Пример #1
0
def _process_utterance(out_dir, index, wav_path, text):
    # Load the audio to a numpy array:
    wav = audio.load_wav(wav_path)

    if hparams.rescaling:
        wav = wav / np.abs(wav).max() * hparams.rescaling_max

    # Mu-law quantize
    if is_mulaw_quantize(hparams.input_type):
        # [0, quantize_channels)
        out = P.mulaw_quantize(wav, hparams.quantize_channels)

        # Trim silences
        start, end = audio.start_and_end_indices(out,
                                                 hparams.silence_threshold)
        wav = wav[start:end]
        out = out[start:end]
        constant_values = P.mulaw_quantize(0, hparams.quantize_channels)
        out_dtype = np.int16
    elif is_mulaw(hparams.input_type):
        # [-1, 1]
        out = P.mulaw(wav, hparams.quantize_channels)
        constant_values = P.mulaw(0.0, hparams.quantize_channels)
        out_dtype = np.float32
    else:
        # [-1, 1]
        out = wav
        constant_values = 0.0
        out_dtype = np.float32

    # Compute a mel-scale spectrogram from the trimmed wav:
    # (N, D)
    mel_spectrogram = audio.melspectrogram(wav).astype(np.float32).T
    # lws pads zeros internally before performing stft
    # this is needed to adjust time resolution between audio and mel-spectrogram
    l, r = audio.lws_pad_lr(wav, hparams.fft_size, audio.get_hop_size())

    # zero pad for quantized signal
    out = np.pad(out, (l, r), mode="constant", constant_values=constant_values)
    N = mel_spectrogram.shape[0]
    assert len(out) >= N * audio.get_hop_size()

    # time resolution adjustment
    # ensure length of raw audio is multiple of hop_size so that we can use
    # transposed convolution to upsample
    out = out[:N * audio.get_hop_size()]
    assert len(out) % audio.get_hop_size() == 0

    timesteps = len(out)

    # Write the spectrograms to disk:
    audio_filename = 'bznsyp-audio-%05d.npy' % index
    mel_filename = 'bznsyp-mel-%05d.npy' % index
    np.save(os.path.join(out_dir, audio_filename),
            out.astype(out_dtype),
            allow_pickle=False)
    np.save(os.path.join(out_dir, mel_filename),
            mel_spectrogram.astype(np.float32),
            allow_pickle=False)

    # Return a tuple describing this training example:
    return (audio_filename, mel_filename, timesteps, text)
Пример #2
0
def _process_utterance(out_dir, index, speaker_id, wav_path, text):
    sr = hparams.sample_rate

    # Load the audio to a numpy array. Resampled if needed
    wav = audio.load_wav(wav_path)

    lab_path = wav_path.replace("wav/", "lab/").replace(".wav", ".lab")

    # Trim silence from hts labels if available
    # TODO
    if exists(lab_path) and False:
        labels = hts.load(lab_path)
        b = int(start_at(labels) * 1e-7 * sr)
        e = int(end_at(labels) * 1e-7 * sr)
        wav = wav[b:e]
        wav, _ = librosa.effects.trim(wav, top_db=20)
    else:
        wav, _ = librosa.effects.trim(wav, top_db=20)

    if hparams.rescaling:
        wav = wav / np.abs(wav).max() * hparams.rescaling_max

    # Mu-law quantize
    if is_mulaw_quantize(hparams.input_type):
        # [0, quantize_channels)
        out = P.mulaw_quantize(wav, hparams.quantize_channels)

        # Trim silences
        start, end = audio.start_and_end_indices(out, hparams.silence_threshold)
        wav = wav[start:end]
        out = out[start:end]
        constant_values = P.mulaw_quantize(0, hparams.quantize_channels)
        out_dtype = np.int16
    elif is_mulaw(hparams.input_type):
        # [-1, 1]
        out = P.mulaw(wav, hparams.quantize_channels)
        constant_values = P.mulaw(0.0, hparams.quantize_channels)
        out_dtype = np.float32
    else:
        # [-1, 1]
        out = wav
        constant_values = 0.0
        out_dtype = np.float32

    # Compute a mel-scale spectrogram from the trimmed wav:
    # (N, D)
    mel_spectrogram = audio.melspectrogram(wav).astype(np.float32).T
    # lws pads zeros internally before performing stft
    # this is needed to adjust time resolution between audio and mel-spectrogram
    l, r = audio.lws_pad_lr(wav, hparams.fft_size, audio.get_hop_size())

    # zero pad for quantized signal
    out = np.pad(out, (l, r), mode="constant", constant_values=constant_values)
    N = mel_spectrogram.shape[0]
    assert len(out) >= N * audio.get_hop_size()

    # time resolution adjustment
    # ensure length of raw audio is multiple of hop_size so that we can use
    # transposed convolution to upsample
    out = out[:N * audio.get_hop_size()]
    assert len(out) % audio.get_hop_size() == 0

    timesteps = len(out)

    # Write the spectrograms to disk:
    audio_filename = 'cmu_arctic-audio-%05d.npy' % index
    mel_filename = 'cmu_arctic-mel-%05d.npy' % index
    np.save(os.path.join(out_dir, audio_filename),
            out.astype(out_dtype), allow_pickle=False)
    np.save(os.path.join(out_dir, mel_filename),
            mel_spectrogram.astype(np.float32), allow_pickle=False)

    # Return a tuple describing this training example:
    return (audio_filename, mel_filename, timesteps, text, speaker_id)
Пример #3
0
def _process_utterance(out_dir, index, audio_filepath, text):
    # Load the audio to a numpy array:
    wav_whole = audio.load_wav(audio_filepath)

    if hparams.rescaling:
        wav_whole = wav_whole / np.abs(wav_whole).max() * hparams.rescaling_max

    # This is a librivox source, so the audio files are going to be v. long
    # compared to a typical 'utterance' : So split the wav into chunks

    tup_results = []

    n_samples = int(8.0 * hparams.sample_rate)  # All 8 second utterances
    n_chunks = wav_whole.shape[0] // n_samples

    for chunk_idx in range(n_chunks):
        chunk_start, chunk_end = chunk_idx * n_samples, (chunk_idx + 1) * n_samples
        if chunk_idx == n_chunks - 1:  # This is the last chunk - allow it to extend to the end of the file
            chunk_end = None
        wav = wav_whole[chunk_start: chunk_end]

        # Mu-law quantize
        if is_mulaw_quantize(hparams.input_type):
            # [0, quantize_channels)
            out = P.mulaw_quantize(wav, hparams.quantize_channels)

            # Trim silences
            start, end = audio.start_and_end_indices(out, hparams.silence_threshold)
            wav = wav[start:end]
            out = out[start:end]
            constant_values = P.mulaw_quantize(0, hparams.quantize_channels)
            out_dtype = np.int16
        elif is_mulaw(hparams.input_type):
            # [-1, 1]
            out = P.mulaw(wav, hparams.quantize_channels)
            constant_values = P.mulaw(0.0, hparams.quantize_channels)
            out_dtype = np.float32
        else:
            # [-1, 1]
            out = wav
            constant_values = 0.0
            out_dtype = np.float32

        # Compute a mel-scale spectrogram from the trimmed wav:
        # (N, D)
        mel_spectrogram = audio.melspectrogram(wav).astype(np.float32).T
        # lws pads zeros internally before performing stft
        # this is needed to adjust time resolution between audio and mel-spectrogram
        l, r = audio.lws_pad_lr(wav, hparams.fft_size, audio.get_hop_size())

        # zero pad for quantized signal
        out = np.pad(out, (l, r), mode="constant", constant_values=constant_values)
        N = mel_spectrogram.shape[0]
        assert len(out) >= N * audio.get_hop_size()

        # time resolution adjustment
        # ensure length of raw audio is multiple of hop_size so that we can use
        # transposed convolution to upsample
        out = out[:N * audio.get_hop_size()]
        assert len(out) % audio.get_hop_size() == 0

        timesteps = len(out)

        # Write the spectrograms to disk:
        audio_filename = 'librivox-audio-%04d-%05d.npy' % (index, chunk_idx,)
        mel_filename = 'librivox-mel-%04d-%05d.npy' % (index, chunk_idx,)
        text_idx = '%s - %05d' % (text, chunk_idx,)
        np.save(os.path.join(out_dir, audio_filename),
                out.astype(out_dtype), allow_pickle=False)
        np.save(os.path.join(out_dir, mel_filename),
                mel_spectrogram.astype(np.float32), allow_pickle=False)

        # Add results tuple describing this training example:
        tup_results.append((audio_filename, mel_filename, timesteps, text_idx))

    # Return all the audio results tuples (unpack in caller)
    return tup_results
Пример #4
0
def _process_utterance(out_dir, index, wav_path, text, silence_threshold,
                       fft_size):
    '''Preprocesses a single utterance audio/text pair.

    This writes the mel and linear scale spectrograms to disk and returns a tuple to write
    to the train.txt file.

    Args:
      out_dir: The directory to write the spectrograms into
      index: The numeric index to use in the spectrogram filenames.
      wav_path: Path to the audio file containing the speech input
      text: The text spoken in the input audio file

    Returns:
      A (spectrogram_filename, mel_filename, text, mel_len) tuple to write to train.txt
    '''
    # Load the audio to a numpy array:
    wav = audio.load_wav(wav_path)

    if hp.rescaling:
        wav = wav / np.abs(wav).max() * hp.rescaling_max

    if hp.input_type != "raw":
        # Mu-law quantize
        out = P.mulaw_quantize(wav)

        # Trim silences
        start, end = audio.start_and_end_indices(out, silence_threshold)
        out = out[start:end]
        wav = wav[start:end]
        constant_value = P.mulaw_quantize(0, 256)
        out_dtype = np.int16
    else:
        out = wav
        constant_value = 0.
        out_dtype = np.float32

    # Compute a mel-scale spectrogram from the trimmed wav:
    # (N, D)
    mel_spectrogram = audio.melspectrogram(wav).astype(np.float32).T

    # lws pads zeros internally before performing stft
    # this is needed to adjust time resolution between audio and mel-spectrogram
    l, r = audio.lws_pad_lr(wav, fft_size, audio.get_hop_size())

    # zero pad for quantized signal
    out = np.pad(out, (l, r), mode="constant", constant_values=constant_value)
    mel_len = mel_spectrogram.shape[0]
    assert len(out) >= mel_len * audio.get_hop_size()

    # time resolution adjustment
    # ensure length of raw audio is multiple of hop_size so that we can use
    # transposed convolution to upsample
    out = out[:mel_len * audio.get_hop_size()]
    assert len(out) % audio.get_hop_size() == 0

    timesteps = len(out)

    wav_id = wav_path.split('/')[-1].split('.')[0]
    # Write the spectrograms to disk:
    audio_path = os.path.join(out_dir, '{}-audio.npy'.format(wav_id))
    mel_path = os.path.join(out_dir, '{}-mel.npy'.format(wav_id))
    np.save(audio_path, out.astype(out_dtype), allow_pickle=False)
    np.save(mel_path, mel_spectrogram.astype(np.float32), allow_pickle=False)

    # Return a tuple describing this training example:
    return os.path.abspath(audio_path), os.path.abspath(
        mel_path), text, timesteps