Пример #1
0
def main():
    c2_utils.import_detectron_ops()
    parser = argparse.ArgumentParser(
        description='Classification model testing')
    parser.add_argument('--config_file',
                        type=str,
                        default=None,
                        required=True,
                        help='Optional config file for params')
    parser.add_argument('opts',
                        help='see config.py for all options',
                        default=None,
                        nargs=argparse.REMAINDER)
    if len(sys.argv) == 1:
        parser.print_help()
        sys.exit(1)

    args = parser.parse_args()
    if args.config_file is not None:
        cfg_from_file(args.config_file)
    if args.opts is not None:
        cfg_from_list(args.opts)

    assert_and_infer_cfg()
    print_cfg()

    test(args)
Пример #2
0
    def build_graph(self):
        c2_utils.import_detectron_ops()
        # OpenCL may be enabled by default in OpenCV3; disable it because it's not
        # thread safe and causes unwanted GPU memory allocations.
        cv2.ocl.setUseOpenCL(False)

        merge_cfg_from_file(self.config.args['config_path'])

        # If this is a CPU kernel, tell Caffe2 that it should not use
        # any GPUs for its graph operations
        cpu_only = True
        for handle in self.config.devices:
            if handle.type == DeviceType.GPU.value:
                cpu_only = False

        if cpu_only:
            cfg.NUM_GPUS = 0
        else:
            cfg.NUM_GPUS = 1
        # TODO: wrap this in "with device"
        weights_path = cache_url(self.config.args['weights_path'],
                                 cfg.DOWNLOAD_CACHE)
        assert_and_infer_cfg(cache_urls=False)
        model = infer_engine.initialize_model_from_cfg(weights_path)
        return model
import time

from caffe2.python import workspace

from core.config import assert_and_infer_cfg
from core.config import cfg
from core.config import merge_cfg_from_file
from utils.io import cache_url
from utils.timer import Timer
import core.test_engine as infer_engine
import datasets.dummy_datasets as dummy_datasets
import utils.c2 as c2_utils
import utils.logging
import utils.vis as vis_utils

c2_utils.import_detectron_ops()
# OpenCL may be enabled by default in OpenCV3; disable it because it's not
# thread safe and causes unwanted GPU memory allocations.
cv2.ocl.setUseOpenCL(False)


def parse_args():
    parser = argparse.ArgumentParser(description='End-to-end inference')
    parser.add_argument('--cfg',
                        dest='cfg',
                        help='cfg model file (/path/to/model_config.yaml)',
                        default=None,
                        type=str)
    parser.add_argument('--wts',
                        dest='weights',
                        help='weights model file (/path/to/model_weights.pkl)',
Пример #4
0
from caffe2.proto import caffe2_pb2

from core.config import assert_and_infer_cfg
from core.config import cfg
from core.config import merge_cfg_from_file
from core.config import merge_cfg_from_list
from modeling import generate_anchors
import core.test_engine as test_engine
import utils.c2 as c2_utils
import utils.vis as vis_utils
import utils.logging
import utils.model_convert_utils as mutils
from utils.model_convert_utils import op_filter, convert_op_in_proto

c2_utils.import_contrib_ops()
c2_utils.import_detectron_ops()

logger = utils.logging.setup_logging(__name__)


def parse_args():
    parser = argparse.ArgumentParser(
        description='Convert a trained network to pb format'
    )
    parser.add_argument(
        '--cfg', dest='cfg_file', help='optional config file', default=None,
        type=str)
    parser.add_argument(
        '--net_name', dest='net_name', help='optional name for the net',
        default="detectron", type=str)
    parser.add_argument(