Пример #1
0
def run():
    statistical_losses = StatisticalValue()
    statistical_mae_errors = StatisticalValue()
    sub_dir = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime())
    print('Test start.')

    with torch.no_grad():

        for idx, (images, labels, coordinates,
                  names) in enumerate(trainloader):
            images, coordinates = images.to(DEVICE), coordinates.to(DEVICE)

            _, locs = model(images)

            loss = criterion([locs], [coordinates]) / ITERATION_SIZE

            # mae_error = mae(input=outputs, target=labels)
            # statistical_mae_errors.update(mae_error.item(), names)
            statistical_losses.update(loss.item())

            iteration_writer.add_scalar(
                'Loss/Test',
                statistical_losses.val[0],
                idx + 1,
            )

            if idx % 1 == 0:
                print(
                    'mae Error: mean: {errors.avg}, mid: {errors.mid}, worst: {errors.max[0]}, best: {errors.min[0]}'
                    .format(errors=statistical_losses))

        return statistical_losses
Пример #2
0
def run():
    statistical_angular_errors = StatisticalValue()
    sub_dir = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime())
    print('Test start.')

    with torch.no_grad():
        for idx, (images, labels, names) in enumerate(testloader):
            images, labels = images.to(DEVICE), labels.to(DEVICE)

            predictions = model(images)

            angular_error = multi_angular_loss(predictions[-1], labels)
            statistical_angular_errors.update(angular_error.item(),
                                              names,
                                              sort=True)

            view_data = torch.zeros((4, *images.shape[1:]))
            view_data[0, :, :, :] = images.squeeze()
            view_data[
                1, :, :, :] = images.squeeze() / predictions[-1].squeeze()
            view_data[2, :, :, :] = predictions[-1].squeeze()
            view_data[3, :, :, :] = labels.squeeze()

            if not os.path.isdir(os.path.join(TMP_ROOT, 'test', sub_dir)):
                os.makedirs(os.path.join(TMP_ROOT, 'test', sub_dir))

            torchvision.utils.save_image(
                view_data,
                os.path.join(TMP_ROOT, 'test/%s/%s' % (sub_dir, names[0])))

            print(
                'Angular Error: mean: {errors.avg}, mid: {errors.mid}, worst: {errors.max[0]}, best: {errors.min[0]}'
                .format(errors=statistical_angular_errors))

    print('Test end.')
Пример #3
0
def run():
    statistical_angular_errors = StatisticalValue()

    with torch.no_grad():
        for idx, (images, labels, names) in enumerate(fold1_test_loader):
            images, labels = images.to(DEVICE), labels.to(DEVICE)

            # print(images.shape)

            illus = model(images)

            angular_error = angular_loss(illus, labels)
            statistical_angular_errors.update(angular_error.item(), names)

            images, illus = images.cpu().detach().numpy().transpose(
                0, 2, 3, 1), illus.cpu().detach().numpy()
            illus = illus[:, np.newaxis, np.newaxis, :]

            images = images[:, :, :, :] / illus

            # print(images.shape, illus.shape)

            # exit()

            # result = Image.fromarray((images[0]).astype(np.uint8))
            # result.save(join(TMP_ROOT, "corrected_%s.png") % names[0])

            print(
                'Angular Error: mean: {errors.avg}, worst: {errors.max[0]}, best: {errors.min[0]}' \
                    .format(errors=statistical_angular_errors)
            )
Пример #4
0
def test():
    statistical_mae_errors = StatisticalValue(record=False)
    statistical_mae_errors1 = StatisticalValue(record=False)
    statistical_mae_errors2 = StatisticalValue(record=False)

    print('Test start.')

    with torch.no_grad():
        for idx, (images, labels, names) in enumerate(testloader):
            images, labels = images.to(DEVICE), labels.to(DEVICE)
            outputs, global_result, local_result, crops = model(images)
            _1 = local_result[0]

            # statistical_mae_errors.update(mae(input=outputs, target=labels).item(), names)
            statistical_mae_errors1.update(
                l1_loss(input=_1, target=labels).item(), names)
            # statistical_mae_errors2.update(l1_loss(input=_2, target=labels).item(), names)

            # print(
            #     'Final MAE Error: mean: {errors.avg}, worst: {errors.max[0]}, best: {errors.min[0]}'.format(
            #         errors=statistical_mae_errors))
            print(
                'Local MAE Error: mean: {errors.avg}, worst: {errors.max[0]}, best: {errors.min[0]}'
                .format(errors=statistical_mae_errors1))
            # print(
            #     'Global MAE Error: mean: {errors.avg}, worst: {errors.max[0]}, best: {errors.min[0]}'.format(
            #         errors=statistical_mae_errors2))

            for iidx in range(len(images)):
                xmin, ymin, xmax, ymax = crops[iidx]['box']
                view_data = torch.zeros((4, *images.shape[1:]))
                view_data[0, :, :, :] = images[iidx]
                view_data[1, :, :, :] = labels[iidx]
                view_data[2, 0:3, ymin:ymax, xmin:xmax] = 1
                view_data[3, :, :, :] = _1[iidx]
                # view_data[4, :, :, :] = _2[iidx]

                if not os.path.isdir(os.path.join(TMP_ROOT, 'test')):
                    os.makedirs(os.path.join(TMP_ROOT, 'test'))

                torchvision.utils.save_image(
                    view_data,
                    os.path.join(
                        TMP_ROOT, 'test/%s/%s' % (time.strftime(
                            "%Y-%m-%d-%H-%M-%S", time.localtime()), names[0])))
                break

    print('Test End.')
Пример #5
0
def run():
    statistical_losses = StatisticalValue()
    statistical_mae_errors = StatisticalValue()
    sub_dir = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime())
    print('Test start.')

    with torch.no_grad():

        for idx, (images, labels, names) in enumerate(trainloader):
            images, labels = images.to(DEVICE), labels.to(DEVICE)

            outputs = model(images)

            loss = criterion(outputs, labels) / ITERATION_SIZE

            mae_error = mae(input=outputs, target=labels)
            statistical_mae_errors.update(mae_error.item(), names)
            statistical_losses.update(loss.item())

            iteration_writer.add_scalar(
                'Loss/Test',
                statistical_losses.val[0],
                idx + 1,
            )

            if idx % 1 == 0:
                view_data = torch.zeros((3, *images.shape[1:]))
                view_data[0, :, :, :] = images[0]
                view_data[1, :, :, :] = outputs[0]
                view_data[2, :, :, :] = labels[0]

                if not os.path.isdir(os.path.join(TMP_ROOT, 'test', sub_dir)):
                    os.makedirs(os.path.join(TMP_ROOT, 'test', sub_dir))

                torchvision.utils.save_image(
                    view_data,
                    os.path.join(TMP_ROOT, 'test/%s/%s' % (sub_dir, names[0]))
                )

            print(
                'mae Error: mean: {errors.avg}, mid: {errors.mid}, worst: {errors.max[0]}, best: {errors.min[0]}'.format(
                    errors=statistical_mae_errors))

        return statistical_losses
Пример #6
0
def run():
    statistical_mae_errors = StatisticalValue()
    sub_dir = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime())
    print('Test start.')

    with torch.no_grad():

        for idx, (images, labels, names) in enumerate(trainloader):
            images, labels = images.to(DEVICE), labels.to(DEVICE)

            outputs, crops = model(images)

            mae_error = torch.tensor(0.0).to(DEVICE)
            for i, (output) in enumerate(outputs):
                xmin, ymin, xmax, ymax = crops[i]['box']
                mae_error += mae(input=output[0],
                                 target=labels[i][:, ymin:ymax, xmin:xmax])

            mae_error /= len(outputs)

            statistical_mae_errors.update(mae_error.item(), names)

            if idx % 1 == 0:
                xmin, ymin, xmax, ymax = crops[0]['box']
                view_data = torch.zeros((4, *images.shape[1:]))
                view_data[0, :, :, :] = images[0]
                view_data[1, :, :, :] = labels[0]
                view_data[2, :, :, :] = torch.nn.ConstantPad2d(
                    (xmin, images[0].shape[2] - xmax, ymin,
                     images[0].shape[1] - ymax), 0)(outputs[0])
                view_data[3, 0:3, ymin:ymax, xmin:xmax] = 1

                if not os.path.isdir(os.path.join(TMP_ROOT, 'test', sub_dir)):
                    os.makedirs(os.path.join(TMP_ROOT, 'test', sub_dir))

                torchvision.utils.save_image(
                    view_data,
                    os.path.join(TMP_ROOT, 'test/%s/%s' % (sub_dir, names[0])))

            print(
                'mae Error: mean: {errors.avg}, mid: {errors.mid}, worst: {errors.max[0]}, best: {errors.min[0]}'
                .format(errors=statistical_mae_errors))
Пример #7
0
def run(epoch):
    statistical_losses = StatisticalValue()
    statistical_angular_errors = StatisticalValue()

    optimizer.zero_grad()

    for idx, (images, labels, names) in enumerate(trainloader):
        images, labels = images.to(DEVICE), labels.to(DEVICE)

        predictions = model(images)

        loss = torch.zeros(1).to(DEVICE)

        for p in predictions:
            loss += criterion(p, labels) / ITERATION_SIZE

        loss.backward()

        angular_error = multi_angular_loss(predictions[-1], labels)
        statistical_angular_errors.update(angular_error.item(), names)
        statistical_losses.update(loss.item())

        iteration_writer.add_scalar(
            'Loss/Iteration',
            statistical_losses.val[0],
            (epoch - 1) * len(trainloader) + idx + 1
        )

        if (idx + 1) % ITERATION_SIZE == 0:
            optimizer.step()
            optimizer.zero_grad()

            print_training_status(epoch, idx + 1, len(trainloader),
                                  statistical_losses.val[0], statistical_losses.avg)
            print(
                'Angular Error: mean: {errors.avg}, worst: {errors.max[0]}, best: {errors.min[0]}'.format(
                    errors=statistical_angular_errors))

    scheduler.step()

    return statistical_losses
Пример #8
0
def run(epoch):
    statistical_losses = StatisticalValue()
    statistical_mae_errors = StatisticalValue()
    statistical_mae_errors1 = StatisticalValue()
    statistical_mae_errors2 = StatisticalValue()

    optimizer.zero_grad()

    for idx, (images, labels, names) in enumerate(trainloader):
        break
        images, labels = images.to(DEVICE), labels.to(DEVICE)

        outputs, _1, _2, crops = model(images)
        outputs_list = [outputs]

        loss = saliency_loss(outputs_list, labels)
        loss.backward()

        mae_error = mae(input=outputs, target=labels)
        statistical_mae_errors.update(mae_error.item(), names)
        statistical_mae_errors1.update(
            mae(input=_1, target=labels).item(), names)
        statistical_mae_errors2.update(
            mae(input=_2, target=labels).item(), names)

        statistical_losses.update(loss.item())

        iteration_writer.add_scalar('Loss/Iteration',
                                    statistical_losses.val[0],
                                    (epoch - 1) * len(trainloader) + idx + 1)

        if (idx + 1) % ITERATION_SIZE == 0:
            optimizer.step()
            optimizer.zero_grad()

            print_training_status(epoch, idx + 1, len(trainloader),
                                  statistical_losses.val[0],
                                  statistical_losses.avg)
            print(
                'Final MAE Error: mean: {errors.avg}, worst: {errors.max[0]}, best: {errors.min[0]}'
                .format(errors=statistical_mae_errors))
            print(
                '1 MAE Error: mean: {errors.avg}, worst: {errors.max[0]}, best: {errors.min[0]}'
                .format(errors=statistical_mae_errors1))
            print(
                '2 MAE Error: mean: {errors.avg}, worst: {errors.max[0]}, best: {errors.min[0]}'
                .format(errors=statistical_mae_errors2))

    # scheduler.step()
    test()
    return statistical_losses
Пример #9
0
def run(epoch):
    statistical_losses = StatisticalValue()
    statistical_angular_errors = StatisticalValue()

    optimizer.zero_grad()

    for idx, (images, edges, labels, names) in enumerate(fold1_train_loader):
        images, labels, edges = images.to(
            DEVICE), labels.to(DEVICE), edges.to(DEVICE)

        illuminatios, boundaries = model(images)
        loss = (mse_loss(illuminatios, labels) + cross_entropy_loss(boundaries, edges)) / ITERATION_SIZE
        loss.backward()

        with torch.no_grad():
            angular_error = angular_loss(illuminatios, labels)

        statistical_angular_errors.update(angular_error.item(), names)
        statistical_losses.update(loss.item())

        if (idx + 1) % ITERATION_SIZE == 0:
            optimizer.step()
            optimizer.zero_grad()

            print_training_status(epoch, idx + 1, len(fold1_train_loader),
                                  statistical_losses.val[0], statistical_losses.avg)
            print(
                'Angular Error: mean: {errors.avg}, worst: {errors.max[0]}, best: {errors.min[0]}'.format(
                    errors=statistical_angular_errors))

        if (idx + 1) % 30 == 0:
            save_training_process(os.path.join(
                TMP_ROOT, 'epoch-%s-training-view' % epoch), images, labels, names, illuminatios)

    scheduler.step()

    return statistical_losses
Пример #10
0
def run(epoch):
    statistical_losses = StatisticalValue()
    statistical_mae_errors = StatisticalValue()

    optimizer.zero_grad()

    for idx, (images, labels, names) in enumerate(trainloader):
        images, labels = images.to(DEVICE), labels.to(DEVICE)

        pred_masks, ca_act_regs = model(images)

        loss = (criterion(pred_masks, labels) + ca_act_regs) / ITERATION_SIZE

        loss.backward()

        mae_error = mae(input=pred_masks, target=labels)
        statistical_mae_errors.update(mae_error.item(), names)
        statistical_losses.update(loss.item())

        iteration_writer.add_scalar('Loss/Iteration',
                                    statistical_losses.val[0],
                                    (epoch - 1) * len(trainloader) + idx + 1)

        if (idx + 1) % ITERATION_SIZE == 0:
            optimizer.step()
            optimizer.zero_grad()

            print_training_status(epoch, idx + 1, len(trainloader),
                                  statistical_losses.val[0],
                                  statistical_losses.avg)
            print(
                'MAE Error: mean: {errors.avg}, worst: {errors.max[0]}, best: {errors.min[0]}'
                .format(errors=statistical_mae_errors))

    # scheduler.step()

    return statistical_losses
Пример #11
0
def run(epoch):
    statistical_losses = StatisticalValue()
    statistical_mae_errors = StatisticalValue()

    optimizer.zero_grad()

    for idx, (images, _, coordinates, names) in enumerate(trainloader):
        images, coordinates = images.to(DEVICE), coordinates.to(DEVICE)

        locs = model(images)
        print(locs.shape, coordinates.shape)

        loss = criterion([locs], [coordinates])
        loss.backward()

        # mae_error = mae(input=outputs, target=labels)
        # statistical_mae_errors.update(mae_error.item(), names)
        statistical_losses.update(loss.item())

        iteration_writer.add_scalar('Loss/Iteration',
                                    statistical_losses.val[0],
                                    (epoch - 1) * len(trainloader) + idx + 1)

        if (idx + 1) % ITERATION_SIZE == 0:
            optimizer.step()
            optimizer.zero_grad()

            print_training_status(epoch, idx + 1, len(trainloader),
                                  statistical_losses.val[0],
                                  statistical_losses.avg)
            # print(
            #     'MAE Error: mean: {errors.avg}, worst: {errors.max[0]}, best: {errors.min[0]}'.format(
            #         errors=statistical_mae_errors))

    # scheduler.step()
    # exit()
    return statistical_losses
Пример #12
0
def test():
    statistical_losses = StatisticalValue()
    statistical_mae_errors = StatisticalValue()
    statistical_mae_errors1 = StatisticalValue()
    statistical_mae_errors2 = StatisticalValue()

    with torch.no_grad():
        for idx, (images, labels, names) in enumerate(testloader):
            images, labels = images.to(DEVICE), labels.to(DEVICE)
            outputs, _1, _2, crops = model(images)
            outputs_list = [outputs]

            loss = saliency_loss(outputs_list, labels)

            statistical_mae_errors.update(
                mae(input=outputs, target=labels).item(), names)
            statistical_mae_errors1.update(
                mae(input=_1, target=labels).item(), names)
            statistical_mae_errors2.update(
                mae(input=_2, target=labels).item(), names)
            statistical_losses.update(loss.item())

            print(
                'Final MAE Error: mean: {errors.avg}, worst: {errors.max[0]}, best: {errors.min[0]}'
                .format(errors=statistical_mae_errors))
            print(
                '1 MAE Error: mean: {errors.avg}, worst: {errors.max[0]}, best: {errors.min[0]}'
                .format(errors=statistical_mae_errors1))
            print(
                '2 MAE Error: mean: {errors.avg}, worst: {errors.max[0]}, best: {errors.min[0]}'
                .format(errors=statistical_mae_errors2))

            for iidx in range(len(images)):
                xmin, ymin, xmax, ymax = crops[iidx]['box']
                view_data = torch.zeros((5, *images.shape[1:]))
                view_data[0, :, :, :] = images[iidx]
                view_data[1, :, :, :] = labels[iidx]
                view_data[2, 0:3, ymin:ymax, xmin:xmax] = 1
                view_data[3, :, :, :] = _1[iidx]
                view_data[4, :, :, :] = _2[iidx]

                if not os.path.isdir(os.path.join(TMP_ROOT, 'test')):
                    os.makedirs(os.path.join(TMP_ROOT, 'test'))

                torchvision.utils.save_image(
                    view_data, os.path.join(TMP_ROOT, 'test/%s' % (names[0])))
                break
Пример #13
0
def run(epoch):
    statistical_losses = StatisticalValue()
    statistical_mae_errors = StatisticalValue()

    optimizer.zero_grad()

    for idx, (images, labels, names) in enumerate(trainloader):
        images, labels = images.to(DEVICE), labels.to(DEVICE)

        outputs, crops = model(images)

        # xmin, ymin, xmax, ymax = crops[0]['box']
        # view_data = torch.zeros((4, *images.shape[1:]))
        # view_data[0, :, :, :] = images[0]
        # view_data[1, :, :, :] = labels[0]
        # view_data[2, 0:3, ymin: ymax, xmin: xmax] = 1
        # view_data[3, :, :, :] = outputs[0]

        # if not os.path.isdir(os.path.join(TMP_ROOT, 'test')):
        #     os.makedirs(os.path.join(TMP_ROOT, 'test'))

        # torchvision.utils.save_image(
        #     view_data,
        #     os.path.join(TMP_ROOT, 'test/%s' % (names[0]))
        # )

        loss = torch.tensor(0.0).to(DEVICE)

        for i, (output) in enumerate(outputs):
            xmin, ymin, xmax, ymax = crops[i]['box']
            output_list = [output[0]]
            reshaped_label = labels[i][:, ymin:ymax, xmin:xmax]
            total = torch.numel(reshaped_label)
            postive = torch.count_nonzero(reshaped_label)
            negative = total - postive

            # if postive > negative:
            #     loss += saliency_loss(output_list, reshaped_label, weight_0=postive * 2 / total, weight_1=1.0)
            # else:
            #     loss += saliency_loss(output_list, reshaped_label, weight_0=1.0, weight_1=negative * 2 / total)
            # print(output[0].unsqueeze(0).shape, reshaped_label.unsqueeze(0).shape)
            if postive > negative:
                loss += criterion(output[0].unsqueeze(0),
                                  reshaped_label.unsqueeze(0),
                                  weight_0=postive * 2 / total,
                                  weight_1=1.0)
            else:
                loss += criterion(output[0].unsqueeze(0),
                                  reshaped_label.unsqueeze(0),
                                  weight_0=1.0,
                                  weight_1=negative * 2 / total)

        loss /= len(outputs)
        loss.backward()

        mae_error = torch.tensor(0.0).to(DEVICE)

        for i, (output) in enumerate(outputs):
            xmin, ymin, xmax, ymax = crops[i]['box']
            mae_error += mae(input=output[0],
                             target=labels[i][:, ymin:ymax, xmin:xmax])

        mae_error /= len(outputs)

        statistical_mae_errors.update(mae_error.item(), names)
        statistical_losses.update(loss.item())

        iteration_writer.add_scalar('Loss/Iteration',
                                    statistical_losses.val[0],
                                    (epoch - 1) * len(trainloader) + idx + 1)

        if (idx + 1) % ITERATION_SIZE == 0:
            optimizer.step()
            optimizer.zero_grad()

            print_training_status(epoch, idx + 1, len(trainloader),
                                  statistical_losses.val[0],
                                  statistical_losses.avg)
            print(
                'MAE Error: mean: {errors.avg}, worst: {errors.max[0]}, best: {errors.min[0]}'
                .format(errors=statistical_mae_errors))

    # scheduler.step()
    return statistical_losses
Пример #14
0
def run(epoch):
    statistical_local_losses = StatisticalValue(record=False)
    statistical_global_losses = StatisticalValue(record=False)

    statistical_local_l1_errors = StatisticalValue(record=False)
    statistical_global_l1_errors = StatisticalValue(record=False)

    optimizer_local.zero_grad()
    # optimizer_global.zero_grad()

    for idx, (images, labels, names) in enumerate(trainloader):
        images, labels = images.to(DEVICE), labels.to(DEVICE)

        _, global_result, local_result, crops = model(images)

        local_loss = torch.tensor(0.0).to(DEVICE)

        for i, (output) in enumerate(local_result[0]):
            xmin, ymin, xmax, ymax = crops[i]['box']
            reshaped_output = output[:, ymin:ymax, xmin:xmax]
            reshaped_label = labels[i][:, ymin:ymax, xmin:xmax]
            total = torch.numel(reshaped_label)
            postive = torch.count_nonzero(reshaped_label)
            negative = total - postive

            reshaped_output = reshaped_output.unsqueeze(0)
            reshaped_label = reshaped_label.unsqueeze(0)

            if postive > negative:
                local_loss += criterion(reshaped_output,
                                        reshaped_label,
                                        weight_0=postive * 2 / total,
                                        weight_1=1.0)
            else:
                local_loss += criterion(reshaped_output,
                                        reshaped_label,
                                        weight_0=1.0,
                                        weight_1=negative * 2 / total)

        print(local_result[1])
        exit()
        local_loss /= len(local_result[0])
        local_loss += local_result[1]
        # global_loss = criterion(global_result[0], labels) + global_result[1]

        local_loss.backward()
        # global_loss.backward()

        statistical_local_losses.update(local_loss.item())
        # statistical_global_losses.update(global_loss.item())

        local_l1_error = torch.tensor(0.0).to(DEVICE)

        for i, (output) in enumerate(local_result[0]):
            xmin, ymin, xmax, ymax = crops[i]['box']
            local_l1_error += l1_loss(input=output[:, ymin:ymax, xmin:xmax],
                                      target=labels[i][:, ymin:ymax,
                                                       xmin:xmax])

        local_l1_error /= len(local_result[0])

        statistical_local_l1_errors.update(local_l1_error)
        # statistical_global_l1_errors.update(l1_loss(input=global_result[0], target=labels))

        if (idx + 1) % 10 == 0:
            optimizer_local.step()
            optimizer_local.zero_grad()

            # optimizer_global.step()
            # optimizer_global.zero_grad()

            print('Local Loss: ')
            print_training_status(epoch, idx + 1, len(trainloader),
                                  statistical_local_losses.val[0],
                                  statistical_local_losses.avg)
            print('Global Loss: ')
            # print_training_status(epoch, idx + 1, len(trainloader),
            #                       statistical_global_losses.val[0], statistical_global_losses.avg)
            print(
                'Local MAE Error: mean: {errors.avg}, worst: {errors.max[0]}, best: {errors.min[0]}'
                .format(errors=statistical_local_l1_errors))
            # print(
            #     'Global MAE Error: mean: {errors.avg}, worst: {errors.max[0]}, best: {errors.min[0]}'.format(
            #         errors=statistical_global_l1_errors))

    return statistical_local_losses