Пример #1
0
    def detect(self, text_proposals, scores, size):
        # 删除得分较低的proposal
        keep_inds = np.where(scores > TextLineCfg.TEXT_PROPOSALS_MIN_SCORE)[0]
        text_proposals, scores = text_proposals[keep_inds], scores[keep_inds]

        # 按得分排序
        sorted_indices = np.argsort(scores.ravel())[::-1]
        text_proposals, scores = text_proposals[sorted_indices], scores[sorted_indices]

        # 对proposal做nms
        keep_inds = nms(np.hstack((text_proposals, scores)), TextLineCfg.TEXT_PROPOSALS_NMS_THRESH)
        text_proposals, scores = text_proposals[keep_inds], scores[keep_inds]

        # 获取检测结果
        text_recs = self.text_proposal_connector.get_text_lines(text_proposals, scores, size)
        keep_inds = self.filter_boxes(text_recs)
        return text_recs[keep_inds]
Пример #2
0
    def detect(self, text_proposals, scores, size):
        # Delete lower scores
        keep_inds = np.where(scores > TextLineCfg.TEXT_PROPOSALS_MIN_SCORE)[0]
        text_proposals, scores = text_proposals[keep_inds], scores[keep_inds]

        # Sort by score
        sorted_indices = np.argsort(scores.ravel())[::-1]
        text_proposals, scores = text_proposals[sorted_indices], scores[
            sorted_indices]

        # nms
        keep_inds = nms(np.hstack((text_proposals, scores)),
                        TextLineCfg.TEXT_PROPOSALS_NMS_THRESH)
        text_proposals, scores = text_proposals[keep_inds], scores[keep_inds]

        # Get result
        text_recs = self.text_proposal_connector.get_text_lines(
            text_proposals, scores, size)
        keep_inds = self.filter_boxes(text_recs)
        return text_recs[keep_inds]
Пример #3
0
def proposal_layer(rpn_cls_prob_reshape,
                   rpn_bbox_pred,
                   im_info,
                   _feat_stride=[
                       16,
                   ],
                   anchor_scales=[
                       16,
                   ]):
    """
    Parameters
    ----------
    rpn_cls_prob_reshape: (1 , H , W , Ax2) outputs of RPN, prob of bg or fg
                         NOTICE: the old version is ordered by (1, H, W, 2, A) !!!!
    rpn_bbox_pred: (1 , H , W , Ax4), rgs boxes output of RPN
    im_info: a list of [image_height, image_width, scale_ratios]
    _feat_stride: the downsampling ratio of feature map to the original input image
    anchor_scales: the scales to the basic_anchor (basic anchor is [16, 16])
    ----------
    Returns
    ----------
    rpn_rois : (1 x H x W x A, 5) e.g. [0, x1, y1, x2, y2]
    # Algorithm:
    #
    # for each (H, W) location i
    #   generate A anchor boxes centered on cell i
    #   apply predicted bbox deltas at cell i to each of the A anchors
    # clip predicted boxes to image
    # remove predicted boxes with either height or width < threshold
    # sort all (proposal, score) pairs by score from highest to lowest
    # take top pre_nms_topN proposals before NMS
    # apply NMS with threshold 0.7 to remaining proposals
    # take after_nms_topN proposals after NMS
    # return the top proposals (-> RoIs top, scores top)
    #layer_params = yaml.load(self.param_str_)
    """

    _anchors = generate_anchors(
        scales=np.array(anchor_scales))  # 生成基本的10个anchor
    _num_anchors = _anchors.shape[0]  # 10个anchor

    im_info = im_info[0]  # 原始图像的高宽、缩放尺度

    assert rpn_cls_prob_reshape.shape[0] == 1, \
        'Only single item batches are supported'

    pre_nms_topN = cfg.RPN_PRE_NMS_TOP_N  # 12000,在做nms之前,最多保留的候选box数目
    post_nms_topN = cfg.RPN_POST_NMS_TOP_N  # 1000,做完nms之后,最多保留的box的数目
    nms_thresh = cfg.RPN_NMS_THRESH  # nms用参数,阈值是0.7
    min_size = cfg.RPN_MIN_SIZE  # 候选box的最小尺寸,目前是16,高宽均要大于16

    height, width = rpn_cls_prob_reshape.shape[1:3]  # feature-map的高宽
    width = width // 10

    # the first set of _num_anchors channels are bg probs
    # the second set are the fg probs, which we want
    # (1, H, W, A)
    scores = np.reshape(
        np.reshape(rpn_cls_prob_reshape,
                   [1, height, width, _num_anchors, 2])[:, :, :, :, 1],
        [1, height, width, _num_anchors])
    # 提取到object的分数,non-object的我们不关心

    bbox_deltas = rpn_bbox_pred  # 模型输出的pred bbox是相对值,需要进一步处理成真实图像中的坐标
    # im_info = bottom[2].data[0, :]

    if DEBUG:
        print('im_size: ({}, {})'.format(im_info[0], im_info[1]))
        print('scale: {}'.format(im_info[2]))

    # 1. Generate proposals from bbox deltas and shifted anchors
    if DEBUG:
        print('score map size: {}'.format(scores.shape))

    # Enumerate all shifts
    # 同anchor-target-layer-tf这个文件一样,生成anchor的shift,进一步得到整张图像上的所有anchor
    shift_x = np.arange(0, width) * _feat_stride
    shift_y = np.arange(0, height) * _feat_stride
    shift_x, shift_y = np.meshgrid(shift_x, shift_y)
    shifts = np.vstack((shift_x.ravel(), shift_y.ravel(), shift_x.ravel(),
                        shift_y.ravel())).transpose()

    # Enumerate all shifted anchors:
    #
    # add A anchors (1, A, 4) to
    # cell K shifts (K, 1, 4) to get
    # shift anchors (K, A, 4)
    # reshape to (K*A, 4) shifted anchors
    A = _num_anchors
    K = shifts.shape[0]
    anchors = _anchors.reshape((1, A, 4)) + \
              shifts.reshape((1, K, 4)).transpose((1, 0, 2))
    anchors = anchors.reshape((K * A, 4))  # 这里得到的anchor就是整张图像上的所有anchor

    # Transpose and reshape predicted bbox transformations to get them
    # into the same order as the anchors:
    # bbox deltas will be (1, 4 * A, H, W) format
    # transpose to (1, H, W, 4 * A)
    # reshape to (1 * H * W * A, 4) where rows are ordered by (h, w, a)
    # in slowest to fastest order
    bbox_deltas = bbox_deltas.reshape((-1, 4))  # (HxWxA, 4)

    # Same story for the scores:
    scores = scores.reshape((-1, 1))

    # Convert anchors into proposals via bbox transformations
    proposals = bbox_transform_inv(anchors, bbox_deltas)  # 做逆变换,得到box在图像上的真实坐标

    # 2. clip predicted boxes to image
    proposals = clip_boxes(proposals,
                           im_info[:2])  # 将所有的proposal修建一下,超出图像范围的将会被修剪掉

    # 3. remove predicted boxes with either height or width < threshold
    # (NOTE: convert min_size to input image scale stored in im_info[2])
    keep = _filter_boxes(proposals, min_size)  # 移除那些proposal小于一定尺寸的proposal
    proposals = proposals[keep, :]  # 保留剩下的proposal
    scores = scores[keep]
    bbox_deltas = bbox_deltas[keep, :]

    # # remove irregular boxes, too fat too tall
    # keep = _filter_irregular_boxes(proposals)
    # proposals = proposals[keep, :]
    # scores = scores[keep]

    # 4. sort all (proposal, score) pairs by score from highest to lowest
    # 5. take top pre_nms_topN (e.g. 6000)
    order = scores.ravel().argsort()[::-1]  # score按得分的高低进行排序
    if pre_nms_topN > 0:  # 保留12000个proposal进去做nms
        order = order[:pre_nms_topN]
    proposals = proposals[order, :]
    scores = scores[order]
    bbox_deltas = bbox_deltas[order, :]

    # 6. apply nms (e.g. threshold = 0.7)
    # 7. take after_nms_topN (e.g. 300)
    # 8. return the top proposals (-> RoIs top)
    keep = nms(np.hstack((proposals, scores)),
               nms_thresh)  # 进行nms操作,保留1000个proposal
    if post_nms_topN > 0:
        keep = keep[:post_nms_topN]
    proposals = proposals[keep, :]
    scores = scores[keep]
    bbox_deltas = bbox_deltas[keep, :]

    # Output rois blob
    # Our RPN implementation only supports a single input image, so all
    # batch inds are 0
    blob = np.hstack(
        (scores.astype(np.float32,
                       copy=False), proposals.astype(np.float32, copy=False)))

    return blob, bbox_deltas