Пример #1
0
 data_manager = DataManager(dataset_name, split, selected_classes,
                            with_difficult_objects)
 ground_truth_data = data_manager.load_data()
 difficult_data_flags = data_manager.parser.difficult_objects
 scores = []
 labels = []
 num_gt_boxes = 0
 for image_name, gt_sample in tqdm(ground_truth_data.items()):
     image_path = image_prefix + image_name
     reference_size = get_image_size(image_path)
     detections = infer_from_path(image_path, model, prior_boxes)
     gt_sample = denormalize_boxes(gt_sample, reference_size)
     num_gt_boxes = num_gt_boxes + len(gt_sample)
     already_detected = np.zeros(shape=len(gt_sample), dtype=bool)
     for detection in detections:
         ious = calculate_intersection_over_union(detection, gt_sample)
         score = np.max(detection[4:])
         best_iou = np.max(ious)
         best_iou_arg = np.argmax(ious)
         if best_iou > iou_threshold:
             if not already_detected[best_iou_arg]:
                 labels.append(True)
                 scores.append(best_iou)
                 already_detected[best_iou_arg] = True
             else:
                 labels.append(False)
                 scores.append(best_iou)
         else:
             labels.append(False)
             scores.append(best_iou)
 results = compute_precision_and_recall(scores, labels, num_gt_boxes)
Пример #2
0
        difficult_objects = difficult_data_flags[image_name]
        difficult_objects = np.asarray(difficult_objects, dtype=bool)
        num_ground_truth_boxes += np.sum(np.logical_not(difficult_objects))
        if predicted_data is None:
            continue
        """
        draw_image_boxes(predicted_data, original_image_array,
                         class_decoder, normalized=False)

        draw_image_boxes(ground_truth_sample, original_image_array,
                         class_decoder, normalized=False)
        """

        for ground_truth_object_arg in range(len(ground_truth_sample)):
            ground_truth_object = ground_truth_sample[ground_truth_object_arg]
            ious = calculate_intersection_over_union(ground_truth_object,
                                                     predicted_data)
            detections = np.zeros_like(ious)
            max_iou = np.max(ious)
            max_iou_arg = np.argmax(ious)
            difficult = difficult_objects[ground_truth_object_arg]
            if difficult == False:
                predicted_sample = predicted_data[max_iou_arg]
                predicted_probabilities = predicted_sample[4:]
                predicted_sample_arg = np.argmax(predicted_probabilities)
                predicted_score = np.max(predicted_probabilities)

                scores.append(predicted_score)
                if max_iou > iou_threshold:
                    if predicted_sample_arg == ground_truth_class_arg:
                        labels.append(True)
                    else:
        difficult_objects = np.asarray(difficult_objects, dtype=bool)
        num_ground_truth_boxes += np.sum(np.logical_not(difficult_objects))
        if predicted_data is None:
            # print('Zero predictions given for image:', image_name)
            continue
        #plt.imshow(original_image_array.astype('uint8'))
        #plt.show()
        #draw_image_boxes(predicted_data, original_image_array, class_decoder, normalized=False)
        #print(predicted_data.shape)
        num_predictions = len(predicted_data)
        for prediction_arg in range(num_predictions):
            predicted_box = predicted_data[prediction_arg]
            predicted_class_probabilities = predicted_box[4:]
            predicted_class_arg = np.argmax(predicted_class_probabilities)
            predicted_score = np.max(predicted_class_probabilities)
            ious = calculate_intersection_over_union(predicted_box,
                                                     ground_truth_sample)
            num_objects = len(ground_truth_sample)
            for object_arg in range(num_objects):
                # ground_truth_classes = ground_truth_sample[object_arg][4:]
                # ground_truth_class_arg = np.argmax(ground_truth_classes)
                difficult = difficult_objects[object_arg]
                if difficult:
                    # num_ground_truth_boxes = num_ground_truth_boxes - 1
                    continue
                iou = ious[object_arg]
                # i think this is bad you have to take the max
                if iou >= iou_threshold and predicted_class_arg == ground_truth_class_arg:
                    # print('True positive:', box_arg)
                    scores.append(predicted_score)
                    labels.append(True)
Пример #4
0
        # print(num_images_in_class)
        num_images_in_class = num_images_in_class + np.sum(mask)
        ground_truth_classes = ground_truth_classes[mask]
        ground_truth_boxes = ground_truth_boxes[mask]
        num_ground_truth_boxes = len(ground_truth_boxes)

        detected_boxes = detected_box_samples[image_arg]
        detected_scores = detected_score_samples[image_arg]
        num_detected_boxes = len(detected_scores)
        selected_ground_truth_boxes = np.zeros(num_ground_truth_boxes,
                                               dtype=bool)
        for detected_box_arg in range(num_detected_boxes):
            detected_box = detected_boxes[detected_box_arg]
            detected_score = detected_scores[detected_box_arg]
            scores.append(detected_score)
            ious = calculate_intersection_over_union(detected_box,
                                                     ground_truth_boxes)
            best_detected_box = np.argmax(ious)
            best_iou = np.max(ious)
            already_selected = selected_ground_truth_boxes[best_detected_box]
            if best_iou > iou_treshold:
                if not already_selected:
                    selected_ground_truth_boxes[best_detected_box] = True
                    labels.append(True)
                else:
                    labels.append(False)
            else:
                labels.append(False)
    scores = np.asarray(scores)
    labels = np.asarray(labels)
    precision, recall = compute_precision_and_recall(scores, labels,
                                                     num_images_in_class)