					primes = utility.getPrimes(primeLimit)
					
				if utility.isPrime(n, primes):
					numPrime += 1
				numTotal += 1
			
			if numTotal > numPrime * 10:
				return i * 2 + 1
Пример #2
0
	def getAnswer(self):
		
		n = 2
		while True:
			primes = [p for p in utility.getPrimes(pow(10, n))]
			
			for p in primes:
				if p < pow(10, n-1):
					continue
				
				for i in xrange(10):
					if str(p).count('%d' % (i)) == 0:
						continue
						
					count = 0
					for j in xrange(10):
						if int(str(p)[0]) == i and j == 0:
							continue
						q = int(str(p).replace('%d' % (i), '%d' % (j)))
						if p == q or utility.isPrime(q, primes):
							count += 1
					
					if count == 8:
						return p
			n += 1
Пример #3
0
	def getAnswer(self):
		def isPermutations(p, q, r):
			p = str(p)
			q = str(q)
			r = str(r)
			for i in xrange(10):
				s = '%d' % i
				if p.count(s) != q.count(s) or q.count(s) != r.count(s):
					return False
			return True
		
		primes = utility.getPrimes(10000)
		for i in xrange(len(primes)):
			if primes[i] < 1000:
				continue
			for j in xrange(i + 1, len(primes)):
				p = primes[i]
				q = primes[j]
				r = q + q - p
				if r > 10000 or not utility.isPrime(r, primes):
					continue
				if not isPermutations(p, q, r):
					continue
				if p == 1487:
					continue
				return int(str(p) + str(q) + str(r))
		return -1
Пример #4
0
	def getAnswer(self):
		primes = utility.getPrimes(int(math.sqrt(987654321)) + 1)
		def isPrime(n):
			return utility.isPrime(n, primes)
	
		def enumerateCombinations(n, useEven):
			if len(n) == 1:
				yield n
			
			for i in xrange(len(n)):
				if not useEven and n[i] % 2 == 0:
					continue
				for c in enumerateCombinations(n[:i] + n[i+1:], True):
					yield c + [n[i]]
		
		def getPandigitalPrimes(nDigits):
			digits = [i+1 for i in xrange(nDigits)]
			for c in enumerateCombinations(digits, False):
				p = 0
				for i in c:
					p *= 10
					p += i
				if isPrime(p):
					yield p
		
		ret = 0
		for i in xrange(9, -1, -1):
			for p in getPandigitalPrimes(i):
				if ret < p:
					ret = p
			if ret != 0:
				break
		return ret
Пример #5
0
		def f(limit):
			primes = utility.getPrimes(limit)
			length = 1
			ret = 0
			for i in xrange(len(primes)):
				for j in xrange(i + length, len(primes) - 1):
					s = sum(primes[i:j+1])
					if s >= limit:
						break
					if s < limit and utility.isPrime(s, primes):
						length = len(primes[i:j+1])
						ret = s
			return ret
Пример #6
0
	def getAnswer(self):
		def phi2(n):
			ret = 0
			for i in xrange(1, n):
				if fractions.gcd(i, n) == 1:
					ret += 1
			return ret
		
		def getFactors(n, primes):
			sqn = sqrt(n)
			for p in primes:
				if n % p == 0:
					yield p
				if p > sqn:
					break
		
		def phi(n, primes):
			l = [True for i in xrange(n)]
			#factors = utility.factorize(n, primes)[0]
			#for f in factors:
			for f in getFactors(n, primes):
				for i in xrange(n / f):
					l[f * i] = False
			ret = 0
			for i in l:
				if i:
					ret +=1
			return ret
		
		primes = utility.getPrimes(100001)
		
		assert phi(9, primes) == 6
		assert phi(10, primes) == 4
		
		#print 1.0 * phi(6, primes) / 6
		#print 1.0 * phi(6*2, primes) / 6 / 2
		#print 1.0 * phi(10, primes) / 10
		#print 1.0 * phi(30, primes) / 30
		#print 1.0 * phi(210, primes) / 210
		#print 1.0 * phi(2310, primes) / 2310
		#print 1.0 * phi(30030, primes) / 30030
		#print 1.0 * phi(510510, primes) / 510510
		
		ret = 1
		for p in primes:
			if ret * p > 1000000:
				return ret
			ret *= p
Пример #7
0
	def getAnswer(self):
	
		limit = 27000
		primes = utility.getPrimes(limit)
		
		def isConcatenatedPrime(p, q, primes):
			return utility.isPrime(int(p + q), primes) and utility.isPrime(int(q + p), primes)

		graph = [[] for i in xrange(len(primes))]
		strPrimes = [str(p) for p in primes]
		for i in xrange(len(primes)):
			for j in xrange(i+1, len(primes)):
				if isConcatenatedPrime(strPrimes[i], strPrimes[j], primes):
					graph[i].append(j)
					graph[j].append(i)
		
		# we need a n-complete subgraph inside the graph
		def findCompleteGraphs(graph, n):
			if n == 3:
				for i in xrange(len(primes)):
					for j in graph[i]:
						if j < i:
							continue
						for k in graph[j]:
							if k < j:
								continue
							if k in graph[i]:
								yield [i, j, k]
			else:
				for g in findCompleteGraphs(graph, n-1):
					for k in graph[g[-1]]:
						if k < g[-1]:
							continue
						isComplete = True
						for gi in g:
							if gi not in graph[k]:
								isComplete = False
								break
						if isComplete:
							yield g + [k]
		
		ret = sys.maxint
		for c in findCompleteGraphs(graph, 5):
			ret = max(ret, sum(primes[i] for i in c))
				
		assert primes[-1] > ret
		return ret
Пример #8
0
	def getAnswer(self):
		
		primes = utility.getPrimes(100)
		
		def isPowerOf(n):
			for i in xrange(2, n):
				t = 1
				j = 0
				while t < n:
					t *= i
					j += 1
				if t == n:
					assert j != 1
					return [i, j]
			return [n, 1]
			
		def f(arange, brange):
			sets = [set() for a in arange]
			ret = 0
			
			# it only happens when a is power of some number
			for i, a in enumerate(arange):
				f = isPowerOf(a)
				if f[1] == 1:
					for b in brange:
						sets[i].add(b)
				else:
					for b in brange:
						sets[arange.index(f[0])].add(b * f[1])
					
			for s in sets:
				ret += len(s)
			return ret
			
		assert f(range(2, 6), range(2, 6)) == 15
		return f(range(2, 101), range(2, 101))