def parse_args(): """Parse input arguments.""" desc = ('Capture and display live camera video, while doing ' 'real-time object detection with TensorRT optimized ' 'YOLO model on Jetson') parser = argparse.ArgumentParser(description=desc) parser = add_camera_args(parser) parser.add_argument('-n', '--num_points', type=int, default=50, help='Number of interpolated points.') parser.add_argument('-c', '--category_num', type=int, default=1, help='number of object categories [80]') parser.add_argument('-d', '--display_mode', type=bool, default=False, help=('to turn display_mode on: --display_mode True')) parser.add_argument('-lat', '--latitude', type=float, required=True, help=('Please provide latitude in decimal degrees')) parser.add_argument('-lon', '--longitude', type=float, required=True, help=('Please provide longitude in decimal degrees')) args = parser.parse_args() return args
def parse_args(): """Parse input arguments.""" desc = ('capture Video input file and save BBoxed Video' 'object detection with TensorRT optimized ' 'YOLO model on Jetson') parser = argparse.ArgumentParser(description=desc) parser = add_camera_args(parser) parser.add_argument('-v', '--video_name', type=str, required=True, help='You need to put input video') parser.add_argument('-o', '--result_video', type=str, required=True, help='You need to put output video name') parser.add_argument('-c', '--category_num', type=int, default=15, help='number of object categories [15]') parser.add_argument( '-m', '--model', type=str, required=True, help=('[yolov3|yolov3-tiny|yolov3-spp|yolov4|yolov4-tiny]-' '[{dimension}], where dimension could be a single ' 'number (e.g. 288, 416, 608) or WxH (e.g. 416x256)')) args = parser.parse_args() return args
def parse_args(): """Parse input arguments.""" desc = ('This script captures and displays live camera video, ' 'and does real-time object detection with TF-TRT model ' 'on Jetson TX2/TX1/Nano') parser = argparse.ArgumentParser(description=desc) parser = add_camera_args(parser) parser.add_argument('--model', dest='model', help='tf-trt object detecion model ' '[{}]'.format(DEFAULT_MODEL), default=DEFAULT_MODEL, type=str) parser.add_argument('--build', dest='do_build', help='re-build TRT pb file (instead of using' 'the previously built version)', action='store_true') parser.add_argument('--tensorboard', dest='do_tensorboard', help='write optimized graph summary to TensorBoard', action='store_true') parser.add_argument('--labelmap', dest='labelmap_file', help='[{}]'.format(DEFAULT_LABELMAP), default=DEFAULT_LABELMAP, type=str) parser.add_argument('--num-classes', dest='num_classes', help='(deprecated and not used) number of object ' 'classes', type=int) parser.add_argument('--confidence', dest='conf_th', help='confidence threshold [0.3]', default=0.3, type=float) args = parser.parse_args() return args
def parse_args(): """Parse input arguments.""" desc = 'MJPEG version of trt_yolo' parser = argparse.ArgumentParser(description=desc) parser = add_camera_args(parser) parser.add_argument('-c', '--category_num', type=int, default=80, help='number of object categories [80]') parser.add_argument( '-m', '--model', type=str, required=True, help=('[yolov3|yolov3-tiny|yolov3-spp|yolov4|yolov4-tiny]-' '[{dimension}], where dimension could be a single ' 'number (e.g. 288, 416, 608) or WxH (e.g. 416x256)')) parser.add_argument('-p', '--mjpeg_port', type=int, default=8080, help='MJPEG server port [8080]') args = parser.parse_args() return args
def parse_args(): """Parse input arguments.""" desc = 'MJPEG version of trt_yolo' parser = argparse.ArgumentParser(description=desc) parser = add_camera_args(parser) parser.add_argument('-c', '--category_num', type=int, default=80, help='number of object categories [80]') parser.add_argument( '-m', '--model', type=str, required=True, help=('[yolov3-tiny|yolov3|yolov3-spp|yolov4-tiny|yolov4|' 'yolov4-csp|yolov4x-mish]-[{dimension}], where ' '{dimension} could be either a single number (e.g. ' '288, 416, 608) or 2 numbers, WxH (e.g. 416x256)')) parser.add_argument('-l', '--letter_box', action='store_true', help='inference with letterboxed image [False]') parser.add_argument('-p', '--mjpeg_port', type=int, default=8080, help='MJPEG server port [8080]') args = parser.parse_args() return args
def parse_args(): """Parse input arguments.""" desc = ('Capture and display live camera video, while doing ' 'real-time object detection with TensorRT optimized ' 'YOLO model on Jetson') parser = argparse.ArgumentParser(description=desc) parser = add_camera_args(parser) parser.add_argument('-c', '--category_num', type=int, default=80, help='number of object categories [80]') parser.add_argument( '-m', '--model', type=str, required=True, help=('[yolov3|yolov3-tiny|yolov3-spp|yolov4|yolov4-tiny]-' '[{dimension}], where dimension could be a single ' 'number (e.g. 288, 416, 608) or WxH (e.g. 416x256)')) parser.add_argument('-l', '--letter_box', action='store_true', help='inference with letterboxed image [False]') parser.add_argument('--host', \ type=str, default='localhost', metavar='MQTT_HOST', \ help='MQTT remote broker IP address') parser.add_argument('--topic', \ type=str, default='yolo', metavar='MQTT_TOPIC', \ help='MQTT topic to be published on') parser.add_argument('--port', \ type=int, default=1883, metavar='MQTT_PORT', \ help='MQTT port number') args = parser.parse_args() return args
def parse_args(): desc = 'Capture and display live camera video' parser = argparse.ArgumentParser(description=desc) parser = add_camera_args(parser) parser.add_argument('--minsize', type=int, default=40, help='minsize (in pixels) for detection [40]') args = parser.parse_args() return args
def parse_args(): """Parse input arguments.""" desc = ('Capture and display live camera video, while doing ' 'real-time object detection with TensorRT optimized ' 'YOLO model on Jetson') '''description = python3 trt_yolo.py --usb 0 -m yolov4-tiny-288''' parser = argparse.ArgumentParser(description=desc) parser = add_camera_args(parser) parser.add_argument('-c', '--category_num', type=int, default=80, help='number of object categories [80]') parser.add_argument( '-m', '--model', type=str, required=True, help=('[yolov3|yolov3-tiny|yolov3-spp|yolov4|yolov4-tiny]-' '[{dimension}], where dimension could be a single ' 'number (e.g. 288, 416, 608) or WxH (e.g. 416x256)')) parser.add_argument('-l', '--letter_box', action='store_true', help='inference with letterboxed image [False]') args = parser.parse_args() return args
def parse_args(): """Parse input arguments.""" desc = ('Capture and display live camera video, while doing ' 'real-time face detection with TrtMtcnn on Jetson ' 'Nano') parser = argparse.ArgumentParser(description=desc) parser = add_camera_args(parser) args = parser.parse_args() return args
def parse_args(): """Parse input arguments.""" desc = ('Capture and display live camera video, while doing ' 'real-time object detection with TensorRT optimized ' 'YOLOv3 model on Jetson Nano') parser = argparse.ArgumentParser(description=desc) parser = add_camera_args(parser) parser.add_argument('--model', type=str, default='yolov3-416') args = parser.parse_args() return args
def parse_args(): """Parse input arguments.""" desc = ('Capture and display live camera video, while doing ' 'real-time face detection with TrtMtcnn on Jetson ' 'Nano') parser = argparse.ArgumentParser(description=desc) parser = add_camera_args(parser) parser.add_argument('--minsize', type=int, default=40, help='minsize (in pixels) for detection [40]') args = parser.parse_args() return args
def parse_args(): """Parse input arguments.""" desc = ('Capture and display live camera video, while doing ' 'real-time object detection with TensorRT optimized ' 'SSD model on Jetson Nano') parser = argparse.ArgumentParser(description=desc) parser = add_camera_args(parser) parser.add_argument('--model', type=str, default='ssd_mobilenet_v2_coco', choices=SUPPORTED_MODELS) args = parser.parse_args() return args
def parse_args(): """Parse input arguments.""" desc = 'Follow cats with SSD model on Jetson Nano' parser = argparse.ArgumentParser(description=desc) parser = add_camera_args(parser) parser.add_argument('--model', type=str, default='ssd_mobilenet_v1_coco', choices=SUPPORTED_MODELS) args = parser.parse_args() return args
def parse_args(): '''parse args''' parser = argparse.ArgumentParser() parser = add_camera_args(parser) parser.add_argument('--model', type=str, default='ssd_mobilenet_v1_digger') parser.add_argument('--image_resize', default=300, type=int) parser.add_argument('--det_conf_thresh', default=0.8, type=float) parser.add_argument('--seq_dir', default="sequence/") parser.add_argument('--sort_max_age', default=5, type=int) parser.add_argument('--sort_min_hit', default=3, type=int) return parser.parse_args()
def parse_args(): """Parse input arguments.""" desc = ('Capture and display live camera video, while doing ' 'real-time image classification with TrtGooglenet ' 'on Jetson Nano') parser = argparse.ArgumentParser(description=desc) parser = add_camera_args(parser) parser.add_argument('--crop', dest='crop_center', help='crop center square of image for ' 'inferencing [False]', action='store_true') args = parser.parse_args() return args
def parse_args(): """Parse input arguments.""" desc = ('Capture and display live camera video, while doing ' 'real-time object detection with TensorRT optimized ' 'YOLOv3 model on Jetson Family') parser = argparse.ArgumentParser(description=desc) parser = add_camera_args(parser) parser.add_argument('--model', type=str, default='yolov3-416', choices=['yolov3-288', 'yolov3-416', 'yolov3-608', 'yolov3-tiny-288', 'yolov3-tiny-416']) parser.add_argument('--runtime', action='store_true', help='display detailed runtime') args = parser.parse_args() return args
def parse_args(): """Parse input arguments.""" desc = ('Capture and display live camera video, while doing ' 'real-time face detection with TensorRT optimized ' 'retinaface model on Jetson') parser = argparse.ArgumentParser(description=desc) parser = add_camera_args(parser) parser.add_argument( '-m', '--model', type=str, required=True, help=('[retinaface]-' '[{dimension}], where dimension could be a single ' 'number (e.g. 320, 640)')) args = parser.parse_args() return args
def parse_args(): """Parse input arguments.""" desc = ('Capture and display live camera video, while doing ' 'real-time object detection with TensorRT optimized ' 'YOLOv3 model on Jetson Nano') parser = argparse.ArgumentParser(description=desc) parser = add_camera_args(parser) parser.add_argument('--model', type=str, default='yolov3-416', choices=['yolov3-288', 'yolov3-416', 'yolov3-608', 'yolov3-tiny-288', 'yolov3-tiny-416']) parser.add_argument('--category_num', type=int, default=80, help='number of object categories [80]') args = parser.parse_args() return args
def parse_args(): """Parse input arguments.""" desc = ('Capture and display live camera video, while doing ' 'real-time object detection with TensorRT optimized ' 'YOLO model on Jetson') parser = argparse.ArgumentParser(description=desc) parser = add_camera_args(parser) parser.add_argument('-c', '--category_num', type=int, default=80, help='number of object categories [80]') parser.add_argument( '-m', '--model', type=str, required=True, help=('[yolov3|yolov3-tiny|yolov3-spp|yolov4|yolov4-tiny]-' '[{dimension}], where dimension could be a single ' 'number (e.g. 288, 416, 608) or WxH (e.g. 416x256)')) parser.add_argument('-v', '--valid_coco', type=str, help='Path to the valid coco json file') parser.add_argument( '--write_images', action="store_true", help='Write images with detected bounding boxes to output directory') parser.add_argument("--image_output", type=str, default="/home/out/images", help="Output directory for images with bounding boxes") parser.add_argument("--result_json", type=str, default="/home/out/result.json", help="Output file for annotations") parser.add_argument("--confidence_threshold", type=float, default=0.3, help="Output file for annotations") parser.add_argument("--activate_display", action="store_true", help="Output file for annotations") args = parser.parse_args() return args
def parse_args(): """Parse input arguments.""" desc = ('Capture and display live camera video, while doing ' 'real-time face detection with TrtMtcnn on Jetson ' 'Nano') parser = argparse.ArgumentParser(description=desc) parser = add_camera_args(parser) parser.add_argument('--minsize', type=int, default=40, help='minsize (in pixels) for detection [40]') parser.add_argument('-m', '--model', type=str, default='ssd_mobilenet_v1_coco', choices=SUPPORTED_MODELS) args = parser.parse_args() return args
def parse_args(): """Parse input arguments.""" desc = ('Capture and display live camera video, while doing ' 'real-time object detection with TensorRT optimized ' 'YOLO model on Jetson') parser = argparse.ArgumentParser(description=desc) parser = add_camera_args(parser) parser.add_argument( '--model', type=str, required=True, help=('[yolov3|yolov3-tiny|yolov3-spp|yolov4|yolov4-tiny]-' '[{dimension}], where dimension could be a single ' 'number (e.g. 288, 416, 608) or WxH (e.g. 416x256)')) parser.add_argument('--category_num', type=int, default=80, help='number of object categories [80]') args = parser.parse_args() return args
def parse_args(): """Parse input arguments.""" desc = ('Capture and display live camera video, while doing ' 'real-time object detection with TensorRT optimized ' 'SSD model on Jetson Nano') parser = argparse.ArgumentParser(description=desc) parser = add_camera_args(parser) parser.add_argument('--model', type=str, default='ssd_mobilenet_v2_coco', choices=SUPPORTED_MODELS) parser.add_argument('--console', dest='use_console', help='write output to console', action='store_true') parser.add_argument('--once', dest='loop', help='Run model once', default=True, action='store_false') args = parser.parse_args() return args