best_avg = sys.maxint best_near = sys.maxint best_std = sys.maxint best_val = sys.maxint best_aro = sys.maxint for i in range(50): train_ids = ids random.shuffle(train_ids) all_ids = train_ids[141:] train_ids = train_ids[0:140] # calcultae valence and arousal find_a_v_mens val_mean, aro_mean = find_a_v_mens(train_ids, valence, arousal) train_feat = find_in_dict(feat, train_ids) test_feat = find_in_dict(feat, all_ids) # use regression X_v, X_a = regression(train_feat, val_mean, aro_mean) # calculating features for whole dataset #print all_feat.shape # use linera function to calculate v and a all_val = np.sum(np.array(test_feat) * X_v, axis=1) all_aro = np.sum(test_feat * X_a, axis=1) #print all_val.shape #print all_aro.shape
best_std = sys.maxint best_val = sys.maxint best_aro = sys.maxint for i in range(50): train_ids = ids random.shuffle(train_ids) all_ids = train_ids[141:] train_ids = train_ids[0:140] # calcultae valence and arousal find_a_v_mens val_mean, aro_mean = find_a_v_mens_va(train_ids, valence, arousal) train_feat = find_in_dict(feat, train_ids) test_feat = find_in_dict(feat, all_ids) # use regression X_v, X_a = regression(train_feat, val_mean, aro_mean) # calculating features for whole dataset #print all_feat.shape # use regresion function to calculate v and a all_val = np.sum(np.array(test_feat) * X_v, axis=1) all_aro = np.sum(test_feat * X_a, axis=1) #print all_val.shape #print all_aro.shape