Пример #1
0
def convert_model():

    # Getting anchors and labels for the prediction
    class_names = get_classes(config.classes_path)

    anchors = read_anchors(config.anchors_path)

    num_classes = config.num_classes
    num_anchors = config.num_anchors
    # Retriving the input shape of the model i.e. (608x608), (416x416), (320x320)
    input_shape = (config.input_shape, config.input_shape)

    # Defining placeholder for passing the image data onto the model
    image_tensor = tf.placeholder(dtype=tf.float32,
                                  shape=[None, None, None, 3],
                                  name='input_image')
    image_shape = tf.placeholder(dtype=tf.int32, shape=[2], name='input_shape')

    output_nodes = yolo(input_images=image_tensor,
                        is_training=False,
                        config_path=config.yolov3_cfg_path,
                        num_classes=config.num_classes)

    print(output_nodes)

    sess = tf.Session()

    scale_1, scale_2, scale3 = tf.identity(
        output_nodes[0], name='scale_1'), tf.identity(
            output_nodes[1], name='scale_2'), tf.identity(output_nodes[2],
                                                          name='scale_3')

    ckpt_path = config.model_dir
    exponential_moving_average_obj = tf.train.ExponentialMovingAverage(
        config.weight_decay)
    saver = tf.train.Saver(
        exponential_moving_average_obj.variables_to_restore())
    ckpt = tf.train.get_checkpoint_state(ckpt_path)

    # chkp.print_tensors_in_checkpoint_file(checkmate.get_best_checkpoint(ckpt_path), tensor_name='', all_tensors=True)
    # exit()
    if config.pre_train is True:
        load_ops = load_weights(tf.global_variables(),
                                config.yolov3_weights_path)
        sess.run(load_ops)
    elif ckpt and tf.train.checkpoint_exists(ckpt.model_checkpoint_path):
        print('Restoring model ', checkmate.get_best_checkpoint(ckpt_path))
        saver.restore(sess, checkmate.get_best_checkpoint(ckpt_path))
        print('Model Loaded!')
    else:
        print("No appropriate weights found for creating protobuf file")

    if not os.path.exists(config.model_export_path.split('/')[1]):
        os.mkdir(config.model_export_path.split('/')[1])

    freeze_graph(sess, config.model_export_path)

    sess.close()
Пример #2
0
def predict_new(x):
    saver = tf.train.Saver()
    with tf.Session() as session:
        ckpt = get_best_checkpoint(model.ckpt_dir)
        saver.restore(session, ckpt)
        if model_name == 'm2':
            pred = session.run([model.predictions], {model.x: x})
        else:
            y_ = model.q_y_x_model(model.x)
            pred = session.run([y_], {model.x: x})
    return pred
Пример #3
0
def test():
    logger.info("Loading Data...")
    logger.info("Data processing...")
    test_data = dh.load_data_and_labels(args.test_file, args.word2vec_file)
    logger.info("Data padding...")
    test_dataset = dh.MyData(test_data, args.pad_seq_len, device)
    test_loader = DataLoader(test_dataset,
                             batch_size=args.batch_size,
                             shuffle=False)
    VOCAB_SIZE, EMBEDDING_SIZE, pretrained_word2vec_matrix = dh.load_word2vec_matrix(
        args.word2vec_file)

    criterion = Loss()
    net = HMIDP(args, VOCAB_SIZE, EMBEDDING_SIZE,
                pretrained_word2vec_matrix).to(device)
    checkpoint_file = cm.get_best_checkpoint(CPT_DIR,
                                             select_maximum_value=False)
    checkpoint = torch.load(checkpoint_file)
    net.load_state_dict(checkpoint['model_state_dict'])
    net.eval()

    logger.info("Scoring...")
    true_labels, predicted_scores = [], []
    batches = trange(len(test_loader), desc="Batches", leave=True)
    for batch_cnt, batch in zip(batches, test_loader):
        x_test_fb_content, x_test_fb_question, x_test_fb_option, \
        x_test_fb_clens, x_test_fb_qlens, x_test_fb_olens, y_test_fb = batch
        logits, scores = net(x_test_fb_content, x_test_fb_question,
                             x_test_fb_option)
        for i in y_test_fb[0].tolist():
            true_labels.append(i)
        for j in scores[0].tolist():
            predicted_scores.append(j)

    # Calculate the Metrics
    test_rmse = mean_squared_error(true_labels, predicted_scores)**0.5
    test_r2 = r2_score(true_labels, predicted_scores)
    test_pcc, test_doa = dh.evaluation(true_labels, predicted_scores)
    logger.info(
        "All Test set: PCC {0:.4f} | DOA {1:.4f} | RMSE {2:.4f} | R2 {3:.4f}".
        format(test_pcc, test_doa, test_rmse, test_r2))
    logger.info('Test Finished.')

    logger.info('Creating the prediction file...')
    dh.create_prediction_file(save_dir=SAVE_DIR,
                              identifiers=test_data['f_id'],
                              predictions=predicted_scores)

    logger.info('All Finished.')
Пример #4
0
def test():
    logger.info("Loading Data...")
    logger.info("Data processing...")

    test_data = dh.load_data_and_labels(args.test_file)

    test_dataset = dh.MyData(test_data.activity, test_data.timestep, test_data.labels)
    test_loader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, collate_fn=dh.collate_fn)

    # Load word2vec model
    COURSE_SIZE = dh.course2vec(args.course2vec_file)

    criterion = Loss()
    net = MOOCNet(args, COURSE_SIZE).to(device)
    checkpoint_file = cm.get_best_checkpoint(CPT_DIR, select_maximum_value=False)
    checkpoint = torch.load(checkpoint_file)
    net.load_state_dict(checkpoint['model_state_dict'])
    net.eval()

    logger.info("Scoring...")
    true_labels, predicted_scores, predicted_labels = [], [], []
    batches = trange(len(test_loader), desc="Batches", leave=True)
    for batch_cnt, batch in zip(batches, test_loader):
        x_test, tsp_test, y_test = create_input_data(batch)
        logits, scores = net(x_test, tsp_test)
        for i in y_test.tolist():
            true_labels.append(i)
        for j in scores.tolist():
            predicted_scores.append(j)
            if j >= 0.5:
                predicted_labels.append(1)
            else:
                predicted_labels.append(0)

    # Calculate the Metrics
    logger.info('Test Finished.')

    logger.info('Creating the prediction file...')
    dh.create_prediction_file(save_dir=SAVE_DIR, identifiers=test_data.id, predictions=predicted_labels)

    logger.info('All Finished.')
def test_harnn():
    """Test HARNN model."""
    # Print parameters used for the model
    dh.tab_printer(args, logger)

    # Load data
    logger.info("Loading data...")
    logger.info("Data processing...")
    test_data = dh.load_data_and_labels(args.test_file, args.num_classes_list, args.total_classes,
                                        args.word2vec_file, data_aug_flag=False)

    logger.info("Data padding...")
    x_test, y_test, y_test_tuple = dh.pad_data(test_data, args.pad_seq_len)
    y_test_labels = test_data.labels

    # Load harnn model
    OPTION = dh._option(pattern=1)
    if OPTION == 'B':
        logger.info("Loading best model...")
        checkpoint_file = cm.get_best_checkpoint(BEST_CPT_DIR, select_maximum_value=True)
    else:
        logger.info("Loading latest model...")
        checkpoint_file = tf.train.latest_checkpoint(CPT_DIR)
    logger.info(checkpoint_file)

    graph = tf.Graph()
    with graph.as_default():
        session_conf = tf.ConfigProto(
            allow_soft_placement=args.allow_soft_placement,
            log_device_placement=args.log_device_placement)
        session_conf.gpu_options.allow_growth = args.gpu_options_allow_growth
        sess = tf.Session(config=session_conf)
        with sess.as_default():
            # Load the saved meta graph and restore variables
            saver = tf.train.import_meta_graph("{0}.meta".format(checkpoint_file))
            saver.restore(sess, checkpoint_file)

            # Get the placeholders from the graph by name
            input_x = graph.get_operation_by_name("input_x").outputs[0]
            input_y_first = graph.get_operation_by_name("input_y_first").outputs[0]
            input_y_second = graph.get_operation_by_name("input_y_second").outputs[0]
            input_y_third = graph.get_operation_by_name("input_y_third").outputs[0]
            input_y_fourth = graph.get_operation_by_name("input_y_fourth").outputs[0]
            input_y = graph.get_operation_by_name("input_y").outputs[0]
            dropout_keep_prob = graph.get_operation_by_name("dropout_keep_prob").outputs[0]
            beta = graph.get_operation_by_name("beta").outputs[0]
            is_training = graph.get_operation_by_name("is_training").outputs[0]

            # Tensors we want to evaluate
            first_scores = graph.get_operation_by_name("first-output/scores").outputs[0]
            second_scores = graph.get_operation_by_name("second-output/scores").outputs[0]
            third_scores = graph.get_operation_by_name("third-output/scores").outputs[0]
            fourth_scores = graph.get_operation_by_name("fourth-output/scores").outputs[0]
            scores = graph.get_operation_by_name("output/scores").outputs[0]
            loss = graph.get_operation_by_name("loss/loss").outputs[0]

            # Split the output nodes name by '|' if you have several output nodes
            output_node_names = "first-output/scores|second-output/scores|third-output/scores|fourth-output/scores|output/scores"

            # Save the .pb model file
            output_graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def,
                                                                            output_node_names.split("|"))
            tf.train.write_graph(output_graph_def, "graph", "graph-harnn-{0}.pb".format(MODEL), as_text=False)

            # Generate batches for one epoch
            batches = dh.batch_iter(list(zip(x_test, y_test, y_test_tuple, y_test_labels)),
                                    args.batch_size, 1, shuffle=False)

            test_counter, test_loss = 0, 0.0

            # Collect the predictions here
            true_labels = []
            predicted_labels = []
            predicted_scores = []

            # Collect for calculating metrics
            true_onehot_labels = []
            predicted_onehot_scores = []
            predicted_onehot_labels_ts = []
            predicted_onehot_labels_tk = [[] for _ in range(args.topK)]

            true_onehot_first_labels = []
            true_onehot_second_labels = []
            true_onehot_third_labels = []
            true_onehot_fourth_labels = []
            predicted_onehot_scores_first = []
            predicted_onehot_scores_second = []
            predicted_onehot_scores_third = []
            predicted_onehot_scores_fourth = []
            predicted_onehot_labels_first = []
            predicted_onehot_labels_second = []
            predicted_onehot_labels_third = []
            predicted_onehot_labels_fourth = []

            for batch_test in batches:
                x_batch_test, y_batch_test, y_batch_test_tuple, y_batch_test_labels = zip(*batch_test)

                y_batch_test_first = [i[0] for i in y_batch_test_tuple]
                y_batch_test_second = [j[1] for j in y_batch_test_tuple]
                y_batch_test_third = [k[2] for k in y_batch_test_tuple]
                y_batch_test_fourth = [t[3] for t in y_batch_test_tuple]

                feed_dict = {
                    input_x: x_batch_test,
                    input_y_first: y_batch_test_first,
                    input_y_second: y_batch_test_second,
                    input_y_third: y_batch_test_third,
                    input_y_fourth: y_batch_test_fourth,
                    input_y: y_batch_test,
                    dropout_keep_prob: 1.0,
                    beta: args.beta,
                    is_training: False
                }
                batch_first_scores, batch_second_scores, batch_third_scores, batch_fourth_scores, batch_scores, cur_loss = \
                    sess.run([first_scores, second_scores, third_scores, fourth_scores, scores, loss], feed_dict)

                # Prepare for calculating metrics
                for onehot_labels in y_batch_test:
                    true_onehot_labels.append(onehot_labels)
                for onehot_labels in y_batch_test_first:
                    true_onehot_first_labels.append(onehot_labels)
                for onehot_labels in y_batch_test_second:
                    true_onehot_second_labels.append(onehot_labels)
                for onehot_labels in y_batch_test_third:
                    true_onehot_third_labels.append(onehot_labels)
                for onehot_labels in y_batch_test_fourth:
                    true_onehot_fourth_labels.append(onehot_labels)

                for onehot_scores in batch_scores:
                    predicted_onehot_scores.append(onehot_scores)
                for onehot_scores in batch_first_scores:
                    predicted_onehot_scores_first.append(onehot_scores)
                for onehot_scores in batch_second_scores:
                    predicted_onehot_scores_second.append(onehot_scores)
                for onehot_scores in batch_third_scores:
                    predicted_onehot_scores_third.append(onehot_scores)
                for onehot_scores in batch_fourth_scores:
                    predicted_onehot_scores_fourth.append(onehot_scores)

                # Get the predicted labels by threshold
                batch_predicted_labels_ts, batch_predicted_scores_ts = \
                    dh.get_label_threshold(scores=batch_scores, threshold=args.threshold)

                # Add results to collection
                for labels in y_batch_test_labels:
                    true_labels.append(labels)
                for labels in batch_predicted_labels_ts:
                    predicted_labels.append(labels)
                for values in batch_predicted_scores_ts:
                    predicted_scores.append(values)

                # Get one-hot prediction by threshold
                batch_predicted_onehot_labels_ts = \
                    dh.get_onehot_label_threshold(scores=batch_scores, threshold=args.threshold)
                batch_predicted_onehot_labels_first = \
                    dh.get_onehot_label_threshold(scores=batch_first_scores, threshold=args.threshold)
                batch_predicted_onehot_labels_second = \
                    dh.get_onehot_label_threshold(scores=batch_second_scores, threshold=args.threshold)
                batch_predicted_onehot_labels_third = \
                    dh.get_onehot_label_threshold(scores=batch_third_scores, threshold=args.threshold)
                batch_predicted_onehot_labels_fourth = \
                    dh.get_onehot_label_threshold(scores=batch_fourth_scores, threshold=args.threshold)

                for onehot_labels in batch_predicted_onehot_labels_ts:
                    predicted_onehot_labels_ts.append(onehot_labels)
                for onehot_labels in batch_predicted_onehot_labels_first:
                    predicted_onehot_labels_first.append(onehot_labels)
                for onehot_labels in batch_predicted_onehot_labels_second:
                    predicted_onehot_labels_second.append(onehot_labels)
                for onehot_labels in batch_predicted_onehot_labels_third:
                    predicted_onehot_labels_third.append(onehot_labels)
                for onehot_labels in batch_predicted_onehot_labels_fourth:
                    predicted_onehot_labels_fourth.append(onehot_labels)

                # Get one-hot prediction by topK
                for i in range(args.topK):
                    batch_predicted_onehot_labels_tk = dh.get_onehot_label_topk(scores=batch_scores, top_num=i + 1)

                    for onehot_labels in batch_predicted_onehot_labels_tk:
                        predicted_onehot_labels_tk[i].append(onehot_labels)

                test_loss = test_loss + cur_loss
                test_counter = test_counter + 1

            # Calculate Precision & Recall & F1
            test_pre_ts = precision_score(y_true=np.array(true_onehot_labels),
                                          y_pred=np.array(predicted_onehot_labels_ts), average='micro')

            test_pre_first = precision_score(y_true=np.array(true_onehot_first_labels),
                                             y_pred=np.array(predicted_onehot_labels_first), average='micro')
            test_pre_second = precision_score(y_true=np.array(true_onehot_second_labels),
                                              y_pred=np.array(predicted_onehot_labels_second), average='micro')
            test_pre_third = precision_score(y_true=np.array(true_onehot_third_labels),
                                             y_pred=np.array(predicted_onehot_labels_third), average='micro')
            test_pre_fourth = precision_score(y_true=np.array(true_onehot_fourth_labels),
                                              y_pred=np.array(predicted_onehot_labels_fourth), average='micro')

            test_rec_ts = recall_score(y_true=np.array(true_onehot_labels),
                                       y_pred=np.array(predicted_onehot_labels_ts), average='micro')

            test_rec_first = recall_score(y_true=np.array(true_onehot_first_labels),
                                          y_pred=np.array(predicted_onehot_labels_first), average='micro')
            test_rec_second = recall_score(y_true=np.array(true_onehot_second_labels),
                                           y_pred=np.array(predicted_onehot_labels_second), average='micro')
            test_rec_third = recall_score(y_true=np.array(true_onehot_third_labels),
                                          y_pred=np.array(predicted_onehot_labels_third), average='micro')
            test_rec_fourth = recall_score(y_true=np.array(true_onehot_fourth_labels),
                                           y_pred=np.array(predicted_onehot_labels_fourth), average='micro')

            test_F1_ts = f1_score(y_true=np.array(true_onehot_labels),
                                  y_pred=np.array(predicted_onehot_labels_ts), average='micro')

            test_F1_first = f1_score(y_true=np.array(true_onehot_first_labels),
                                     y_pred=np.array(predicted_onehot_labels_first), average='micro')
            test_F1_second = f1_score(y_true=np.array(true_onehot_second_labels),
                                      y_pred=np.array(predicted_onehot_labels_second), average='micro')
            test_F1_third = f1_score(y_true=np.array(true_onehot_third_labels),
                                     y_pred=np.array(predicted_onehot_labels_third), average='micro')
            test_F1_fourth = f1_score(y_true=np.array(true_onehot_fourth_labels),
                                      y_pred=np.array(predicted_onehot_labels_fourth), average='micro')

            # Calculate the average AUC
            test_auc = roc_auc_score(y_true=np.array(true_onehot_labels),
                                     y_score=np.array(predicted_onehot_scores), average='micro')

            # Calculate the average PR
            test_prc = average_precision_score(y_true=np.array(true_onehot_labels),
                                               y_score=np.array(predicted_onehot_scores), average="micro")
            test_prc_first = average_precision_score(y_true=np.array(true_onehot_first_labels),
                                                     y_score=np.array(predicted_onehot_scores_first), average="micro")
            test_prc_second = average_precision_score(y_true=np.array(true_onehot_second_labels),
                                                      y_score=np.array(predicted_onehot_scores_second), average="micro")
            test_prc_third = average_precision_score(y_true=np.array(true_onehot_third_labels),
                                                     y_score=np.array(predicted_onehot_scores_third), average="micro")
            test_prc_fourth = average_precision_score(y_true=np.array(true_onehot_fourth_labels),
                                                      y_score=np.array(predicted_onehot_scores_fourth), average="micro")

            test_loss = float(test_loss / test_counter)

            logger.info("All Test Dataset: Loss {0:g} | AUC {1:g} | AUPRC {2:g}"
                        .format(test_loss, test_auc, test_prc))
            # Predict by threshold
            logger.info("Predict by threshold: Precision {0:g}, Recall {1:g}, F1 {2:g}"
                        .format(test_pre_ts, test_rec_ts, test_F1_ts))

            logger.info("Predict by threshold in Level-1: Precision {0:g}, Recall {1:g}, F1 {2:g}, AUPRC {3:g}"
                        .format(test_pre_first, test_rec_first, test_F1_first, test_prc_first))
            logger.info("Predict by threshold in Level-2: Precision {0:g}, Recall {1:g}, F1 {2:g}, AUPRC {3:g}"
                        .format(test_pre_second, test_rec_second, test_F1_second, test_prc_second))
            logger.info("Predict by threshold in Level-3: Precision {0:g}, Recall {1:g}, F1 {2:g}, AUPRC {3:g}"
                        .format(test_pre_third, test_rec_third, test_F1_third, test_prc_third))
            logger.info("Predict by threshold in Level-4: Precision {0:g}, Recall {1:g}, F1 {2:g}, AUPRC {3:g}"
                        .format(test_pre_fourth, test_rec_fourth, test_F1_fourth, test_prc_fourth))

            # Save the prediction result
            if not os.path.exists(SAVE_DIR):
                os.makedirs(SAVE_DIR)
            dh.create_prediction_file(output_file=SAVE_DIR + "/predictions.json", data_id=test_data.patent_id,
                                      all_labels=true_labels, all_predict_labels=predicted_labels,
                                      all_predict_scores=predicted_scores)

    logger.info("All Done.")
Пример #6
0
def train(ckpt_path, log_path, class_path, decay_steps=2000, decay_rate=0.8):
    """ Function to train the model.
		ckpt_path: string, path for saving/restoring the model
		log_path: string, path for saving the training/validation logs
		class_path: string, path for the classes of the dataset
		decay_steps: int, steps after which the learning rate is to be decayed
		decay_rate: float, rate to carrying out exponential decay
	"""

    # Getting the anchors
    anchors = read_anchors(config.anchors_path)
    if not os.path.exists(config.data_dir):
        os.mkdir(config.data_dir)

    classes = get_classes(class_path)

    # Building the training pipeline
    graph = tf.get_default_graph()

    with graph.as_default():

        # Getting the training data
        with tf.name_scope('data_parser/'):
            train_reader = Parser('train',
                                  config.data_dir,
                                  config.anchors_path,
                                  config.output_dir,
                                  config.num_classes,
                                  input_shape=config.input_shape,
                                  max_boxes=config.max_boxes)
            train_data = train_reader.build_dataset(config.train_batch_size //
                                                    config.subdivisions)
            train_iterator = train_data.make_one_shot_iterator()

            val_reader = Parser('val',
                                config.data_dir,
                                config.anchors_path,
                                config.output_dir,
                                config.num_classes,
                                input_shape=config.input_shape,
                                max_boxes=config.max_boxes)
            val_data = val_reader.build_dataset(config.val_batch_size //
                                                config.subdivisions)
            val_iterator = val_data.make_one_shot_iterator()

            is_training = tf.placeholder(
                dtype=tf.bool, shape=[], name='train_flag'
            )  # Used for different behaviour of batch normalization
            mode = tf.placeholder(dtype=tf.int16, shape=[], name='mode_flag')

            def train():
                # images, bbox, bbox_true_13, bbox_true_26, bbox_true_52 = train_iterator.get_next()
                return train_iterator.get_next()

            def valid():
                # images, bbox, bbox_true_13, bbox_true_26, bbox_true_52 = val_iterator.get_next()
                return val_iterator.get_next()

            images, bbox, bbox_true_13, bbox_true_26, bbox_true_52 = tf.cond(
                pred=tf.equal(mode, 1),
                true_fn=train,
                false_fn=valid,
                name='train_val_cond')

            images.set_shape([None, config.input_shape, config.input_shape, 3])
            bbox.set_shape([None, config.max_boxes, 5])

            grid_shapes = [
                config.input_shape // 32, config.input_shape // 16,
                config.input_shape // 8
            ]
            draw_box(images, bbox)

        # Extracting the pre-defined yolo graph from the darknet cfg file
        if not os.path.exists(ckpt_path):
            os.mkdir(ckpt_path)
        output = yolo(images, is_training, config.yolov3_cfg_path,
                      config.num_classes)

        # Declaring the parameters for GT
        with tf.name_scope('Targets'):
            bbox_true_13.set_shape([
                None, grid_shapes[0], grid_shapes[0], 3, 5 + config.num_classes
            ])
            bbox_true_26.set_shape([
                None, grid_shapes[1], grid_shapes[1], 3, 5 + config.num_classes
            ])
            bbox_true_52.set_shape([
                None, grid_shapes[2], grid_shapes[2], 3, 5 + config.num_classes
            ])
        y_true = [bbox_true_13, bbox_true_26, bbox_true_52]

        # Compute Loss
        with tf.name_scope('Loss_and_Detect'):
            yolo_loss = compute_loss(output,
                                     y_true,
                                     anchors,
                                     config.num_classes,
                                     print_loss=False)
            l2_loss = tf.losses.get_regularization_loss()
            loss = yolo_loss + l2_loss
            yolo_loss_summary = tf.summary.scalar('yolo_loss', yolo_loss)
            l2_loss_summary = tf.summary.scalar('l2_loss', l2_loss)
            total_loss_summary = tf.summary.scalar('Total_loss', loss)

        # Declaring the parameters for training the model
        with tf.name_scope('train_parameters'):
            epoch_loss = []
            global_step = tf.Variable(0, trainable=False, name='global_step')
            learning_rate = tf.train.exponential_decay(config.learning_rate,
                                                       global_step,
                                                       decay_steps, decay_rate)
            tf.summary.scalar('learning rate', learning_rate)

        # Define optimizer for minimizing the computed loss
        with tf.name_scope('Optimizer'):
            #optimizer = tf.train.MomentumOptimizer(learning_rate=learning_rate, momentum=config.momentum)
            optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
            update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
            with tf.control_dependencies(update_ops):
                if config.pre_train:
                    train_vars = tf.get_collection(
                        tf.GraphKeys.TRAINABLE_VARIABLES, scope='yolo')
                    grads = optimizer.compute_gradients(loss=loss,
                                                        var_list=train_vars)
                    gradients = [(tf.placeholder(dtype=tf.float32,
                                                 shape=grad[1].get_shape()),
                                  grad[1]) for grad in grads]
                    gradients = gradients * config.subdivisions
                    train_step = optimizer.apply_gradients(
                        grads_and_vars=gradients, global_step=global_step)
                else:
                    grads = optimizer.compute_gradients(loss=loss)
                    gradients = [(tf.placeholder(dtype=tf.float32,
                                                 shape=grad[1].get_shape()),
                                  grad[1]) for grad in grads]
                    gradients = gradients * config.subdivisions
                    train_step = optimizer.apply_gradients(
                        grads_and_vars=gradients, global_step=global_step)


#################################### Training loop ############################################################
# A saver object for saving the model
        best_ckpt_saver = checkmate.BestCheckpointSaver(save_dir=ckpt_path,
                                                        num_to_keep=5)
        summary_op = tf.summary.merge_all()
        summary_op_valid = tf.summary.merge(
            [yolo_loss_summary, l2_loss_summary, total_loss_summary])
        init_op = tf.global_variables_initializer()

        # Defining some train loop dependencies
        gpu_config = tf.ConfigProto(log_device_placement=False)
        gpu_config.gpu_options.allow_growth = True
        sess = tf.Session(config=gpu_config)
        tf.logging.set_verbosity(tf.logging.ERROR)
        train_summary_writer = tf.summary.FileWriter(
            os.path.join(log_path, 'train'), sess.graph)
        val_summary_writer = tf.summary.FileWriter(
            os.path.join(log_path, 'val'), sess.graph)

        # Restoring the model
        ckpt = tf.train.get_checkpoint_state(ckpt_path)
        if ckpt and tf.train.checkpoint_exists(ckpt.model_checkpoint_path):
            print('Restoring model ', checkmate.get_best_checkpoint(ckpt_path))
            tf.train.Saver().restore(sess,
                                     checkmate.get_best_checkpoint(ckpt_path))
            print('Model Loaded!')
        elif config.pre_train is True:
            load_ops = load_weights(tf.global_variables(scope='darknet53'),
                                    config.darknet53_weights_path)
            sess.run(load_ops)
        else:
            sess.run(init_op)

        print('Uninitialized variables: ',
              sess.run(tf.report_uninitialized_variables()))

        epochbar = tqdm(range(config.Epoch))
        for epoch in epochbar:
            epochbar.set_description('Epoch %s of %s' % (epoch, config.Epoch))
            mean_loss_train = []
            mean_loss_valid = []

            trainbar = tqdm(range(config.train_num // config.train_batch_size))
            for k in trainbar:
                total_grad = []
                for minibach in range(config.subdivisions):
                    train_summary, loss_train, grads_and_vars = sess.run(
                        [summary_op, loss, grads],
                        feed_dict={
                            is_training: True,
                            mode: 1
                        })
                    total_grad += grads_and_vars

                feed_dict = {is_training: True, mode: 1}
                for i in range(len(gradients)):
                    feed_dict[gradients[i][0]] = total_grad[i][0]
                # print(np.shape(feed_dict))

                _ = sess.run(train_step, feed_dict=feed_dict)
                train_summary_writer.add_summary(train_summary, epoch)
                train_summary_writer.flush()
                mean_loss_train.append(loss_train)
                trainbar.set_description('Train loss: %s' % str(loss_train))

            print('Validating.....')
            valbar = tqdm(range(config.val_num // config.val_batch_size))
            for k in valbar:

                val_summary, loss_valid = sess.run([summary_op_valid, loss],
                                                   feed_dict={
                                                       is_training: False,
                                                       mode: 0
                                                   })

                val_summary_writer.add_summary(val_summary, epoch)
                val_summary_writer.flush()
                mean_loss_valid.append(loss_valid)
                valbar.set_description('Validation loss: %s' % str(loss_valid))

            mean_loss_train = np.mean(mean_loss_train)
            mean_loss_valid = np.mean(mean_loss_valid)

            print('\n')
            print('Train loss after %d epochs is: %f' %
                  (epoch + 1, mean_loss_train))
            print('Validation loss after %d epochs is: %f' %
                  (epoch + 1, mean_loss_valid))
            print('\n\n')

            if ((epoch + 1) % 3) == 0:
                best_ckpt_saver.handle(mean_loss_valid, sess,
                                       tf.constant(epoch))

        print('Tuning Completed!!')
        train_summary_writer.close()
        val_summary_writer.close()
        sess.close()
def test_cnn():
    """Test ABCNN model."""

    # Load data
    logger.info("✔︎ Loading data...")
    logger.info("Recommended padding Sequence length is: {0}".format(
        FLAGS.pad_seq_len))

    logger.info("✔︎ Test data processing...")
    test_data = dh.load_data_and_labels(FLAGS.test_data_file,
                                        FLAGS.embedding_dim)

    logger.info("✔︎ Test data padding...")
    x_test_front, x_test_behind, y_test = dh.pad_data(test_data,
                                                      FLAGS.pad_seq_len)
    y_test_labels = test_data.labels

    # Load abcnn model
    BEST_OR_LATEST = input("☛ Load Best or Latest Model?(B/L): ")

    while not (BEST_OR_LATEST.isalpha()
               and BEST_OR_LATEST.upper() in ['B', 'L']):
        BEST_OR_LATEST = input(
            "✘ The format of your input is illegal, please re-input: ")
    if BEST_OR_LATEST == 'B':
        logger.info("✔︎ Loading best model...")
        checkpoint_file = cm.get_best_checkpoint(FLAGS.best_checkpoint_dir,
                                                 select_maximum_value=True)
    else:
        logger.info("✔︎ Loading latest model...")
        checkpoint_file = tf.train.latest_checkpoint(FLAGS.checkpoint_dir)
    logger.info(checkpoint_file)

    graph = tf.Graph()
    with graph.as_default():
        session_conf = tf.ConfigProto(
            allow_soft_placement=FLAGS.allow_soft_placement,
            log_device_placement=FLAGS.log_device_placement)
        session_conf.gpu_options.allow_growth = FLAGS.gpu_options_allow_growth
        sess = tf.Session(config=session_conf)
        with sess.as_default():
            # Load the saved meta graph and restore variables
            saver = tf.train.import_meta_graph(
                "{0}.meta".format(checkpoint_file))
            saver.restore(sess, checkpoint_file)

            # Get the placeholders from the graph by name
            input_x_front = graph.get_operation_by_name(
                "input_x_front").outputs[0]
            input_x_behind = graph.get_operation_by_name(
                "input_x_behind").outputs[0]
            input_y = graph.get_operation_by_name("input_y").outputs[0]
            dropout_keep_prob = graph.get_operation_by_name(
                "dropout_keep_prob").outputs[0]
            is_training = graph.get_operation_by_name("is_training").outputs[0]

            # Tensors we want to evaluate
            predictions = graph.get_operation_by_name(
                "output/predictions").outputs[0]
            topKPreds = graph.get_operation_by_name(
                "output/topKPreds").outputs[0]
            accuracy = graph.get_operation_by_name(
                "accuracy/accuracy").outputs[0]
            loss = graph.get_operation_by_name("loss/loss").outputs[0]

            # Split the output nodes name by '|' if you have several output nodes
            output_node_names = "output/logits|output/predictions|output/softmax_scores|output/topKPreds"

            # Save the .pb model file
            output_graph_def = tf.graph_util.convert_variables_to_constants(
                sess, sess.graph_def, output_node_names.split("|"))
            tf.train.write_graph(output_graph_def,
                                 "graph",
                                 "graph-abcnn-{0}.pb".format(MODEL),
                                 as_text=False)

            # Generate batches for one epoch
            batches = dh.batch_iter(list(
                zip(x_test_front, x_test_behind, y_test, y_test_labels)),
                                    FLAGS.batch_size,
                                    1,
                                    shuffle=False)

            # Collect the predictions here
            all_labels = []
            all_predicted_labels = []
            all_predicted_values = []

            for index, x_test_batch in enumerate(batches):
                x_batch_front, x_batch_behind, y_batch, y_batch_labels = zip(
                    *x_test_batch)
                feed_dict = {
                    input_x_front: x_batch_front,
                    input_x_behind: x_batch_behind,
                    input_y: y_batch,
                    dropout_keep_prob: 1.0,
                    is_training: False
                }

                all_labels = np.append(all_labels, y_batch_labels)

                batch_predicted_labels = sess.run(predictions, feed_dict)
                all_predicted_labels = np.concatenate(
                    [all_predicted_labels, batch_predicted_labels])

                batch_predicted_values = sess.run(topKPreds, feed_dict)
                all_predicted_values = np.append(all_predicted_values,
                                                 batch_predicted_values)

                batch_loss = sess.run(loss, feed_dict)
                batch_acc = sess.run(accuracy, feed_dict)
                logger.info(
                    "✔︎ Test batch {0}: loss {1:g}, accuracy {2:g}.".format(
                        (index + 1), batch_loss, batch_acc))

            # Save the prediction result
            if not os.path.exists(SAVE_DIR):
                os.makedirs(SAVE_DIR)
            dh.create_prediction_file(output_file=SAVE_DIR +
                                      "/predictions.json",
                                      front_data_id=test_data.front_testid,
                                      behind_data_id=test_data.behind_testid,
                                      all_labels=all_labels,
                                      all_predict_labels=all_predicted_labels,
                                      all_predict_values=all_predicted_values)

    logger.info("✔︎ Done.")
    def train(self,
              Data,
              n_epochs,
              l_bs,
              u_bs,
              lr,
              eval_samps=None,
              binarize=False,
              verbose=1,
              decay_ratio=0.75,
              decay_period=200,
              h_opt=False,
              keep_ckpt=True,
              restore=False):
        """ Method for training the models """
        self.data_init(Data, eval_samps, l_bs, u_bs)
        self.global_step = tf.Variable(0, trainable=False, name='global_step')
        # self.global_epoch = tf.Variable(0, trainable=False, name='global_epoch')
        self.epoch = 0
        #self.lr = self.set_learning_rate([lr[0], 1600, lr[0] / 10.0])
        self.lr = self.set_learning_rate(
            [lr[0], lr[0] / 10.0, decay_period, decay_ratio], 'exp')
        # define optimizer
        optimizer = tf.train.AdamOptimizer(learning_rate=self.lr)
        gvs = optimizer.compute_gradients(self.loss)
        # clip gradients
        capped_gvs = [(tf.clip_by_value(grad, -1., 1.), var)
                      for grad, var in gvs]
        update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
        with tf.control_dependencies(update_ops):
            self.optimizer = optimizer.apply_gradients(
                capped_gvs, global_step=self.global_step)

        self.y_pred = self.predict(self.x)
        self.curve_array = np.zeros((n_epochs + 1, 14))
        if self.learning_paradigm == 'unsupervised':
            self.elbo_l_curve = tf.reduce_mean(self.unlabelled_loss(self.x))
            self.qy_ll_curve = tf.reduce_mean(self.qy_loss(self.x))
            self.elbo_u_curve = tf.reduce_mean(self.unlabelled_loss(self.x))
        else:
            if self.model_name == 'adgm' or self.model_name == 'adg_dgm':
                self.elbo_l_curve = tf.reduce_mean(
                    self.labelled_loss(self.x, self.y)[0])
                self.qy_ll_curve = tf.reduce_mean(
                    self.labelled_loss(self.x, self.y)[1])
            else:
                self.elbo_l_curve = tf.reduce_mean(
                    self.labelled_loss(self.x, self.y))
                self.qy_ll_curve = tf.reduce_mean(self.qy_loss(self.x, self.y))

            self.elbo_u_curve = tf.reduce_mean(self.unlabelled_loss(self.x))

        self.compute_accuracies()

        # initialize session and train
        with self.session as sess:
            sess.run(tf.global_variables_initializer())
            if restore == True:
                saver_for_restore = tf.train.Saver()
                ckpt = tf.train.get_checkpoint_state(self.ckpt_dir)
                best_ckpt = get_best_checkpoint(self.ckpt_dir)
                best_epoch = int(re.match('.*?([0-9]+)$', best_ckpt).group(1))
                best_ckpt_usable = re.sub('-([0-9]+)$', "", best_ckpt)
                saver_for_restore.restore(sess, best_ckpt_usable)
                self.epoch = best_epoch
            self.curve_array[self.epoch] = self.calc_curve_vals(sess, Data)
            if verbose == 3:
                self.print_verbose3(self.epoch)
            if keep_ckpt == True:
                saver = BestCheckpointSaver(save_dir=self.ckpt_dir,
                                            num_to_keep=2,
                                            maximize=True)
            while self.epoch < n_epochs:

                x_labelled, labels, x_unlabelled, _ = \
                    Data.next_batch(l_bs, u_bs)

                if binarize is True:
                    x_labelled = self.binarize(x_labelled)
                    x_unlabelled = self.binarize(x_unlabelled)

                fd = self.training_fd(x_labelled, labels, x_unlabelled)
                _, loss_batch = sess.run([self.optimizer, self.loss], fd)

                if Data._epochs_unlabelled > self.epoch:
                    self.epoch += 1
                    # sess.run(self.global_epoch.assign(self.epoch)
                    self.curve_array[self.epoch] = \
                        self.calc_curve_vals(sess, Data)
                    if h_opt == True and self.epoch > 20:
                        if self.curve_array[self.epoch, 12] < 0.07:
                            raise Exception('results too bad')
                    if h_opt == True and self.epoch > 40:
                        if self.curve_array[self.epoch, 12] < 0.1:
                            raise Exception('results too bad')
                    if keep_ckpt == True:
                        saver.handle(self.curve_array[self.epoch, 6], sess,
                                     self.global_step, self.epoch)
                    if verbose == 1:
                        fd = self._printing_feed_dict(Data, x_labelled,
                                                      x_unlabelled, labels,
                                                      eval_samps, binarize)
                        self.print_verbose1(self.epoch, fd, sess)
                    elif verbose == 2:
                        fd = self._printing_feed_dict(Data, x_labelled,
                                                      x_unlabelled, labels,
                                                      eval_samps, binarize)
                        self.print_verbose2(self.epoch, fd, sess)
                    elif verbose == 3:
                        self.print_verbose3(self.epoch)
                        if self.epoch % 10 == 0:
                            y_pred_test = sess.run([self.y_pred], {
                                self.x: Data.data['x_test'],
                                K.learning_phase(): 0
                            })[0]
                            conf_mat = confusion_matrix(
                                Data.data['y_test'].argmax(1),
                                y_pred_test.argmax(1))
                            np.save(
                                os.path.join(
                                    self.output_dir, 'conf_mat_' + self.name +
                                    '_' + str(self.epoch) + '.npy'), conf_mat)
                            np.save(
                                os.path.join(
                                    self.output_dir, 'y_pred_' + self.name +
                                    '_' + str(self.epoch) + '.npy'),
                                y_pred_test)
                            np.save(
                                os.path.join(
                                    self.output_dir, 'y_true_' + self.name +
                                    '_' + str(self.epoch) + '.npy'),
                                Data.data['y_test'])
                    if np.sum(np.isnan(self.curve_array)) > 0:
                        print(
                            'loss is nan, going back to previous best checkpoint'
                        )
                        best_ckpt = get_best_checkpoint(self.ckpt_dir)
                        best_epoch = int(
                            re.match('.*?([0-9]+)$', best_ckpt).group(1))
                        best_ckpt_usable = re.sub('-([0-9]+)$', "", best_ckpt)
                        self.epoch = best_epoch
                        saver._saver.restore(sess, best_ckpt_usable)
        return self.curve_array
Пример #9
0
def test_parnn():
    """Test PARNN model."""

    # Load data
    logger.info("✔︎ Loading data...")

    logger.info("✔︎ Test data processing...")
    test_data = dh.load_data_and_labels(FLAGS.test_data_file,
                                        FLAGS.embedding_dim,
                                        data_aug_flag=False)

    logger.info("✔︎ Test data padding...")
    x_test_content, x_test_question, x_test_option, y_test = dh.pad_data(
        test_data, FLAGS.pad_seq_len)

    # Load parnn model
    BEST_OR_LATEST = input("☛ Load Best or Latest Model?(B/L): ")

    while not (BEST_OR_LATEST.isalpha()
               and BEST_OR_LATEST.upper() in ['B', 'L']):
        BEST_OR_LATEST = input(
            "✘ The format of your input is illegal, please re-input: ")
    if BEST_OR_LATEST.upper() == 'B':
        logger.info("✔︎ Loading best model...")
        checkpoint_file = cm.get_best_checkpoint(FLAGS.best_checkpoint_dir,
                                                 select_maximum_value=True)
    else:
        logger.info("✔︎ Loading latest model...")
        checkpoint_file = tf.train.latest_checkpoint(FLAGS.checkpoint_dir)
    logger.info(checkpoint_file)

    graph = tf.Graph()
    with graph.as_default():
        session_conf = tf.ConfigProto(
            allow_soft_placement=FLAGS.allow_soft_placement,
            log_device_placement=FLAGS.log_device_placement)
        session_conf.gpu_options.allow_growth = FLAGS.gpu_options_allow_growth
        sess = tf.Session(config=session_conf)
        with sess.as_default():
            # Load the saved meta graph and restore variables
            saver = tf.train.import_meta_graph(
                "{0}.meta".format(checkpoint_file))
            saver.restore(sess, checkpoint_file)

            # Get the placeholders from the graph by name
            input_x_content = graph.get_operation_by_name(
                "input_x_content").outputs[0]
            input_x_question = graph.get_operation_by_name(
                "input_x_question").outputs[0]
            input_x_option = graph.get_operation_by_name(
                "input_x_option").outputs[0]
            input_y = graph.get_operation_by_name("input_y").outputs[0]
            dropout_keep_prob = graph.get_operation_by_name(
                "dropout_keep_prob").outputs[0]
            is_training = graph.get_operation_by_name("is_training").outputs[0]

            # Tensors we want to evaluate
            scores = graph.get_operation_by_name("output/scores").outputs[0]
            loss = graph.get_operation_by_name("loss/loss").outputs[0]

            # Split the output nodes name by '|' if you have several output nodes
            output_node_names = "output/scores"

            # Save the .pb model file
            output_graph_def = tf.graph_util.convert_variables_to_constants(
                sess, sess.graph_def, output_node_names.split("|"))
            tf.train.write_graph(output_graph_def,
                                 "graph",
                                 "graph-parnn-{0}.pb".format(MODEL),
                                 as_text=False)

            # Generate batches for one epoch
            batches = dh.batch_iter(
                (x_test_content, x_test_question, x_test_option, y_test),
                FLAGS.batch_size,
                1,
                shuffle=False)

            test_counter, test_loss = 0, 0.0

            # Collect the predictions here
            true_labels = []
            predicted_scores = []

            for batch_test in batches:
                x_content_batch_front, x_content_batch_behind, \
                x_question_batch_front, x_question_batch_behind, \
                x_option_batch_front, x_option_batch_behind, \
                y_batch_front, y_batch_behind = zip(*batch_test)
                feed_dict = {
                    input_x_content:
                    [x_content_batch_front, x_content_batch_behind],
                    input_x_question:
                    [x_question_batch_front, x_question_batch_behind],
                    input_x_option:
                    [x_option_batch_front, x_option_batch_behind],
                    input_y: [y_batch_front, y_batch_behind],
                    dropout_keep_prob:
                    1.0,
                    is_training:
                    False
                }
                batch_scores, cur_loss = sess.run([scores, loss], feed_dict)

                # Prepare for calculating metrics
                for i in y_batch_front:
                    true_labels.append(i)
                for j in batch_scores[0]:
                    predicted_scores.append(j)
                print(predicted_scores)

                test_loss = test_loss + cur_loss
                test_counter = test_counter + 1

            # Calculate RMSE
            rmse = mean_squared_error(true_labels, predicted_scores)**0.5

            test_loss = float(test_loss / test_counter)

            logger.info("☛ All Test Dataset: Loss {0:g} | RMSE {1:g}".format(
                test_loss, rmse))

            # Save the prediction result
            if not os.path.exists(SAVE_DIR):
                os.makedirs(SAVE_DIR)
            dh.create_prediction_file(output_file=SAVE_DIR +
                                      "/predictions.json",
                                      all_id=test_data.id,
                                      all_labels=true_labels,
                                      all_predict_scores=predicted_scores)

    logger.info("✔︎ Done.")
Пример #10
0
def run_inference(img_path, output_dir, args):
    """ A function making inference using the pre-trained darknet weights in the tensorflow 
		framework 
		Input:
			img_path: string, path to the image on which inference is to be run, path to the image directory containing images in the case of multiple images.
			output_dir: string, directory for saving the output
			args: argparse object
	"""

    # Reading the images
    if not os.path.exists(output_dir):
        os.mkdir(output_dir)
    if not os.path.exists(os.path.join(output_dir, 'images')):
        os.mkdir(os.path.join(output_dir, 'images'))
    if not os.path.exists(os.path.join(output_dir, 'labels')):
        os.mkdir(os.path.join(output_dir, 'labels'))

    output_dir_images = os.path.join(output_dir, 'images')
    output_dir_labels = os.path.join(output_dir, 'labels')

    file_names = sorted(os.listdir(img_path))
    images_batch = read_image(img_path)

    # Getting anchors and labels for the prediction
    class_names = get_classes(config.classes_path)

    num_classes = config.num_classes
    num_anchors = config.num_anchors

    # Retriving the input shape of the model i.e. (608x608), (416x416), (320x320)
    input_shape = (config.input_shape, config.input_shape)

    # Defining placeholder for passing the image data onto the model
    image_tensor = tf.placeholder(dtype=tf.float32,
                                  shape=[None, None, None, 3])
    image_shape = tf.placeholder(dtype=tf.int32, shape=[2])

    model = model(image_tensor,
                  is_training=False,
                  num_classes=config.num_classes)
    output_nodes, model_layers = model.forward()

    print('Summary of the model created.......\n')
    for layer in model_layers:
        print(layer)

    # Creating a session for running the model
    gpu_config = tf.ConfigProto(log_device_placement=False)
    gpu_config.gpu_options.allow_growth = True
    sess = tf.Session(config=gpu_config)

    output_values = predict(output_nodes, num_classes, input_shape,
                            image_shape)

    ckpt_path = config.model_dir + 'valid/'
    exponential_moving_average_obj = tf.train.ExponentialMovingAverage(
        config.weight_decay)
    saver = tf.train.Saver(
        exponential_moving_average_obj.variables_to_restore())
    ckpt = tf.train.get_checkpoint_state(ckpt_path)
    # chkp.print_tensors_in_checkpoint_file(checkmate.get_best_checkpoint(ckpt_path), tensor_name='', all_tensors=True)
    # exit()
    if ckpt and tf.train.checkpoint_exists(ckpt.model_checkpoint_path):
        print('Restoring model ', checkmate.get_best_checkpoint(ckpt_path))
        saver.restore(sess, checkmate.get_best_checkpoint(ckpt_path))
        print('Model Loaded!')

    total_time_pred = []
    for x in range(len(images_batch)):

        image = images_batch[x]
        new_image_size = (config.input_shape, config.input_shape)
        image_data = np.array(resize_image(image, new_image_size))
        print('Image height: {}\tImage width: {}'.format(
            image.shape[0], image.shape[1]))

        img = image_data / 255.
        img = np.expand_dims(img, 0)  # Adding the batch dimension

        tick = time()
        # Actually run the graph in a tensorflow session to get the outputs
        out_values = sess.run([output_values],
                              feed_dict={
                                  image_tensor: img,
                                  image_shape:
                                  [image.shape[0], image.shape[1]]
                              })
        tock = time()
        total_time_pred.append(tock - tick)

        print('Found {} boxes for {} in {}sec'.format(len(out_boxes), 'img',
                                                      tock - tick))

        ######################## Visualization ######################
        font = ImageFont.truetype(font='./font/FiraMono-Medium.otf',
                                  size=np.floor(1e-2 * image.shape[1] +
                                                0.5).astype(np.int32))
        thickness = (image.shape[0] + image.shape[1]) // 500  # do day cua BB

        image = Image.fromarray((image).astype('uint8'), mode='RGB')
        output_labels = open(
            os.path.join(output_dir_labels,
                         file_names[x].split('.')[0] + '.txt'), 'w')
        ### DO ALL THE PLOTTING THING IF REQUIRED ###
        ### SAVE THE IMAGE ###

        output_labels.close()  # Saving labels

    sess.close()

    total_time_pred = sum(total_time_pred[1:])
    print('FPS of model with post processing over {} images is {}'.format(
        len(images_batch) - 1, (len(images_batch) - 1) / total_time_pred))
Пример #11
0
def test_han():
    """Test HAN model."""

    # Load data
    logger.info("✔︎ Loading data...")
    logger.info("Recommended padding Sequence length is: {0}".format(
        FLAGS.pad_seq_len))

    logger.info("✔︎ Test data processing...")
    test_data = dh.load_data_and_labels(FLAGS.test_data_file,
                                        FLAGS.num_classes,
                                        FLAGS.embedding_dim,
                                        data_aug_flag=False)

    logger.info("✔︎ Test data padding...")
    x_test, y_test = dh.pad_data(test_data, FLAGS.pad_seq_len)
    y_test_labels = test_data.labels

    # Load han model
    BEST_OR_LATEST = input("☛ Load Best or Latest Model?(B/L): ")

    while not (BEST_OR_LATEST.isalpha()
               and BEST_OR_LATEST.upper() in ['B', 'L']):
        BEST_OR_LATEST = input(
            "✘ The format of your input is illegal, please re-input: ")
    if BEST_OR_LATEST == 'B':
        logger.info("✔︎ Loading best model...")
        checkpoint_file = cm.get_best_checkpoint(FLAGS.best_checkpoint_dir,
                                                 select_maximum_value=True)
    else:
        logger.info("✔︎ Loading latest model...")
        checkpoint_file = tf.train.latest_checkpoint(FLAGS.checkpoint_dir)
    logger.info(checkpoint_file)

    graph = tf.Graph()
    with graph.as_default():
        session_conf = tf.ConfigProto(
            allow_soft_placement=FLAGS.allow_soft_placement,
            log_device_placement=FLAGS.log_device_placement)
        session_conf.gpu_options.allow_growth = FLAGS.gpu_options_allow_growth
        sess = tf.Session(config=session_conf)
        with sess.as_default():
            # Load the saved meta graph and restore variables
            saver = tf.train.import_meta_graph(
                "{0}.meta".format(checkpoint_file))
            saver.restore(sess, checkpoint_file)

            # Get the placeholders from the graph by name
            input_x = graph.get_operation_by_name("input_x").outputs[0]
            input_y = graph.get_operation_by_name("input_y").outputs[0]
            dropout_keep_prob = graph.get_operation_by_name(
                "dropout_keep_prob").outputs[0]
            is_training = graph.get_operation_by_name("is_training").outputs[0]

            # Tensors we want to evaluate
            scores = graph.get_operation_by_name("output/scores").outputs[0]
            loss = graph.get_operation_by_name("loss/loss").outputs[0]

            # Split the output nodes name by '|' if you have several output nodes
            output_node_names = "output/logits|output/scores"

            # Save the .pb model file
            output_graph_def = tf.graph_util.convert_variables_to_constants(
                sess, sess.graph_def, output_node_names.split("|"))
            tf.train.write_graph(output_graph_def,
                                 "graph",
                                 "graph-han-{0}.pb".format(MODEL),
                                 as_text=False)

            # Generate batches for one epoch
            batches = dh.batch_iter(list(zip(x_test, y_test, y_test_labels)),
                                    FLAGS.batch_size,
                                    1,
                                    shuffle=False)

            # Collect the predictions here
            all_labels = []
            all_predicted_labels = []
            all_predicted_values = []

            # Calculate the metric
            test_counter, test_loss, test_rec, test_pre, test_F = 0, 0.0, 0.0, 0.0, 0.0

            for batch_test in batches:
                x_batch_test, y_batch_test, y_batch_test_labels = zip(
                    *batch_test)
                feed_dict = {
                    input_x: x_batch_test,
                    input_y: y_batch_test,
                    dropout_keep_prob: 1.0,
                    is_training: False
                }
                batch_scores, cur_loss = sess.run([scores, loss], feed_dict)

                # Predict by threshold
                predicted_labels_threshold, predicted_values_threshold = \
                    dh.get_label_using_scores_by_threshold(scores=batch_scores, threshold=FLAGS.threshold)

                cur_rec, cur_pre, cur_F = 0.0, 0.0, 0.0

                for index, predicted_label_threshold in enumerate(
                        predicted_labels_threshold):
                    rec_inc, pre_inc = dh.cal_metric(predicted_label_threshold,
                                                     y_batch_test[index])
                    cur_rec, cur_pre = cur_rec + rec_inc, cur_pre + pre_inc

                cur_rec = cur_rec / len(y_batch_test)
                cur_pre = cur_pre / len(y_batch_test)

                test_rec, test_pre = test_rec + cur_rec, test_pre + cur_pre

                # Add results to collection
                for item in y_batch_test_labels:
                    all_labels.append(item)
                for item in predicted_labels_threshold:
                    all_predicted_labels.append(item)
                for item in predicted_values_threshold:
                    all_predicted_values.append(item)

                test_loss = test_loss + cur_loss
                test_counter = test_counter + 1

            test_loss = float(test_loss / test_counter)
            test_rec = float(test_rec / test_counter)
            test_pre = float(test_pre / test_counter)
            test_F = dh.cal_F(test_rec, test_pre)

            logger.info("☛ All Test Dataset: Loss {0:g}".format(test_loss))

            # Predict by threshold
            logger.info(
                "☛ Predict by threshold: Recall {0:g}, Precision {1:g}, F {2:g}"
                .format(test_rec, test_pre, test_F))
            # Save the prediction result
            if not os.path.exists(SAVE_DIR):
                os.makedirs(SAVE_DIR)
            dh.create_prediction_file(output_file=SAVE_DIR +
                                      "/predictions.json",
                                      data_id=test_data.testid,
                                      all_labels=all_labels,
                                      all_predict_labels=all_predicted_labels,
                                      all_predict_values=all_predicted_values)

    logger.info("✔︎ Done.")
Пример #12
0
def visualize():
    """Visualize HARNN model."""

    # Load word2vec model
    word2idx, embedding_matrix = dh.load_word2vec_matrix(args.word2vec_file)

    # Load data
    logger.info("Loading data...")
    logger.info("Data processing...")
    test_data = dh.load_data_and_labels(args, args.test_file, word2idx)

    # Load harnn model
    OPTION = dh._option(pattern=1)
    if OPTION == 'B':
        logger.info("Loading best model...")
        checkpoint_file = cm.get_best_checkpoint(BEST_CPT_DIR,
                                                 select_maximum_value=True)
    else:
        logger.info("Loading latest model...")
        checkpoint_file = tf.train.latest_checkpoint(CPT_DIR)
    logger.info(checkpoint_file)

    graph = tf.Graph()
    with graph.as_default():
        session_conf = tf.ConfigProto(
            allow_soft_placement=args.allow_soft_placement,
            log_device_placement=args.log_device_placement)
        session_conf.gpu_options.allow_growth = args.gpu_options_allow_growth
        sess = tf.Session(config=session_conf)
        with sess.as_default():
            # Load the saved meta graph and restore variables
            saver = tf.train.import_meta_graph(
                "{0}.meta".format(checkpoint_file))
            saver.restore(sess, checkpoint_file)

            # Get the placeholders from the graph by name
            input_x = graph.get_operation_by_name("input_x").outputs[0]
            input_y_first = graph.get_operation_by_name(
                "input_y_first").outputs[0]
            input_y_second = graph.get_operation_by_name(
                "input_y_second").outputs[0]
            input_y_third = graph.get_operation_by_name(
                "input_y_third").outputs[0]
            input_y_fourth = graph.get_operation_by_name(
                "input_y_fourth").outputs[0]
            input_y = graph.get_operation_by_name("input_y").outputs[0]
            dropout_keep_prob = graph.get_operation_by_name(
                "dropout_keep_prob").outputs[0]
            alpha = graph.get_operation_by_name("alpha").outputs[0]
            is_training = graph.get_operation_by_name("is_training").outputs[0]

            # Tensors we want to evaluate
            first_visual = graph.get_operation_by_name(
                "first-output/visual").outputs[0]
            second_visual = graph.get_operation_by_name(
                "second-output/visual").outputs[0]
            third_visual = graph.get_operation_by_name(
                "third-output/visual").outputs[0]
            fourth_visual = graph.get_operation_by_name(
                "fourth-output/visual").outputs[0]

            # Split the output nodes name by '|' if you have several output nodes
            output_node_names = "first-output/visual|second-output/visual|third-output/visual|fourth-output/visual|output/scores"

            # Save the .pb model file
            output_graph_def = tf.graph_util.convert_variables_to_constants(
                sess, sess.graph_def, output_node_names.split("|"))
            tf.train.write_graph(output_graph_def,
                                 "graph",
                                 "graph-harnn-{0}.pb".format(MODEL),
                                 as_text=False)

            # Generate batches for one epoch
            batches = dh.batch_iter(list(create_input_data(test_data)),
                                    args.batch_size,
                                    1,
                                    shuffle=False)

            for batch_id, batch_test in enumerate(batches):
                x, x_content, sec, subsec, group, subgroup, y_onehot = zip(
                    *batch_test)

                feed_dict = {
                    input_x: x,
                    input_y_first: sec,
                    input_y_second: subsec,
                    input_y_third: group,
                    input_y_fourth: subgroup,
                    input_y: y_onehot,
                    dropout_keep_prob: 1.0,
                    alpha: args.alpha,
                    is_training: False
                }
                batch_first_visual, batch_second_visual, batch_third_visual, batch_fourth_visual = \
                    sess.run([first_visual, second_visual, third_visual, fourth_visual], feed_dict)

                batch_visual = [
                    batch_first_visual, batch_second_visual,
                    batch_third_visual, batch_fourth_visual
                ]

                seq_len = len(x_content[0])
                pad_len = len(batch_first_visual[0])
                length = (pad_len if seq_len >= pad_len else seq_len)
                visual_list = []

                for visual in batch_visual:
                    visual_list.append(
                        normalization(visual[0].tolist(), length))

                create_visual_file(batch_id, x_content, visual_list, seq_len)
    logger.info("Done.")
Пример #13
0
def run_inference(img_path, output_dir, args):
    """ A function making inference using the pre-trained darknet weights in the tensorflow 
		framework 
		Input:
			img_path: string, path to the image on which inference is to be run, path to the image directory containing images in the case of multiple images.
			output_dir: string, directory for saving the output
			args: argparse object
	"""

    # Reading the images
    if not os.path.exists(output_dir):
        os.mkdir(output_dir)
    if not os.path.exists(os.path.join(output_dir, 'images')):
        os.mkdir(os.path.join(output_dir, 'images'))
    if not os.path.exists(os.path.join(output_dir, 'labels')):
        os.mkdir(os.path.join(output_dir, 'labels'))

    output_dir_images = os.path.join(output_dir, 'images')
    output_dir_labels = os.path.join(output_dir, 'labels')

    file_names = sorted(os.listdir(img_path))
    images_batch = read_image(img_path)

    # Getting anchors and labels for the prediction
    class_names = get_classes(config.classes_path)

    anchors = read_anchors(config.anchors_path)

    num_classes = config.num_classes
    num_anchors = config.num_anchors

    # Retriving the input shape of the model i.e. (608x608), (416x416), (320x320)
    input_shape = (config.input_shape, config.input_shape)

    # Generate colors for drawing bounding boxes.
    hsv_tuples = [(x / len(class_names), 1., 1.)
                  for x in range(len(class_names))]
    colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
    colors = list(
        map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
            colors))
    random.seed(10101)  # Fixed seed for consistent colors across runs.
    random.shuffle(colors)  # Shuffle colors to decorrelate adjacent classes.
    random.seed(None)  # Reset seed to default.

    # Defining placeholder for passing the image data onto the model
    image_tensor = tf.placeholder(dtype=tf.float32,
                                  shape=[None, None, None, 3])
    image_shape = tf.placeholder(dtype=tf.int32, shape=[2])

    # Building the model for running inference
    output_nodes = yolo(input_images=image_tensor,
                        is_training=False,
                        config_path=config.yolov3_cfg_path,
                        num_classes=num_classes)

    # Creating a session for running the model
    gpu_config = tf.ConfigProto(log_device_placement=False)
    gpu_config.gpu_options.allow_growth = True
    sess = tf.Session(config=gpu_config)

    boxes, scores, classes = predict(output_nodes, anchors, num_classes,
                                     input_shape, image_shape)

    total_time_pred = []
    total_time_yolo = []
    for x in range(len(images_batch)):

        image = images_batch[x]
        new_image_size = (config.input_shape, config.input_shape)
        image_data = np.array(resize_image(image, new_image_size))
        print('Image height: {}\tImage width: {}'.format(
            image.shape[0], image.shape[1]))

        img = image_data / 255.
        img = np.expand_dims(img, 0)  # Adding the batch dimension

        # Loading the model/weights for running the model
        if x < 1:
            if args.darknet_model is not None:
                print('Loading pre-trained weights.....')
                if not os.path.exists(config.yolov3_weights_path):
                    print('yolov3 weights not found.....\n')
                    if not os.path.exists('./yolov3.weights'):
                        os.system(
                            'wget https://pjreddie.com/media/files/yolov3.weights'
                        )
                    os.system(
                        'mv yolov3.weights ./darknet_data/yolov3.weights')
                load_op = load_weights(tf.global_variables(),
                                       weights_file=config.yolov3_weights_path)
                sess.run(load_op)

            else:
                ckpt_path = config.model_dir
                saver = tf.train.Saver()
                ckpt = tf.train.get_checkpoint_state(ckpt_path)
                if ckpt and tf.train.checkpoint_exists(
                        ckpt.model_checkpoint_path):
                    print('Restoring model ',
                          checkmate.get_best_checkpoint(ckpt_path))
                    saver.restore(sess,
                                  checkmate.get_best_checkpoint(ckpt_path))
                    print('Model Loaded!')

        # tick = time()
        # sess.run(output_nodes, feed_dict={image_tensor: img, image_shape: [image.shape[0], image.shape[1]]})
        # tock = time()
        # print("Prediction time: ", tock-tick)
        # total_time_yolo.append(tock-tick)

        tick = time()
        # Actually run the graph in a tensorflow session to get the outputs
        out_boxes, out_scores, out_classes = sess.run(
            [boxes, scores, classes],
            feed_dict={
                image_tensor: img,
                image_shape: [image.shape[0], image.shape[1]]
            })
        tock = time()
        total_time_pred.append(tock - tick)

        print('Found {} boxes for {} in {}sec'.format(len(out_boxes), 'img',
                                                      tock - tick))

        ######################## Visualization ######################
        font = ImageFont.truetype(font='./font/FiraMono-Medium.otf',
                                  size=np.floor(1e-2 * image.shape[1] +
                                                0.5).astype(np.int32))
        thickness = (image.shape[0] + image.shape[1]) // 1000  # do day cua BB

        image = Image.fromarray((image).astype('uint8'), mode='RGB')
        output_labels = open(
            os.path.join(output_dir_labels,
                         file_names[x].split(',')[0] + '.txt'), 'w')
        for i, c in reversed(list(enumerate(out_classes))):
            predicted_class = class_names[c]
            box = out_boxes[i]
            score = out_scores[i]

            label = '{} {:.2f}'.format(predicted_class, score)
            draw = ImageDraw.Draw(image)
            label_size = draw.textsize(label, font)
            # print(label_size)

            top, left, bottom, right = box  # y_min, x_min, y_max, x_max
            top = max(0, np.floor(top + 0.5).astype(np.int32))
            left = max(0, np.floor(left + 0.5).astype(np.int32))
            bottom = min(image.size[1],
                         np.floor(bottom + 0.5).astype(np.int32))
            right = min(image.size[0], np.floor(right + 0.5).astype(np.int32))
            print(label, (left, top),
                  (right, bottom))  # (x_min, y_min), (x_max, y_max)
            output_labels.write(
                str(left) + ',' + str(top) + ',' + str(right) + ',' +
                str(bottom) + ',' + str(c) + ',' + str(score) + '\n')

            if top - label_size[1] >= 0:
                text_origin = np.array([left, top - label_size[1]])
            else:
                text_origin = np.array([left, top + 1])

            # My kingdom for a good redistributable image drawing library.
            for j in range(thickness):
                draw.rectangle([left + j, top + j, right - j, bottom - j],
                               outline=colors[c])
            draw.rectangle(
                [tuple(text_origin),
                 tuple(text_origin + label_size)],
                fill=colors[c])
            draw.text(text_origin, label, fill=(0, 0, 0), font=font)
            del draw

        # image.show()
        image.save(os.path.join(output_dir_images, file_names[x]),
                   compress_level=1)

        output_labels.close()

    sess.close()

    total_time_pred = sum(total_time_pred[1:])
    # total_time_yolo = sum(total_time_yolo[1:])
    print('FPS of model with post processing over {} images is {}'.format(
        len(images_batch) - 1, (len(images_batch) - 1) / total_time_pred))
Пример #14
0
def train(ckpt_path, log_path, class_path):
    """ Function to train the model.
		ckpt_path: string, path for saving/restoring the model
		log_path: string, path for saving the training/validation logs
		class_path: string, path for the classes of the dataset
		decay_steps: int, steps after which the learning rate is to be decayed
		decay_rate: float, rate to carrying out exponential decay
	"""

    # Getting the anchors
    anchors = read_anchors(config.anchors_path)

    classes = get_classes(class_path)

    if anchors.shape[0] // 3 == 2:
        yolo_tiny = True
    else:
        yolo_tiny = False

    # Building the training pipeline
    graph = tf.get_default_graph()

    with graph.as_default():

        # Getting the training data
        with tf.name_scope('data_parser/'):
            train_reader = Parser('train',
                                  config.anchors_path,
                                  config.output_dir,
                                  config.num_classes,
                                  input_shape=config.input_shape,
                                  max_boxes=config.max_boxes)
            train_data = train_reader.build_dataset(config.train_batch_size //
                                                    config.subdivisions)
            train_iterator = train_data.make_one_shot_iterator()

            val_reader = Parser('val',
                                config.anchors_path,
                                config.output_dir,
                                config.num_classes,
                                input_shape=config.input_shape,
                                max_boxes=config.max_boxes)
            val_data = val_reader.build_dataset(config.val_batch_size //
                                                config.subdivisions)
            val_iterator = val_data.make_one_shot_iterator()

            is_training = tf.placeholder(
                dtype=tf.bool, shape=[], name='train_flag'
            )  # Used for different behaviour of batch normalization
            mode = tf.placeholder(dtype=tf.int16, shape=[], name='mode_flag')

            def train():
                # images, bbox, bbox_true_13, bbox_true_26, bbox_true_52 = train_iterator.get_next()
                return train_iterator.get_next()

            def valid():
                # images, bbox, bbox_true_13, bbox_true_26, bbox_true_52 = val_iterator.get_next()
                return val_iterator.get_next()

            if yolo_tiny:
                images, bbox, bbox_true_13, bbox_true_26 = tf.cond(
                    pred=tf.equal(mode, 1),
                    true_fn=train,
                    false_fn=valid,
                    name='train_val__data')
                grid_shapes = [
                    config.input_shape // 32, config.input_shape // 16
                ]
            else:
                images, bbox, bbox_true_13, bbox_true_26, bbox_true_52 = tf.cond(
                    pred=tf.equal(mode, 1),
                    true_fn=train,
                    false_fn=valid,
                    name='train_val_data')
                grid_shapes = [
                    config.input_shape // 32, config.input_shape // 16,
                    config.input_shape // 8
                ]

            images.set_shape([None, config.input_shape, config.input_shape, 3])
            bbox.set_shape([None, config.max_boxes, 5])

            # image_summary = draw_box(images, bbox)

        # Extracting the pre-defined yolo graph from the darknet cfg file
        if not os.path.exists(ckpt_path):
            os.mkdir(ckpt_path)
        output = yolo(images, is_training, config.yolov3_cfg_path,
                      config.num_classes)

        # Declaring the parameters for GT
        with tf.name_scope('Targets'):
            if yolo_tiny:
                bbox_true_13.set_shape([
                    None, grid_shapes[0], grid_shapes[0],
                    config.num_anchors_per_scale, 5 + config.num_classes
                ])
                bbox_true_26.set_shape([
                    None, grid_shapes[1], grid_shapes[1],
                    config.num_anchors_per_scale, 5 + config.num_classes
                ])
                y_true = [bbox_true_13, bbox_true_26]
            else:
                bbox_true_13.set_shape([
                    None, grid_shapes[0], grid_shapes[0],
                    config.num_anchors_per_scale, 5 + config.num_classes
                ])
                bbox_true_26.set_shape([
                    None, grid_shapes[1], grid_shapes[1],
                    config.num_anchors_per_scale, 5 + config.num_classes
                ])
                bbox_true_52.set_shape([
                    None, grid_shapes[2], grid_shapes[2],
                    config.num_anchors_per_scale, 5 + config.num_classes
                ])
                y_true = [bbox_true_13, bbox_true_26, bbox_true_52]

        # Compute Loss
        with tf.name_scope('Loss_and_Detect'):
            loss_scale, yolo_loss, xy_loss, wh_loss, obj_loss, noobj_loss, conf_loss, class_loss = compute_loss(
                output,
                y_true,
                anchors,
                config.num_classes,
                config.input_shape,
                ignore_threshold=config.ignore_thresh)
            loss = yolo_loss
            exponential_moving_average_op = tf.train.ExponentialMovingAverage(
                config.weight_decay).apply(
                    var_list=tf.trainable_variables())  # For regularisation
            scale1_loss_summary = tf.summary.scalar('scale_loss_1',
                                                    loss_scale[0],
                                                    family='Loss')
            scale2_loss_summary = tf.summary.scalar('scale_loss_2',
                                                    loss_scale[1],
                                                    family='Loss')
            yolo_loss_summary = tf.summary.scalar('yolo_loss',
                                                  yolo_loss,
                                                  family='Loss')
            # total_loss_summary = tf.summary.scalar('Total_loss', loss, family='Loss')
            xy_loss_summary = tf.summary.scalar('xy_loss',
                                                xy_loss,
                                                family='Loss')
            wh_loss_summary = tf.summary.scalar('wh_loss',
                                                wh_loss,
                                                family='Loss')
            obj_loss_summary = tf.summary.scalar('obj_loss',
                                                 obj_loss,
                                                 family='Loss')
            noobj_loss_summary = tf.summary.scalar('noobj_loss',
                                                   noobj_loss,
                                                   family='Loss')
            conf_loss_summary = tf.summary.scalar('confidence_loss',
                                                  conf_loss,
                                                  family='Loss')
            class_loss_summary = tf.summary.scalar('class_loss',
                                                   class_loss,
                                                   family='Loss')

        # Declaring the parameters for training the model
        with tf.name_scope('train_parameters'):
            global_step = tf.Variable(0, trainable=False, name='global_step')

            def learning_rate_scheduler(learning_rate,
                                        scheduler_name,
                                        global_step,
                                        decay_steps=100):
                if scheduler_name == 'exponential':
                    lr = tf.train.exponential_decay(
                        learning_rate,
                        global_step,
                        decay_steps,
                        decay_rate,
                        staircase=True,
                        name='exponential_learning_rate')
                    return tf.maximum(lr, config.learning_rate_lower_bound)
                elif scheduler_name == 'polynomial':
                    lr = tf.train.polynomial_decay(
                        learning_rate,
                        global_step,
                        decay_steps,
                        config.learning_rate_lower_bound,
                        power=0.8,
                        cycle=True,
                        name='polynomial_learning_rate')
                    return tf.maximum(lr, config.learning_rate_lower_bound)
                elif scheduler_name == 'cosine':
                    lr = tf.train.cosine_decay(learning_rate,
                                               global_step,
                                               decay_steps,
                                               alpha=0.5,
                                               name='cosine_learning_rate')
                    return tf.maximum(lr, config.learning_rate_lower_bound)
                elif scheduler_name == 'linear':
                    return tf.convert_to_tensor(learning_rate,
                                                name='linear_learning_rate')
                else:
                    raise ValueError(
                        'Unsupported learning rate scheduler\n[supported types: exponential, polynomial, linear]'
                    )

            if config.use_warm_up:
                learning_rate = tf.cond(
                    pred=tf.less(
                        global_step,
                        config.burn_in_epochs *
                        (config.train_num // config.train_batch_size)),
                    true_fn=lambda: learning_rate_scheduler(
                        config.init_learning_rate, config.warm_up_lr_scheduler,
                        global_step),
                    false_fn=lambda: learning_rate_scheduler(
                        config.learning_rate,
                        config.lr_scheduler,
                        global_step,
                        decay_steps=500))
            else:
                learning_rate = learning_rate_scheduler(config.learning_rate,
                                                        config.lr_scheduler,
                                                        global_step,
                                                        decay_steps=2000)

            tf.summary.scalar('learning rate', learning_rate)

        # Define optimizer for minimizing the computed loss
        with tf.name_scope('Optimizer'):
            # optimizer = tf.train.MomentumOptimizer(learning_rate=learning_rate, momentum=config.momentum)
            optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
            # optimizer = tf.train.RMSPropOptimizer(learning_rate=learning_rate, momentum=config.momentum)
            update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
            with tf.control_dependencies(update_ops):
                if config.pre_train:
                    train_vars = tf.get_collection(
                        tf.GraphKeys.TRAINABLE_VARIABLES, scope='yolo')
                else:
                    train_vars = tf.get_collection(
                        tf.GraphKeys.TRAINABLE_VARIABLES)

                grads = optimizer.compute_gradients(loss=loss,
                                                    var_list=train_vars)
                gradients = [(tf.placeholder(dtype=tf.float32,
                                             shape=grad[1].get_shape()),
                              grad[1]) for grad in grads]
                optimizing_op = optimizer.apply_gradients(
                    grads_and_vars=gradients, global_step=global_step)
                # optimizing_op = optimizer.minimize(loss=loss, global_step=global_step)

            with tf.control_dependencies([optimizing_op]):
                with tf.control_dependencies([exponential_moving_average_op]):
                    train_op_with_mve = tf.no_op()
            train_op = train_op_with_mve


#################################### Training loop ############################################################
# A saver object for saving the model
        best_ckpt_saver_train = checkmate.BestCheckpointSaver(
            save_dir=ckpt_path + 'train/', num_to_keep=5)
        best_ckpt_saver_valid = checkmate.BestCheckpointSaver(
            save_dir=ckpt_path + 'valid/', num_to_keep=5)
        summary_op = tf.summary.merge_all()
        summary_op_valid = tf.summary.merge([
            yolo_loss_summary, xy_loss_summary, wh_loss_summary,
            obj_loss_summary, noobj_loss_summary, conf_loss_summary,
            class_loss_summary, scale1_loss_summary, scale2_loss_summary
        ])

        init_op = tf.global_variables_initializer()

        # Defining some train loop dependencies
        gpu_config = tf.ConfigProto(log_device_placement=False)
        gpu_config.gpu_options.allow_growth = True
        sess = tf.Session(config=gpu_config)
        tf.logging.set_verbosity(tf.logging.ERROR)
        train_summary_writer = tf.summary.FileWriter(
            os.path.join(log_path, 'train'), sess.graph)
        val_summary_writer = tf.summary.FileWriter(
            os.path.join(log_path, 'val'), sess.graph)

        # Restoring the model
        ckpt = tf.train.get_checkpoint_state(ckpt_path + 'valid/')
        if ckpt and tf.train.checkpoint_exists(ckpt.model_checkpoint_path):
            print('Restoring model ',
                  checkmate.get_best_checkpoint(ckpt_path + 'valid/'))
            tf.train.Saver().restore(
                sess, checkmate.get_best_checkpoint(ckpt_path + 'valid/'))
            print('Model Loaded!')
        elif config.pre_train is True:
            sess.run(init_op)
            load_ops = load_weights(tf.global_variables(scope='darknet53'),
                                    config.darknet53_weights_path)
            sess.run(load_ops)
        else:
            sess.run(init_op)

        print('Uninitialized variables: ',
              sess.run(tf.report_uninitialized_variables()))

        epochbar = tqdm(range(config.Epoch))
        for epoch in epochbar:
            epochbar.set_description('Epoch %s of %s' % (epoch, config.Epoch))
            mean_loss_train = []
            mean_loss_valid = []

            trainbar = tqdm(range(config.train_num // config.train_batch_size))
            for k in trainbar:
                all_grads_and_vars = []
                for minibatch in range(config.train_batch_size //
                                       config.subdivisions):
                    num_steps, train_summary, loss_train, grads_and_vars = sess.run(
                        [global_step, summary_op, loss, grads],
                        feed_dict={
                            is_training: True,
                            mode: 1
                        })

                    all_grads_and_vars += grads_and_vars

                    train_summary_writer.add_summary(train_summary, epoch)
                    train_summary_writer.flush()
                    mean_loss_train.append(loss_train)
                    trainbar.set_description('Train loss: %s' %
                                             str(loss_train))

                feed_dict = {is_training: True, mode: 1}
                for i in range(len(gradients), len(all_grads_and_vars)):
                    all_grads_and_vars[
                        i % len(gradients)] += all_grads_and_vars[i][0]
                all_grads_and_vars = all_grads_and_vars[:len(gradients)]
                for i in range(len(gradients)):
                    feed_dict[gradients[i][0]] = all_grads_and_vars[i][0]
                # print(np.shape(feed_dict))

                _ = sess.run(train_op, feed_dict=feed_dict)

            print('Validating.....')
            valbar = tqdm(range(config.val_num // config.val_batch_size))
            for k in valbar:
                for minibatch in range(config.train_batch_size //
                                       config.subdivisions):
                    val_summary, loss_valid = sess.run(
                        [summary_op_valid, loss],
                        feed_dict={
                            is_training: False,
                            mode: 0
                        })
                    val_summary_writer.add_summary(val_summary, epoch)
                    val_summary_writer.flush()
                    mean_loss_valid.append(loss_valid)
                    valbar.set_description('Validation loss: %s' %
                                           str(loss_valid))

            mean_loss_train = np.mean(mean_loss_train)
            mean_loss_valid = np.mean(mean_loss_valid)

            print('\n')
            print('Train loss after %d epochs is: %f' %
                  (epoch + 1, mean_loss_train))
            print('Validation loss after %d epochs is: %f' %
                  (epoch + 1, mean_loss_valid))
            print('\n\n')

            if (config.use_warm_up):
                if (num_steps > config.burn_in_epochs *
                    (config.train_num // config.train_batch_size)):
                    best_ckpt_saver_train.handle(mean_loss_train, sess,
                                                 global_step)
                    best_ckpt_saver_valid.handle(mean_loss_valid, sess,
                                                 global_step)
                else:
                    continue
            else:
                best_ckpt_saver_train.handle(mean_loss_train, sess,
                                             global_step)
                best_ckpt_saver_valid.handle(mean_loss_valid, sess,
                                             global_step)

        print('Tuning Completed!!')
        train_summary_writer.close()
        val_summary_writer.close()
        sess.close()
Пример #15
0
def train(ckpt_path, log_path, class_path):
	""" Function to train the model.
		ckpt_path: string, path for saving/restoring the model
		log_path: string, path for saving the training/validation logs
		class_path: string, path for the classes of the dataset
		decay_steps: int, steps after which the learning rate is to be decayed
		decay_rate: float, rate to carrying out exponential decay
	"""


	# Getting the anchors
	anchors = read_anchors(config.anchors_path)
	if not os.path.exists(config.data_dir):
		os.mkdir(config.data_dir)

	classes = get_classes(class_path)

	# Building the training pipeline
	graph = tf.get_default_graph()

	with graph.as_default():

		# Getting the training data
		with tf.name_scope('data_parser/'):
			train_reader = Parser('train', config.data_dir, config.anchors_path, config.output_dir, 
				config.num_classes, input_shape=config.input_shape, max_boxes=config.max_boxes)
			train_data = train_reader.build_dataset(config.train_batch_size//config.subdivisions)
			train_iterator = train_data.make_one_shot_iterator()

			val_reader = Parser('val', config.data_dir, config.anchors_path, config.output_dir, 
				config.num_classes, input_shape=config.input_shape, max_boxes=config.max_boxes)
			val_data = val_reader.build_dataset(config.val_batch_size)
			val_iterator = val_data.make_one_shot_iterator()


			is_training = tf.placeholder(dtype=tf.bool, shape=[], name='train_flag') # Used for different behaviour of batch normalization
			mode = tf.placeholder(dtype=tf.int16, shape=[], name='mode_flag')


			def train():
				return train_iterator.get_next()
			def valid():
				return val_iterator.get_next()


			images, labels = tf.cond(pred=tf.equal(mode, 1), true_fn=train, false_fn=valid, name='train_val_data')
			grid_shapes = [config.input_shape // 32, config.input_shape // 16, config.input_shape // 8]

			images.set_shape([None, config.input_shape, config.input_shape, 3])
			labels.set_shape([None, required_shape, 5])

			# image_summary = draw_box(images, bbox, file_name)

		if not os.path.exists(ckpt_path):
			os.mkdir(ckpt_path)

		model = model(images, is_training, config.num_classes, config.num_anchors_per_scale, config.weight_decay, config.norm_decay)
		output, model_layers = model.forward()

		print('Summary of the created model.......\n')
		for layer in model_layers:
			print(layer)

		# Declaring the parameters for GT
		with tf.name_scope('Targets'):
			### GT PROCESSING ###

		# Compute Loss
		with tf.name_scope('Loss_and_Detect'):
			loss_scale,summaries = compute_loss(output, y_true, config.num_classes, ignore_threshold=config.ignore_thresh)
			exponential_moving_average_op = tf.train.ExponentialMovingAverage(config.weight_decay).apply(var_list=tf.trainable_variables())
			loss = model_loss
			model_loss_summary = tf.summary.scalar('model_loss', summaries, family='Losses')


		# Declaring the parameters for training the model
		with tf.name_scope('train_parameters'):
			global_step = tf.Variable(0, trainable=False, name='global_step')

		# Declaring the parameters for training the model
		with tf.name_scope('train_parameters'):
			global_step = tf.Variable(0, trainable=False, name='global_step')

			def learning_rate_scheduler(learning_rate, scheduler_name, global_step, decay_steps=100):
				if scheduler_name == 'exponential':
					lr =  tf.train.exponential_decay(learning_rate, global_step,
						decay_steps, decay_rate, staircase=True, name='exponential_learning_rate')
					return tf.maximum(lr, config.learning_rate_lower_bound)
				elif scheduler_name == 'polynomial':
					lr =  tf.train.polynomial_decay(learning_rate, global_step,
						decay_steps, config.learning_rate_lower_bound, power=0.8, cycle=True, name='polynomial_learning_rate')
					return tf.maximum(lr, config.learning_rate_lower_bound)
				elif scheduler_name == 'cosine':
					lr = tf.train.cosine_decay(learning_rate, global_step,
						decay_steps, alpha=0.5, name='cosine_learning_rate')
					return tf.maximum(lr, config.learning_rate_lower_bound)
				elif scheduler_name == 'linear':
					return tf.convert_to_tensor(learning_rate, name='linear_learning_rate')
				else:
					raise ValueError('Unsupported learning rate scheduler\n[supported types: exponential, polynomial, linear]')


			if config.use_warm_up:
				learning_rate = tf.cond(pred=tf.less(global_step, config.burn_in_epochs * (config.train_num // config.train_batch_size)),
					true_fn=lambda: learning_rate_scheduler(config.init_learning_rate, config.warm_up_lr_scheduler, global_step),
					false_fn=lambda: learning_rate_scheduler(config.learning_rate, config.lr_scheduler, global_step, decay_steps=2000))
			else:
				learning_rate = learning_rate_scheduler(config.learning_rate, config.lr_scheduler, global_step=global_step, decay_steps=2000)

			tf.summary.scalar('learning rate', learning_rate, family='Train_Parameters')


		# Define optimizer for minimizing the computed loss
		with tf.name_scope('Optimizer'):
			optimizer = tf.train.MomentumOptimizer(learning_rate=learning_rate, momentum=config.momentum)
			# optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
			# optimizer = tf.train.RMSPropOptimizer(learning_rate=learning_rate, momentum=config.momentum)
			update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
			with tf.control_dependencies(update_ops):
				# grads = optimizer.compute_gradients(loss=loss)
				# gradients = [(tf.placeholder(dtype=tf.float32, shape=grad[1].get_shape()), grad[1]) for grad in grads]
				# train_step = optimizer.apply_gradients(grads_and_vars=gradients, global_step=global_step)
				optimizing_op = optimizer.minimize(loss=loss, global_step=global_step)
			
			with tf.control_dependencies([optimizing_op]):
				with tf.control_dependencies([exponential_moving_average_op]):
					train_op_with_mve = tf.no_op()
			train_op = train_op_with_mve



#################################### Training loop ############################################################
		# A saver object for saving the model
		best_ckpt_saver_train = checkmate.BestCheckpointSaver(save_dir=ckpt_path+'train/', num_to_keep=5)
		best_ckpt_saver_valid = checkmate.BestCheckpointSaver(save_dir=ckpt_path+'valid/', num_to_keep=5)
		summary_op = tf.summary.merge_all()
		summary_op_valid = tf.summary.merge([model_loss_summary_without_learning_rate])
		init_op = tf.global_variables_initializer()


		
		# Defining some train loop dependencies
		gpu_config = tf.ConfigProto(log_device_placement=False)
		gpu_config.gpu_options.allow_growth = True
		sess = tf.Session(config=gpu_config)
		tf.logging.set_verbosity(tf.logging.ERROR)
		train_summary_writer = tf.summary.FileWriter(os.path.join(log_path, 'train'), sess.graph)
		val_summary_writer = tf.summary.FileWriter(os.path.join(log_path, 'val'), sess.graph)

		print(sess.run(receptive_field))
		
		# Restoring the model
		ckpt = tf.train.get_checkpoint_state(ckpt_path+'train/')
		if ckpt and tf.train.checkpoint_exists(ckpt.model_checkpoint_path):
			print('Restoring model ', checkmate.get_best_checkpoint(ckpt_path+'train/'))
			tf.train.Saver().restore(sess, checkmate.get_best_checkpoint(ckpt_path+'train/'))
			print('Model Loaded!')
		else:
			sess.run(init_op)

		print('Uninitialized variables: ', sess.run(tf.report_uninitialized_variables()))


		epochbar = tqdm(range(config.Epoch))
		for epoch in epochbar:
			epochbar.set_description('Epoch %s of %s' % (epoch, config.Epoch))
			mean_loss_train = []
			mean_loss_valid = []

			trainbar = tqdm(range(config.train_num//config.train_batch_size))
			for k in trainbar:

				num_steps, train_summary, loss_train, _ = sess.run([global_step, summary_op, loss,
					train_op], feed_dict={is_training: True, mode: 1})

				train_summary_writer.add_summary(train_summary, epoch)
				train_summary_writer.flush()
				mean_loss_train.append(loss_train)
				trainbar.set_description('Train loss: %s' %str(loss_train))


			print('Validating.....')
			valbar = tqdm(range(config.val_num//config.val_batch_size))
			for k in valbar:
				val_summary, loss_valid = sess.run([summary_op_valid, loss], feed_dict={is_training: False, mode: 0})
				val_summary_writer.add_summary(val_summary, epoch)
				val_summary_writer.flush()
				mean_loss_valid.append(loss_valid)
				valbar.set_description('Validation loss: %s' %str(loss_valid))

			mean_loss_train = np.mean(mean_loss_train)
			mean_loss_valid = np.mean(mean_loss_valid)

			print('\n')
			print('Train loss after %d epochs is: %f' %(epoch+1, mean_loss_train))
			print('Validation loss after %d epochs is: %f' %(epoch+1, mean_loss_valid))
			print('\n\n')

			if (config.use_warm_up):
				if (num_steps > config.burn_in_epochs * (config.train_num // config.train_batch_size)):
					best_ckpt_saver_train.handle(mean_loss_train, sess, global_step)
					best_ckpt_saver_valid.handle(mean_loss_valid, sess, global_step)
				else:
					continue
			else:
				best_ckpt_saver_train.handle(mean_loss_train, sess, global_step)
				best_ckpt_saver_valid.handle(mean_loss_valid, sess, global_step)

		print('Tuning Completed!!')
		train_summary_writer.close()
		val_summary_writer.close()
		sess.close()





def main():
	""" main function which calls all the other required functions for training """
	os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
	os.environ["CUDA_VISIBLE_DEVICES"] = str(config.gpu_num)
	train(config.model_dir, config.logs_dir, config.classes_path)
	os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' 



if __name__ == '__main__':
	main()
def test_harnn():
    """Test HARNN model."""

    # Load data
    logger.info("✔︎ Loading data...")
    logger.info("Recommended padding Sequence length is: {0}".format(
        FLAGS.pad_seq_len))

    logger.info("✔︎ Test data processing...")
    test_data = dh.load_data_and_labels(FLAGS.test_data_file,
                                        FLAGS.num_classes_list,
                                        FLAGS.total_classes,
                                        FLAGS.embedding_dim,
                                        data_aug_flag=False)

    logger.info("✔︎ Test data padding...")
    x_test, y_test, y_test_tuple = dh.pad_data(test_data, FLAGS.pad_seq_len)
    y_test_labels = test_data.labels

    # Load harnn model
    BEST_OR_LATEST = input("☛ Load Best or Latest Model?(B/L): ")

    while not (BEST_OR_LATEST.isalpha()
               and BEST_OR_LATEST.upper() in ['B', 'L']):
        BEST_OR_LATEST = input(
            "✘ The format of your input is illegal, please re-input: ")
    if BEST_OR_LATEST.upper() == 'B':
        logger.info("✔︎ Loading best model...")
        checkpoint_file = cm.get_best_checkpoint(FLAGS.best_checkpoint_dir,
                                                 select_maximum_value=True)
    else:
        logger.info("✔︎ Loading latest model...")
        checkpoint_file = tf.train.latest_checkpoint(FLAGS.checkpoint_dir)
    logger.info(checkpoint_file)

    graph = tf.Graph()
    with graph.as_default():
        session_conf = tf.ConfigProto(
            allow_soft_placement=FLAGS.allow_soft_placement,
            log_device_placement=FLAGS.log_device_placement)
        session_conf.gpu_options.allow_growth = FLAGS.gpu_options_allow_growth
        sess = tf.Session(config=session_conf)
        with sess.as_default():
            # Load the saved meta graph and restore variables
            saver = tf.train.import_meta_graph(
                "{0}.meta".format(checkpoint_file))
            saver.restore(sess, checkpoint_file)

            # Get the placeholders from the graph by name
            input_x = graph.get_operation_by_name("input_x").outputs[0]
            input_y_first = graph.get_operation_by_name(
                "input_y_first").outputs[0]
            input_y_second = graph.get_operation_by_name(
                "input_y_second").outputs[0]
            input_y_third = graph.get_operation_by_name(
                "input_y_third").outputs[0]
            input_y = graph.get_operation_by_name("input_y").outputs[0]
            dropout_keep_prob = graph.get_operation_by_name(
                "dropout_keep_prob").outputs[0]
            beta = graph.get_operation_by_name("beta").outputs[0]
            is_training = graph.get_operation_by_name("is_training").outputs[0]

            # Tensors we want to evaluate
            first_attention = graph.get_operation_by_name(
                "first-attention/attention").outputs[0]
            first_visual = graph.get_operation_by_name(
                "first-output/visual").outputs[0]
            second_visual = graph.get_operation_by_name(
                "second-output/visual").outputs[0]
            third_visual = graph.get_operation_by_name(
                "third-output/visual").outputs[0]
            scores = graph.get_operation_by_name("output/scores").outputs[0]
            loss = graph.get_operation_by_name("loss/loss").outputs[0]

            # Split the output nodes name by '|' if you have several output nodes
            output_node_names = "first-output/scores|second-output/scores|third-output/scores|output/scores"

            # Save the .pb model file
            output_graph_def = tf.graph_util.convert_variables_to_constants(
                sess, sess.graph_def, output_node_names.split("|"))
            tf.train.write_graph(output_graph_def,
                                 "graph",
                                 "graph-harnn-{0}.pb".format(MODEL),
                                 as_text=False)

            # Generate batches for one epoch
            batches = dh.batch_iter(list(
                zip(x_test, y_test, y_test_tuple, y_test_labels)),
                                    FLAGS.batch_size,
                                    1,
                                    shuffle=False)

            test_counter, test_loss = 0, 0.0

            # Collection
            true_labels = []
            predicted_labels = []
            predicted_scores = []

            # Collect for calculating metrics
            true_onehot_labels = []
            predicted_onehot_scores = []
            predicted_onehot_labels_ts = []
            predicted_onehot_labels_tk = [[] for _ in range(FLAGS.top_num)]

            for batch_test in batches:
                x_batch_test, y_batch_test, y_batch_test_tuple, y_batch_test_labels = zip(
                    *batch_test)

                y_batch_test_first = [i[0] for i in y_batch_test_tuple]
                y_batch_test_second = [j[1] for j in y_batch_test_tuple]
                y_batch_test_third = [k[2] for k in y_batch_test_tuple]

                feed_dict = {
                    input_x: x_batch_test,
                    input_y_first: y_batch_test_first,
                    input_y_second: y_batch_test_second,
                    input_y_third: y_batch_test_third,
                    input_y: y_batch_test,
                    dropout_keep_prob: 1.0,
                    beta: FLAGS.beta,
                    is_training: False
                }
                batch_first_attention, batch_first_visual, batch_second_visual, batch_third_visual, batch_scores, cur_loss = \
                    sess.run([first_attention, first_visual, second_visual, third_visual, scores, loss], feed_dict)

                print(batch_first_visual)
                print(batch_first_visual[0])
                print(batch_first_visual[1])
                print(batch_first_visual[0, :15])

                f = open('attention.html', 'w')
                f.write(
                    '<html style="margin:0;padding:0;"><body style="margin:0;padding:0;">\n'
                )

                f.write('<div style="margin:25px;">\n')
                for k in range(len(batch_first_attention[0])):
                    f.write('<p style="margin:10px;">\n')
                    for i in range(len(batch_first_attention[0][0])):
                        alpha = "{:.2f}".format(batch_first_attention[0][k][i])
                        word = x_batch_test[i]
                        f.write(
                            f'\t<span style="margin-left:3px;background-color:rgba(255,0,0,{alpha})">{word}</span>\n'
                        )
                    f.write('</p>\n')
                f.write('</div>\n')
                f.write('</body></html>')
                f.close()

                # Prepare for calculating metrics
                for onehot_labels in y_batch_test:
                    true_onehot_labels.append(onehot_labels)

                for onehot_scores in batch_scores:
                    predicted_onehot_scores.append(onehot_scores)

                # Get the predicted labels by threshold
                batch_predicted_labels_ts, batch_predicted_scores_ts = \
                    dh.get_label_threshold(scores=batch_scores, threshold=FLAGS.threshold)

                # Add results to collection
                for labels in y_batch_test_labels:
                    true_labels.append(labels)
                for labels in batch_predicted_labels_ts:
                    predicted_labels.append(labels)
                for values in batch_predicted_scores_ts:
                    predicted_scores.append(values)

                # Get one-hot prediction by threshold
                batch_predicted_onehot_labels_ts = \
                    dh.get_onehot_label_threshold(scores=batch_scores, threshold=FLAGS.threshold)

                for onehot_labels in batch_predicted_onehot_labels_ts:
                    predicted_onehot_labels_ts.append(onehot_labels)

                # Get one-hot prediction by topK
                for i in range(FLAGS.top_num):
                    batch_predicted_onehot_labels_tk = dh.get_onehot_label_topk(
                        scores=batch_scores, top_num=i + 1)

                    for onehot_labels in batch_predicted_onehot_labels_tk:
                        predicted_onehot_labels_tk[i].append(onehot_labels)

                test_loss = test_loss + cur_loss
                test_counter = test_counter + 1

            # Calculate Precision & Recall & F1
            test_pre_ts = precision_score(
                y_true=np.array(true_onehot_labels),
                y_pred=np.array(predicted_onehot_labels_ts),
                average='micro')

            test_rec_ts = recall_score(
                y_true=np.array(true_onehot_labels),
                y_pred=np.array(predicted_onehot_labels_ts),
                average='micro')

            test_F_ts = f1_score(y_true=np.array(true_onehot_labels),
                                 y_pred=np.array(predicted_onehot_labels_ts),
                                 average='micro')

            # Calculate the average AUC
            test_auc = roc_auc_score(y_true=np.array(true_onehot_labels),
                                     y_score=np.array(predicted_onehot_scores),
                                     average='micro')

            # Calculate the average PR
            test_prc = average_precision_score(
                y_true=np.array(true_onehot_labels),
                y_score=np.array(predicted_onehot_scores),
                average="micro")

            test_loss = float(test_loss / test_counter)

            logger.info(
                "☛ All Test Dataset: Loss {0:g} | AUC {1:g} | AUPRC {2:g}".
                format(test_loss, test_auc, test_prc))
            # Predict by threshold
            logger.info(
                "☛ Predict by threshold: Precision {0:g}, Recall {1:g}, F1 {2:g}"
                .format(test_pre_ts, test_rec_ts, test_F_ts))

            # Save the prediction result
            if not os.path.exists(SAVE_DIR):
                os.makedirs(SAVE_DIR)
            dh.create_prediction_file(output_file=SAVE_DIR +
                                      "/predictions.json",
                                      data_id=test_data.patent_id,
                                      all_labels=true_labels,
                                      all_predict_labels=predicted_labels,
                                      all_predict_scores=predicted_scores)

    logger.info("✔︎ Done.")
def test_fasttext():
    """Test FASTTEXT model."""
    # Print parameters used for the model
    dh.tab_printer(args, logger)

    # Load data
    logger.info("Loading data...")
    logger.info("Data processing...")
    test_data = dh.load_data_and_labels(args.test_file,
                                        args.num_classes,
                                        args.word2vec_file,
                                        data_aug_flag=False)

    logger.info("Data padding...")
    x_test, y_test = dh.pad_data(test_data, args.pad_seq_len)
    y_test_labels = test_data.labels

    # Load fasttext model
    OPTION = dh._option(pattern=1)
    if OPTION == 'B':
        logger.info("Loading best model...")
        checkpoint_file = cm.get_best_checkpoint(BEST_CPT_DIR,
                                                 select_maximum_value=True)
    else:
        logger.info("Loading latest model...")
        checkpoint_file = tf.train.latest_checkpoint(CPT_DIR)
    logger.info(checkpoint_file)

    graph = tf.Graph()
    with graph.as_default():
        session_conf = tf.ConfigProto(
            allow_soft_placement=args.allow_soft_placement,
            log_device_placement=args.log_device_placement)
        session_conf.gpu_options.allow_growth = args.gpu_options_allow_growth
        sess = tf.Session(config=session_conf)
        with sess.as_default():
            # Load the saved meta graph and restore variables
            saver = tf.train.import_meta_graph(
                "{0}.meta".format(checkpoint_file))
            saver.restore(sess, checkpoint_file)

            # Get the placeholders from the graph by name
            input_x = graph.get_operation_by_name("input_x").outputs[0]
            input_y = graph.get_operation_by_name("input_y").outputs[0]
            dropout_keep_prob = graph.get_operation_by_name(
                "dropout_keep_prob").outputs[0]
            is_training = graph.get_operation_by_name("is_training").outputs[0]

            # Tensors we want to evaluate
            scores = graph.get_operation_by_name("output/scores").outputs[0]
            loss = graph.get_operation_by_name("loss/loss").outputs[0]

            # Split the output nodes name by '|' if you have several output nodes
            output_node_names = "output/scores"

            # Save the .pb model file
            output_graph_def = tf.graph_util.convert_variables_to_constants(
                sess, sess.graph_def, output_node_names.split("|"))
            tf.train.write_graph(output_graph_def,
                                 "graph",
                                 "graph-fasttext-{0}.pb".format(MODEL),
                                 as_text=False)

            # Generate batches for one epoch
            batches = dh.batch_iter(list(zip(x_test, y_test, y_test_labels)),
                                    args.batch_size,
                                    1,
                                    shuffle=False)

            test_counter, test_loss = 0, 0.0

            test_pre_tk = [0.0] * args.topK
            test_rec_tk = [0.0] * args.topK
            test_F1_tk = [0.0] * args.topK

            # Collect the predictions here
            true_labels = []
            predicted_labels = []
            predicted_scores = []

            # Collect for calculating metrics
            true_onehot_labels = []
            predicted_onehot_scores = []
            predicted_onehot_labels_ts = []
            predicted_onehot_labels_tk = [[] for _ in range(args.topK)]

            for batch_test in batches:
                x_batch_test, y_batch_test, y_batch_test_labels = zip(
                    *batch_test)
                feed_dict = {
                    input_x: x_batch_test,
                    input_y: y_batch_test,
                    dropout_keep_prob: 1.0,
                    is_training: False
                }
                batch_scores, cur_loss = sess.run([scores, loss], feed_dict)

                # Prepare for calculating metrics
                for i in y_batch_test:
                    true_onehot_labels.append(i)
                for j in batch_scores:
                    predicted_onehot_scores.append(j)

                # Get the predicted labels by threshold
                batch_predicted_labels_ts, batch_predicted_scores_ts = \
                    dh.get_label_threshold(scores=batch_scores, threshold=args.threshold)

                # Add results to collection
                for i in y_batch_test_labels:
                    true_labels.append(i)
                for j in batch_predicted_labels_ts:
                    predicted_labels.append(j)
                for k in batch_predicted_scores_ts:
                    predicted_scores.append(k)

                # Get onehot predictions by threshold
                batch_predicted_onehot_labels_ts = \
                    dh.get_onehot_label_threshold(scores=batch_scores, threshold=args.threshold)
                for i in batch_predicted_onehot_labels_ts:
                    predicted_onehot_labels_ts.append(i)

                # Get onehot predictions by topK
                for top_num in range(args.topK):
                    batch_predicted_onehot_labels_tk = dh.get_onehot_label_topk(
                        scores=batch_scores, top_num=top_num + 1)

                    for i in batch_predicted_onehot_labels_tk:
                        predicted_onehot_labels_tk[top_num].append(i)

                test_loss = test_loss + cur_loss
                test_counter = test_counter + 1

            # Calculate Precision & Recall & F1
            test_pre_ts = precision_score(
                y_true=np.array(true_onehot_labels),
                y_pred=np.array(predicted_onehot_labels_ts),
                average='micro')
            test_rec_ts = recall_score(
                y_true=np.array(true_onehot_labels),
                y_pred=np.array(predicted_onehot_labels_ts),
                average='micro')
            test_F1_ts = f1_score(y_true=np.array(true_onehot_labels),
                                  y_pred=np.array(predicted_onehot_labels_ts),
                                  average='micro')

            for top_num in range(args.topK):
                test_pre_tk[top_num] = precision_score(
                    y_true=np.array(true_onehot_labels),
                    y_pred=np.array(predicted_onehot_labels_tk[top_num]),
                    average='micro')
                test_rec_tk[top_num] = recall_score(
                    y_true=np.array(true_onehot_labels),
                    y_pred=np.array(predicted_onehot_labels_tk[top_num]),
                    average='micro')
                test_F1_tk[top_num] = f1_score(
                    y_true=np.array(true_onehot_labels),
                    y_pred=np.array(predicted_onehot_labels_tk[top_num]),
                    average='micro')

            # Calculate the average AUC
            test_auc = roc_auc_score(y_true=np.array(true_onehot_labels),
                                     y_score=np.array(predicted_onehot_scores),
                                     average='micro')

            # Calculate the average PR
            test_prc = average_precision_score(
                y_true=np.array(true_onehot_labels),
                y_score=np.array(predicted_onehot_scores),
                average="micro")
            test_loss = float(test_loss / test_counter)

            logger.info(
                "All Test Dataset: Loss {0:g} | AUC {1:g} | AUPRC {2:g}".
                format(test_loss, test_auc, test_prc))

            # Predict by threshold
            logger.info(
                "Predict by threshold: Precision {0:g}, Recall {1:g}, F1 {2:g}"
                .format(test_pre_ts, test_rec_ts, test_F1_ts))

            # Predict by topK
            logger.info("Predict by topK:")
            for top_num in range(args.topK):
                logger.info(
                    "Top{0}: Precision {1:g}, Recall {2:g}, F1 {3:g}".format(
                        top_num + 1, test_pre_tk[top_num],
                        test_rec_tk[top_num], test_F1_tk[top_num]))

            # Save the prediction result
            if not os.path.exists(SAVE_DIR):
                os.makedirs(SAVE_DIR)
            dh.create_prediction_file(output_file=SAVE_DIR +
                                      "/predictions.json",
                                      data_id=test_data.testid,
                                      all_labels=true_labels,
                                      all_predict_labels=predicted_labels,
                                      all_predict_scores=predicted_scores)

    logger.info("All Done.")
def visualize():
    """visualize HARNN model."""

    # Load data
    logger.info("✔︎ Loading data...")
    logger.info("Recommended padding Sequence length is: {0}".format(FLAGS.pad_seq_len))

    logger.info("✔︎ Test data processing...")
    test_data = dh.load_data_and_labels(FLAGS.test_data_file, FLAGS.num_classes_list, FLAGS.total_classes,
                                        FLAGS.embedding_dim, data_aug_flag=False)

    logger.info("✔︎ Test data padding...")
    x_test, y_test, y_test_tuple = dh.pad_data(test_data, FLAGS.pad_seq_len)
    x_test_content, y_test_labels = test_data.abstract_content, test_data.labels

    # Load harnn model
    BEST_OR_LATEST = input("☛ Load Best or Latest Model?(B/L): ")

    while not (BEST_OR_LATEST.isalpha() and BEST_OR_LATEST.upper() in ['B', 'L']):
        BEST_OR_LATEST = input("✘ The format of your input is illegal, please re-input: ")
    if BEST_OR_LATEST.upper() == 'B':
        logger.info("✔︎ Loading best model...")
        checkpoint_file = cm.get_best_checkpoint(FLAGS.best_checkpoint_dir, select_maximum_value=True)
    else:
        logger.info("✔︎ Loading latest model...")
        checkpoint_file = tf.train.latest_checkpoint(FLAGS.checkpoint_dir)
    logger.info(checkpoint_file)

    graph = tf.Graph()
    with graph.as_default():
        session_conf = tf.ConfigProto(
            allow_soft_placement=FLAGS.allow_soft_placement,
            log_device_placement=FLAGS.log_device_placement)
        session_conf.gpu_options.allow_growth = FLAGS.gpu_options_allow_growth
        sess = tf.Session(config=session_conf)
        with sess.as_default():
            # Load the saved meta graph and restore variables
            saver = tf.train.import_meta_graph("{0}.meta".format(checkpoint_file))
            saver.restore(sess, checkpoint_file)

            # Get the placeholders from the graph by name
            input_x = graph.get_operation_by_name("input_x").outputs[0]
            input_y_first = graph.get_operation_by_name("input_y_first").outputs[0]
            input_y_second = graph.get_operation_by_name("input_y_second").outputs[0]
            input_y_third = graph.get_operation_by_name("input_y_third").outputs[0]
            input_y = graph.get_operation_by_name("input_y").outputs[0]
            dropout_keep_prob = graph.get_operation_by_name("dropout_keep_prob").outputs[0]
            beta = graph.get_operation_by_name("beta").outputs[0]
            is_training = graph.get_operation_by_name("is_training").outputs[0]

            # Tensors we want to evaluate
            first_visual = graph.get_operation_by_name("first-output/visual").outputs[0]
            second_visual = graph.get_operation_by_name("second-output/visual").outputs[0]
            third_visual = graph.get_operation_by_name("third-output/visual").outputs[0]
            scores = graph.get_operation_by_name("output/scores").outputs[0]

            # Split the output nodes name by '|' if you have several output nodes
            output_node_names = "first-output/visual|second-output/visual|third-output/visual|output/scores"

            # Save the .pb model file
            output_graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def,
                                                                            output_node_names.split("|"))
            tf.train.write_graph(output_graph_def, "graph", "graph-harnn-{0}.pb".format(MODEL), as_text=False)

            # Generate batches for one epoch
            batches = dh.batch_iter(list(zip(x_test, y_test, y_test_tuple, x_test_content, y_test_labels)),
                                    FLAGS.batch_size, 1, shuffle=False)

            for batch_test in batches:
                x_batch_test, y_batch_test, y_batch_test_tuple, \
                x_batch_test_content, y_batch_test_labels = zip(*batch_test)

                y_batch_test_first = [i[0] for i in y_batch_test_tuple]
                y_batch_test_second = [j[1] for j in y_batch_test_tuple]
                y_batch_test_third = [k[2] for k in y_batch_test_tuple]

                feed_dict = {
                    input_x: x_batch_test,
                    input_y_first: y_batch_test_first,
                    input_y_second: y_batch_test_second,
                    input_y_third: y_batch_test_third,
                    input_y: y_batch_test,
                    dropout_keep_prob: 1.0,
                    beta: FLAGS.beta,
                    is_training: False
                }
                batch_first_visual, batch_second_visual, batch_third_visual, batch_scores = \
                    sess.run([first_visual, second_visual, third_visual, scores], feed_dict)

                seq_len = len(x_batch_test_content[0])
                pad_len = len(batch_first_visual[0])

                if seq_len >= pad_len:
                    length = pad_len
                else:
                    length = seq_len

                # print(seq_len, pad_len, length)
                final_first_visual = normalization(batch_first_visual[0].tolist(), length)
                final_second_visual = normalization(batch_second_visual[0].tolist(), length)
                final_third_visual = normalization(batch_third_visual[0].tolist(), length)

                visual_list = [final_first_visual, final_second_visual, final_third_visual]
                print(visual_list)

                f = open('attention.html', 'w')
                f.write('<html style="margin:0;padding:0;"><body style="margin:0;padding:0;">\n')
                f.write('<div style="margin:25px;">\n')
                for k in range(len(visual_list)):
                    f.write('<p style="margin:10px;">\n')
                    for i in range(seq_len):
                        alpha = "{:.2f}".format(visual_list[k][i])
                        word = x_batch_test_content[0][i]
                        f.write('\t<span style="margin-left:3px;background-color:rgba(255,0,0,{0})">{1}</span>\n'
                                .format(alpha, word))
                    f.write('</p>\n')
                f.write('</div>\n')
                f.write('</body></html>')
                f.close()

    logger.info("✔︎ Done.")
Пример #19
0
def visualize():
    """Visualize HARNN model."""

    # Load data
    logger.info("Loading data...")
    logger.info("Data processing...")
    test_data = dh.load_data_and_labels(args.test_file,
                                        args.num_classes_list,
                                        args.total_classes,
                                        args.word2vec_file,
                                        data_aug_flag=False)

    logger.info("Data padding...")
    x_test, y_test, y_test_tuple = dh.pad_data(test_data, args.pad_seq_len)
    x_test_content, y_test_labels = test_data.abstract_content, test_data.labels

    # Load harnn model
    OPTION = dh._option(pattern=1)
    if OPTION == 'B':
        logger.info("Loading best model...")
        checkpoint_file = cm.get_best_checkpoint(BEST_CPT_DIR,
                                                 select_maximum_value=True)
    else:
        logger.info("Loading latest model...")
        checkpoint_file = tf.train.latest_checkpoint(CPT_DIR)
    logger.info(checkpoint_file)

    graph = tf.Graph()
    with graph.as_default():
        session_conf = tf.ConfigProto(
            allow_soft_placement=args.allow_soft_placement,
            log_device_placement=args.log_device_placement)
        session_conf.gpu_options.allow_growth = args.gpu_options_allow_growth
        sess = tf.Session(config=session_conf)
        with sess.as_default():
            # Load the saved meta graph and restore variables
            saver = tf.train.import_meta_graph(
                "{0}.meta".format(checkpoint_file))
            saver.restore(sess, checkpoint_file)

            # Get the placeholders from the graph by name
            input_x = graph.get_operation_by_name("input_x").outputs[0]
            input_y_first = graph.get_operation_by_name(
                "input_y_first").outputs[0]
            input_y_second = graph.get_operation_by_name(
                "input_y_second").outputs[0]
            input_y_third = graph.get_operation_by_name(
                "input_y_third").outputs[0]
            input_y_fourth = graph.get_operation_by_name(
                "input_y_fourth").outputs[0]
            input_y = graph.get_operation_by_name("input_y").outputs[0]
            dropout_keep_prob = graph.get_operation_by_name(
                "dropout_keep_prob").outputs[0]
            alpha = graph.get_operation_by_name("alpha").outputs[0]
            is_training = graph.get_operation_by_name("is_training").outputs[0]

            # Tensors we want to evaluate
            first_visual = graph.get_operation_by_name(
                "first-output/visual").outputs[0]
            second_visual = graph.get_operation_by_name(
                "second-output/visual").outputs[0]
            third_visual = graph.get_operation_by_name(
                "third-output/visual").outputs[0]
            fourth_visual = graph.get_operation_by_name(
                "fourth-output/visual").outputs[0]
            scores = graph.get_operation_by_name("output/scores").outputs[0]

            # Split the output nodes name by '|' if you have several output nodes
            output_node_names = "first-output/visual|second-output/visual|third-output/visual|fourth-output/visual|output/scores"

            # Save the .pb model file
            output_graph_def = tf.graph_util.convert_variables_to_constants(
                sess, sess.graph_def, output_node_names.split("|"))
            tf.train.write_graph(output_graph_def,
                                 "graph",
                                 "graph-harnn-{0}.pb".format(MODEL),
                                 as_text=False)

            # Generate batches for one epoch
            batches = dh.batch_iter(list(
                zip(x_test, y_test, y_test_tuple, x_test_content,
                    y_test_labels)),
                                    args.batch_size,
                                    1,
                                    shuffle=False)

            for batch_test in batches:
                x_batch_test, y_batch_test, y_batch_test_tuple, \
                x_batch_test_content, y_batch_test_labels = zip(*batch_test)

                y_batch_test_first = [i[0] for i in y_batch_test_tuple]
                y_batch_test_second = [j[1] for j in y_batch_test_tuple]
                y_batch_test_third = [k[2] for k in y_batch_test_tuple]
                y_batch_test_fourth = [t[3] for t in y_batch_test_tuple]

                feed_dict = {
                    input_x: x_batch_test,
                    input_y_first: y_batch_test_first,
                    input_y_second: y_batch_test_second,
                    input_y_third: y_batch_test_third,
                    input_y_fourth: y_batch_test_fourth,
                    input_y: y_batch_test,
                    dropout_keep_prob: 1.0,
                    alpha: args.alpha,
                    is_training: False
                }
                batch_first_visual, batch_second_visual, batch_third_visual, batch_fourth_visual = \
                    sess.run([first_visual, second_visual, third_visual, fourth_visual], feed_dict)

                seq_len = len(x_batch_test_content[0])
                pad_len = len(batch_first_visual[0])
                length = (pad_len if seq_len >= pad_len else seq_len)

                # print(seq_len, pad_len, length)
                final_first_visual = normalization(
                    batch_first_visual[0].tolist(), length)
                final_second_visual = normalization(
                    batch_second_visual[0].tolist(), length)
                final_third_visual = normalization(
                    batch_third_visual[0].tolist(), length)
                final_fourth_visual = normalization(
                    batch_fourth_visual[0].tolist(), length)

                visual_list = [
                    final_first_visual, final_second_visual,
                    final_third_visual, final_fourth_visual
                ]
                print(visual_list)

                f = open('attention.html', 'w')
                f.write(
                    '<html style="margin:0;padding:0;"><body style="margin:0;padding:0;">\n'
                )
                f.write('<div style="margin:25px;">\n')
                for k in range(len(visual_list)):
                    f.write('<p style="margin:10px;">\n')
                    for i in range(seq_len):
                        alpha = "{:.2f}".format(visual_list[k][i])
                        word = x_batch_test_content[0][i]
                        f.write(
                            '\t<span style="margin-left:3px;background-color:rgba(255,0,0,{0})">{1}</span>\n'
                            .format(alpha, word))
                    f.write('</p>\n')
                f.write('</div>\n')
                f.write('</body></html>')
                f.close()

    logger.info("Done.")
def test_rmidp():
    """Test RMIDP model."""
    # Print parameters used for the model
    dh.tab_printer(args, logger)

    # Load data
    logger.info("Loading data...")
    logger.info("Data processing...")
    test_data = dh.load_data_and_labels(args.test_file, args.word2vec_file, data_aug_flag=False)

    logger.info("Data padding...")
    x_test_content, x_test_question, x_test_option, y_test = dh.pad_data(test_data, args.pad_seq_len)

    # Load rmidp model
    OPTION = dh.option(pattern=1)
    if OPTION == 'B':
        logger.info("Loading best model...")
        checkpoint_file = cm.get_best_checkpoint(BEST_CPT_DIR, select_maximum_value=True)
    else:
        logger.info("Loading latest model...")
        checkpoint_file = tf.train.latest_checkpoint(CPT_DIR)
    logger.info(checkpoint_file)

    graph = tf.Graph()
    with graph.as_default():
        session_conf = tf.ConfigProto(
            allow_soft_placement=args.allow_soft_placement,
            log_device_placement=args.log_device_placement)
        session_conf.gpu_options.allow_growth = args.gpu_options_allow_growth
        sess = tf.Session(config=session_conf)
        with sess.as_default():
            # Load the saved meta graph and restore variables
            saver = tf.train.import_meta_graph("{0}.meta".format(checkpoint_file))
            saver.restore(sess, checkpoint_file)

            # Get the placeholders from the graph by name
            input_x_content = graph.get_operation_by_name("input_x_content").outputs[0]
            input_x_question = graph.get_operation_by_name("input_x_question").outputs[0]
            input_x_option = graph.get_operation_by_name("input_x_option").outputs[0]
            input_y = graph.get_operation_by_name("input_y").outputs[0]
            dropout_keep_prob = graph.get_operation_by_name("dropout_keep_prob").outputs[0]
            is_training = graph.get_operation_by_name("is_training").outputs[0]

            # Tensors we want to evaluate
            scores = graph.get_operation_by_name("output/scores").outputs[0]
            loss = graph.get_operation_by_name("loss/loss").outputs[0]

            # Split the output nodes name by '|' if you have several output nodes
            output_node_names = "output/scores"

            # Save the .pb model file
            output_graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def,
                                                                            output_node_names.split("|"))
            tf.train.write_graph(output_graph_def, "graph", "graph-rmidp-{0}.pb".format(MODEL), as_text=False)

            # Generate batches for one epoch
            batches = dh.batch_iter(list(zip(x_test_content, x_test_question, x_test_option, y_test)),
                                    args.batch_size, 1, shuffle=False)

            test_counter, test_loss = 0, 0.0

            # Collect the predictions here
            true_labels = []
            predicted_scores = []

            for batch_test in batches:
                x_batch_content, x_batch_question, x_batch_option, y_batch = zip(*batch_test)
                feed_dict = {
                    input_x_content: x_batch_content,
                    input_x_question: x_batch_question,
                    input_x_option: x_batch_option,
                    input_y: y_batch,
                    dropout_keep_prob: 1.0,
                    is_training: False
                }
                batch_scores, cur_loss = sess.run([scores, loss], feed_dict)

                # Prepare for calculating metrics
                for i in y_batch:
                    true_labels.append(i)
                for j in batch_scores:
                    predicted_scores.append(j)

                test_loss = test_loss + cur_loss
                test_counter = test_counter + 1

            # Calculate PCC & DOA
            pcc, doa = dh.evaluation(true_labels, predicted_scores)
            # Calculate RMSE
            rmse = mean_squared_error(true_labels, predicted_scores) ** 0.5
            r2 = r2_score(true_labels, predicted_scores)

            test_loss = float(test_loss / test_counter)

            logger.info("All Test Dataset: Loss {0:g} | PCC {1:g} | DOA {2:g} | RMSE {3:g} | R2 {4:g}"
                        .format(test_loss, pcc, doa, rmse, r2))

            # Save the prediction result
            if not os.path.exists(SAVE_DIR):
                os.makedirs(SAVE_DIR)
            dh.create_prediction_file(output_file=SAVE_DIR + "/predictions.json", all_id=test_data.id,
                                      all_labels=true_labels, all_predict_scores=predicted_scores)

    logger.info("All Done.")
Пример #21
0
def test():

    # Load data
    logger.info("Loading data...")

    logger.info("Training data processing...")

    test_students, test_max_num_problems, test_max_skill_num = dh.read_test_data_from_csv_file(
        FLAGS.test_data_file)
    max_num_steps = test_max_num_problems
    max_num_skills = test_max_skill_num

    # Load rnn model
    BEST_OR_LATEST = input("Load Best or Latest Model?(B/L): ")

    while not (BEST_OR_LATEST.isalpha()
               and BEST_OR_LATEST.upper() in ['B', 'L']):
        BEST_OR_LATEST = input(
            "he format of your input is illegal, please re-input: ")
    if BEST_OR_LATEST == 'B':
        logger.info("Loading best model...")
        checkpoint_file = cm.get_best_checkpoint(FLAGS.best_checkpoint_dir,
                                                 select_maximum_value=True)
    if BEST_OR_LATEST == 'L':
        logger.info("latest")
        checkpoint_file = tf.train.latest_checkpoint(FLAGS.checkpoint_dir)
    logger.info(checkpoint_file)

    graph = tf.Graph()
    with graph.as_default():
        session_conf = tf.ConfigProto(
            allow_soft_placement=FLAGS.allow_soft_placement,
            log_device_placement=FLAGS.log_device_placement)
        session_conf.gpu_options.allow_growth = FLAGS.gpu_options_allow_growth
        sess = tf.Session(config=session_conf)
        with sess.as_default():
            # Load the saved meta graph and restore variables
            saver = tf.train.import_meta_graph(
                "{0}.meta".format(checkpoint_file))
            saver.restore(sess, checkpoint_file)

            # Get the placeholders from the graph by name
            input_data = graph.get_operation_by_name("input_data").outputs[0]
            input_skill = graph.get_operation_by_name("input_skill").outputs[0]
            l = graph.get_operation_by_name("l").outputs[0]
            next_id = graph.get_operation_by_name("next_id").outputs[0]
            target_id = graph.get_operation_by_name("target_id").outputs[0]
            target_correctness = graph.get_operation_by_name(
                "target_correctness").outputs[0]
            target_id2 = graph.get_operation_by_name("target_id2").outputs[0]
            target_correctness2 = graph.get_operation_by_name(
                "target_correctness2").outputs[0]
            dropout_keep_prob = graph.get_operation_by_name(
                "dropout_keep_prob").outputs[0]
            is_training = graph.get_operation_by_name("is_training").outputs[0]
            skill = graph.get_operation_by_name("skill_w").outputs[0]
            states = graph.get_operation_by_name("states").outputs[0]
            pred = graph.get_operation_by_name("pred").outputs[0]

            data_size = len(test_students)
            index = 0
            actual_labels = []
            pred_labels = []
            while (index + FLAGS.batch_size < data_size):
                x = np.zeros((FLAGS.batch_size, max_num_steps))
                xx = np.zeros((FLAGS.batch_size, max_num_steps))
                next_id_b = np.zeros((FLAGS.batch_size, max_num_steps))
                l_b = np.ones(
                    (FLAGS.batch_size, max_num_steps, max_num_skills))
                target_id_b = []
                target_correctness_b = []
                target_id2_b = []
                target_correctness2_b = []

                for i in range(FLAGS.batch_size):
                    student = test_students[index + i]
                    problem_ids = student[1]
                    correctness = student[2]
                    leng = len(problem_ids)

                    correct_num = np.zeros(max_num_skills)
                    answer_count = np.ones(max_num_skills)
                    for j in range(len(problem_ids) - 1):
                        problem_id = int(problem_ids[j])

                        if (int(correctness[j]) == 0):
                            x[i, j] = problem_id + max_num_skills
                        else:
                            x[i, j] = problem_id
                            correct_num[problem_id] += 1
                        l_b[i, j] = correct_num / answer_count
                        answer_count[problem_id] += 1
                        xx[i, j] = problem_id
                        next_id_b[i, j] = int(problem_ids[j + 1])

                        target_id_b.append(i * max_num_steps + j)
                        target_correctness_b.append(int(correctness[j + 1]))
                        actual_labels.append(int(correctness[j + 1]))
                    target_id2_b.append(i * max_num_steps + j)
                    target_correctness2_b.append(int(correctness[j + 1]))

                index += FLAGS.batch_size

                feed_dict = {
                    input_data: x,
                    input_skill: xx,
                    l: l_b,
                    next_id: next_id_b,
                    target_id: target_id_b,
                    target_correctness: target_correctness_b,
                    target_id2: target_id2_b,
                    target_correctness2: target_correctness2_b,
                    dropout_keep_prob: 1.0,
                    is_training: False
                }
                '''
                skill_b = sess.run([skill], feed_dict)
                print(np.shape(skill_b))
                item = skill_b[0]
                with open('skill_2009.txt', 'a')as fi:
                    for temp in item:
                        for iii in temp:
                            fi.write(str(iii) + ',')
                        fi.write('\n')
                break
                '''
                pred_b, state = sess.run([pred, states], feed_dict)
                print(np.shape(state))
                print(np.shape(pred_b))
                state = np.squeeze(state, axis=0)
                state = state[:leng]

                if leng > 50 and leng < 100:
                    writer = csv.writer(open('state.csv', 'a', newline=''))
                    writer.writerow([len(problem_ids)])
                    writer.writerow(student[1])
                    writer.writerow(student[2])
                    writer.writerow(state)
                    writer.writerow('\n')
                for p in pred_b:
                    pred_labels.append(p)
            rmse = sqrt(mean_squared_error(actual_labels, pred_labels))
            fpr, tpr, thresholds = metrics.roc_curve(actual_labels,
                                                     pred_labels,
                                                     pos_label=1)
            auc = metrics.auc(fpr, tpr)
            #calculate r^2
            r2 = r2_score(actual_labels, pred_labels)
            print("epochs {0}: rmse {1:g}  auc {2:g}  r2 {3:g} ".format(
                1, rmse, auc, r2))
            logger.info("epochs {0}: rmse {1:g}  auc {2:g}  r2 {3:g} ".format(
                1, rmse, auc, r2))

    logger.info("Done.")
Пример #22
0
def test_cnn():
    """Test CNN model."""
    # Print parameters used for the model
    dh.tab_printer(args, logger)

    # Load word2vec model
    word2idx, embedding_matrix = dh.load_word2vec_matrix(args.word2vec_file)

    # Load data
    logger.info("Loading data...")
    logger.info("Data processing...")
    test_data = dh.load_data_and_labels(args, args.test_file, word2idx)

    # Load cnn model
    OPTION = dh._option(pattern=1)
    if OPTION == 'B':
        logger.info("Loading best model...")
        checkpoint_file = cm.get_best_checkpoint(BEST_CPT_DIR, select_maximum_value=True)
    else:
        logger.info("Loading latest model...")
        checkpoint_file = tf.train.latest_checkpoint(CPT_DIR)
    logger.info(checkpoint_file)

    graph = tf.Graph()
    with graph.as_default():
        session_conf = tf.ConfigProto(
            allow_soft_placement=args.allow_soft_placement,
            log_device_placement=args.log_device_placement)
        session_conf.gpu_options.allow_growth = args.gpu_options_allow_growth
        sess = tf.Session(config=session_conf)
        with sess.as_default():
            # Load the saved meta graph and restore variables
            saver = tf.train.import_meta_graph("{0}.meta".format(checkpoint_file))
            saver.restore(sess, checkpoint_file)

            # Get the placeholders from the graph by name
            input_x_front = graph.get_operation_by_name("input_x_front").outputs[0]
            input_x_behind = graph.get_operation_by_name("input_x_behind").outputs[0]
            input_y = graph.get_operation_by_name("input_y").outputs[0]
            dropout_keep_prob = graph.get_operation_by_name("dropout_keep_prob").outputs[0]
            is_training = graph.get_operation_by_name("is_training").outputs[0]

            # Tensors we want to evaluate
            scores = graph.get_operation_by_name("output/topKPreds").outputs[0]
            predictions = graph.get_operation_by_name("output/topKPreds").outputs[1]
            loss = graph.get_operation_by_name("loss/loss").outputs[0]

            # Split the output nodes name by '|' if you have several output nodes
            output_node_names = "output/topKPreds"

            # Save the .pb model file
            output_graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def,
                                                                            output_node_names.split("|"))
            tf.train.write_graph(output_graph_def, "graph", "graph-cnn-{0}.pb".format(MODEL), as_text=False)

            # Generate batches for one epoch
            batches_test = dh.batch_iter(list(create_input_data(test_data)), args.batch_size, 1, shuffle=False)

            # Collect the predictions here
            test_counter, test_loss = 0, 0.0
            true_labels = []
            predicted_labels = []
            predicted_scores = []

            for batch_test in batches_test:
                x_f, x_b, y_onehot = zip(*batch_test)
                feed_dict = {
                    input_x_front: x_f,
                    input_x_behind: x_b,
                    input_y: y_onehot,
                    dropout_keep_prob: 1.0,
                    is_training: False
                }

                batch_predicted_scores, batch_predicted_labels, batch_loss \
                    = sess.run([scores, predictions, loss], feed_dict)

                for i in y_onehot:
                    true_labels.append(np.argmax(i))
                for j in batch_predicted_scores:
                    predicted_scores.append(j[0])
                for k in batch_predicted_labels:
                    predicted_labels.append(k[0])

                test_loss = test_loss + batch_loss
                test_counter = test_counter + 1

            test_loss = float(test_loss / test_counter)

            # Calculate Precision & Recall & F1
            test_acc = accuracy_score(y_true=np.array(true_labels), y_pred=np.array(predicted_labels))
            test_pre = precision_score(y_true=np.array(true_labels),
                                       y_pred=np.array(predicted_labels), average='micro')
            test_rec = recall_score(y_true=np.array(true_labels),
                                    y_pred=np.array(predicted_labels), average='micro')
            test_F1 = f1_score(y_true=np.array(true_labels),
                               y_pred=np.array(predicted_labels), average='micro')

            # Calculate the average AUC
            test_auc = roc_auc_score(y_true=np.array(true_labels),
                                     y_score=np.array(predicted_scores), average='micro')

            logger.info("All Test Dataset: Loss {0:g} | Acc {1:g} | Precision {2:g} | "
                        "Recall {3:g} | F1 {4:g} | AUC {5:g}"
                        .format(test_loss, test_acc, test_pre, test_rec, test_F1, test_auc))

            # Save the prediction result
            if not os.path.exists(SAVE_DIR):
                os.makedirs(SAVE_DIR)
            dh.create_prediction_file(output_file=SAVE_DIR + "/predictions.json", front_data_id=test_data['f_id'],
                                      behind_data_id=test_data['b_id'], true_labels=true_labels,
                                      predict_labels=predicted_labels, predict_scores=predicted_scores)

    logger.info("All Done.")
Пример #23
0
def test_harnn():
    """Test HARNN model."""
    # Print parameters used for the model
    dh.tab_printer(args, logger)

    # Load word2vec model
    word2idx, embedding_matrix = dh.load_word2vec_matrix(args.word2vec_file)

    # Load data
    logger.info("Loading data...")
    logger.info("Data processing...")
    test_data = dh.load_data_and_labels(args, args.test_file, word2idx)

    # Load harnn model
    OPTION = dh._option(pattern=1)
    if OPTION == 'B':
        logger.info("Loading best model...")
        checkpoint_file = cm.get_best_checkpoint(BEST_CPT_DIR,
                                                 select_maximum_value=True)
    else:
        logger.info("Loading latest model...")
        checkpoint_file = tf.train.latest_checkpoint(CPT_DIR)
    logger.info(checkpoint_file)

    graph = tf.Graph()
    with graph.as_default():
        session_conf = tf.ConfigProto(
            allow_soft_placement=args.allow_soft_placement,
            log_device_placement=args.log_device_placement)
        session_conf.gpu_options.allow_growth = args.gpu_options_allow_growth
        sess = tf.Session(config=session_conf)
        with sess.as_default():
            # Load the saved meta graph and restore variables
            saver = tf.train.import_meta_graph(
                "{0}.meta".format(checkpoint_file))
            saver.restore(sess, checkpoint_file)

            # Get the placeholders from the graph by name
            input_x = graph.get_operation_by_name("input_x").outputs[0]
            input_y_first = graph.get_operation_by_name(
                "input_y_first").outputs[0]
            input_y_second = graph.get_operation_by_name(
                "input_y_second").outputs[0]
            input_y_third = graph.get_operation_by_name(
                "input_y_third").outputs[0]
            input_y_fourth = graph.get_operation_by_name(
                "input_y_fourth").outputs[0]
            input_y = graph.get_operation_by_name("input_y").outputs[0]
            dropout_keep_prob = graph.get_operation_by_name(
                "dropout_keep_prob").outputs[0]
            alpha = graph.get_operation_by_name("alpha").outputs[0]
            is_training = graph.get_operation_by_name("is_training").outputs[0]

            # Tensors we want to evaluate
            first_scores = graph.get_operation_by_name(
                "first-output/scores").outputs[0]
            second_scores = graph.get_operation_by_name(
                "second-output/scores").outputs[0]
            third_scores = graph.get_operation_by_name(
                "third-output/scores").outputs[0]
            fourth_scores = graph.get_operation_by_name(
                "fourth-output/scores").outputs[0]
            scores = graph.get_operation_by_name("output/scores").outputs[0]

            # Split the output nodes name by '|' if you have several output nodes
            output_node_names = "first-output/scores|second-output/scores|third-output/scores|fourth-output/scores|output/scores"

            # Save the .pb model file
            output_graph_def = tf.graph_util.convert_variables_to_constants(
                sess, sess.graph_def, output_node_names.split("|"))
            tf.train.write_graph(output_graph_def,
                                 "graph",
                                 "graph-harnn-{0}.pb".format(MODEL),
                                 as_text=False)

            # Generate batches for one epoch
            batches = dh.batch_iter(list(create_input_data(test_data)),
                                    args.batch_size,
                                    1,
                                    shuffle=False)

            # Collect the predictions here
            true_labels = []
            predicted_labels = []
            predicted_scores = []

            # Collect for calculating metrics
            true_onehot_labels = [[], [], [], [], []]
            predicted_onehot_scores = [[], [], [], [], []]
            predicted_onehot_labels = [[], [], [], [], []]

            for batch_test in batches:
                x, sec, subsec, group, subgroup, y_onehot, y = zip(*batch_test)

                y_batch_test_list = [y_onehot, sec, subsec, group, subgroup]

                feed_dict = {
                    input_x: x,
                    input_y_first: sec,
                    input_y_second: subsec,
                    input_y_third: group,
                    input_y_fourth: subgroup,
                    input_y: y_onehot,
                    dropout_keep_prob: 1.0,
                    alpha: args.alpha,
                    is_training: False
                }
                batch_global_scores, batch_first_scores, batch_second_scores, batch_third_scores, batch_fourth_scores = \
                    sess.run([scores, first_scores, second_scores, third_scores, fourth_scores], feed_dict)

                batch_scores = [
                    batch_global_scores, batch_first_scores,
                    batch_second_scores, batch_third_scores,
                    batch_fourth_scores
                ]

                # Get the predicted labels by threshold
                batch_predicted_labels_ts, batch_predicted_scores_ts = \
                    dh.get_label_threshold(scores=batch_scores[0], threshold=args.threshold)

                # Add results to collection
                for labels in y:
                    true_labels.append(labels)
                for labels in batch_predicted_labels_ts:
                    predicted_labels.append(labels)
                for values in batch_predicted_scores_ts:
                    predicted_scores.append(values)

                for index in range(len(predicted_onehot_scores)):
                    for onehot_labels in y_batch_test_list[index]:
                        true_onehot_labels[index].append(onehot_labels)
                    for onehot_scores in batch_scores[index]:
                        predicted_onehot_scores[index].append(onehot_scores)
                    # Get one-hot prediction by threshold
                    predicted_onehot_labels_ts = \
                        dh.get_onehot_label_threshold(scores=batch_scores[index], threshold=args.threshold)
                    for onehot_labels in predicted_onehot_labels_ts:
                        predicted_onehot_labels[index].append(onehot_labels)

            # Calculate Precision & Recall & F1
            for index in range(len(predicted_onehot_scores)):
                test_pre = precision_score(
                    y_true=np.array(true_onehot_labels[index]),
                    y_pred=np.array(predicted_onehot_labels[index]),
                    average='micro')
                test_rec = recall_score(
                    y_true=np.array(true_onehot_labels[index]),
                    y_pred=np.array(predicted_onehot_labels[index]),
                    average='micro')
                test_F1 = f1_score(y_true=np.array(true_onehot_labels[index]),
                                   y_pred=np.array(
                                       predicted_onehot_labels[index]),
                                   average='micro')
                test_auc = roc_auc_score(
                    y_true=np.array(true_onehot_labels[index]),
                    y_score=np.array(predicted_onehot_scores[index]),
                    average='micro')
                test_prc = average_precision_score(
                    y_true=np.array(true_onehot_labels[index]),
                    y_score=np.array(predicted_onehot_scores[index]),
                    average="micro")
                if index == 0:
                    logger.info(
                        "[Global] Predict by threshold: Precision {0:g}, Recall {1:g}, "
                        "F1 {2:g}, AUC {3:g}, AUPRC {4:g}".format(
                            test_pre, test_rec, test_F1, test_auc, test_prc))
                else:
                    logger.info(
                        "[Local] Predict by threshold in Level-{0}: Precision {1:g}, Recall {2:g}, "
                        "F1 {3:g}, AUPRC {4:g}".format(index, test_pre,
                                                       test_rec, test_F1,
                                                       test_prc))

            # Save the prediction result
            if not os.path.exists(SAVE_DIR):
                os.makedirs(SAVE_DIR)
            dh.create_prediction_file(output_file=SAVE_DIR +
                                      "/predictions.json",
                                      data_id=test_data['uniq_id'],
                                      true_labels=true_labels,
                                      predict_labels=predicted_labels,
                                      predict_scores=predicted_scores)
    logger.info("All Done.")
Пример #24
0
def test_cnn():
    """Test CNN model."""

    # Load data
    logger.info("✔︎ Loading data...")
    logger.info("Recommended padding Sequence length is: {0}".format(FLAGS.pad_seq_len))

    logger.info("✔︎ Test data processing...")
    test_data = dh.load_data_and_labels(FLAGS.test_data_file, FLAGS.num_classes,
                                        FLAGS.embedding_dim, data_aug_flag=False)

    logger.info("✔︎ Test data padding...")
    x_test, y_test = dh.pad_data(test_data, FLAGS.pad_seq_len)
    y_test_labels = test_data.labels

    # Load cnn model
    BEST_OR_LATEST = input("☛ Load Best or Latest Model?(B/L): ")

    while not (BEST_OR_LATEST.isalpha() and BEST_OR_LATEST.upper() in ['B', 'L']):
        BEST_OR_LATEST = input("✘ The format of your input is illegal, please re-input: ")
    if BEST_OR_LATEST.upper() == 'B':
        logger.info("✔︎ Loading best model...")
        checkpoint_file = cm.get_best_checkpoint(FLAGS.best_checkpoint_dir, select_maximum_value=True)
    else:
        logger.info("✔︎ Loading latest model...")
        checkpoint_file = tf.train.latest_checkpoint(FLAGS.checkpoint_dir)
    logger.info(checkpoint_file)

    graph = tf.Graph()
    with graph.as_default():
        session_conf = tf.ConfigProto(
            allow_soft_placement=FLAGS.allow_soft_placement,
            log_device_placement=FLAGS.log_device_placement)
        session_conf.gpu_options.allow_growth = FLAGS.gpu_options_allow_growth
        sess = tf.Session(config=session_conf)
        with sess.as_default():
            # Load the saved meta graph and restore variables
            saver = tf.train.import_meta_graph("{0}.meta".format(checkpoint_file))
            saver.restore(sess, checkpoint_file)

            # Get the placeholders from the graph by name
            input_x = graph.get_operation_by_name("input_x").outputs[0]
            input_y = graph.get_operation_by_name("input_y").outputs[0]
            dropout_keep_prob = graph.get_operation_by_name("dropout_keep_prob").outputs[0]
            is_training = graph.get_operation_by_name("is_training").outputs[0]

            # Tensors we want to evaluate
            scores = graph.get_operation_by_name("output/scores").outputs[0]
            loss = graph.get_operation_by_name("loss/loss").outputs[0]

            # Split the output nodes name by '|' if you have several output nodes
            output_node_names = "output/scores"

            # Save the .pb model file
            output_graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def,
                                                                            output_node_names.split("|"))
            tf.train.write_graph(output_graph_def, "graph", "graph-cnn-{0}.pb".format(MODEL), as_text=False)

            # Generate batches for one epoch
            batches = dh.batch_iter(list(zip(x_test, y_test, y_test_labels)), FLAGS.batch_size, 1, shuffle=False)

            test_counter, test_loss = 0, 0.0

            test_pre_tk = [0.0] * FLAGS.top_num
            test_rec_tk = [0.0] * FLAGS.top_num
            test_F_tk = [0.0] * FLAGS.top_num

            # Collect the predictions here
            true_labels = []
            predicted_labels = []
            predicted_scores = []

            # Collect for calculating metrics
            true_onehot_labels = []
            predicted_onehot_scores = []
            predicted_onehot_labels_ts = []
            predicted_onehot_labels_tk = [[] for _ in range(FLAGS.top_num)]

            for batch_test in batches:
                x_batch_test, y_batch_test, y_batch_test_labels = zip(*batch_test)
                feed_dict = {
                    input_x: x_batch_test,
                    input_y: y_batch_test,
                    dropout_keep_prob: 1.0,
                    is_training: False
                }
                batch_scores, cur_loss = sess.run([scores, loss], feed_dict)

                # Prepare for calculating metrics
                for i in y_batch_test:
                    true_onehot_labels.append(i)
                for j in batch_scores:
                    predicted_onehot_scores.append(j)

                # Get the predicted labels by threshold
                batch_predicted_labels_ts, batch_predicted_scores_ts = \
                    dh.get_label_threshold(scores=batch_scores, threshold=FLAGS.threshold)

                # Add results to collection
                for i in y_batch_test_labels:
                    true_labels.append(i)
                for j in batch_predicted_labels_ts:
                    predicted_labels.append(j)
                for k in batch_predicted_scores_ts:
                    predicted_scores.append(k)

                # Get onehot predictions by threshold
                batch_predicted_onehot_labels_ts = \
                    dh.get_onehot_label_threshold(scores=batch_scores, threshold=FLAGS.threshold)
                for i in batch_predicted_onehot_labels_ts:
                    predicted_onehot_labels_ts.append(i)

                # Get onehot predictions by topK
                for top_num in range(FLAGS.top_num):
                    batch_predicted_onehot_labels_tk = dh.get_onehot_label_topk(scores=batch_scores, top_num=top_num+1)

                    for i in batch_predicted_onehot_labels_tk:
                        predicted_onehot_labels_tk[top_num].append(i)

                test_loss = test_loss + cur_loss
                test_counter = test_counter + 1

            # Calculate Precision & Recall & F1 (threshold & topK)
            test_pre_ts = precision_score(y_true=np.array(true_onehot_labels),
                                          y_pred=np.array(predicted_onehot_labels_ts), average='micro')
            test_rec_ts = recall_score(y_true=np.array(true_onehot_labels),
                                       y_pred=np.array(predicted_onehot_labels_ts), average='micro')
            test_F_ts = f1_score(y_true=np.array(true_onehot_labels),
                                 y_pred=np.array(predicted_onehot_labels_ts), average='micro')

            for top_num in range(FLAGS.top_num):
                test_pre_tk[top_num] = precision_score(y_true=np.array(true_onehot_labels),
                                                       y_pred=np.array(predicted_onehot_labels_tk[top_num]),
                                                       average='micro')
                test_rec_tk[top_num] = recall_score(y_true=np.array(true_onehot_labels),
                                                    y_pred=np.array(predicted_onehot_labels_tk[top_num]),
                                                    average='micro')
                test_F_tk[top_num] = f1_score(y_true=np.array(true_onehot_labels),
                                              y_pred=np.array(predicted_onehot_labels_tk[top_num]),
                                              average='micro')

            # Calculate the average AUC
            test_auc = roc_auc_score(y_true=np.array(true_onehot_labels),
                                     y_score=np.array(predicted_onehot_scores), average='micro')

            # Calculate the average PR
            test_prc = average_precision_score(y_true=np.array(true_onehot_labels),
                                               y_score=np.array(predicted_onehot_scores), average="micro")
            test_loss = float(test_loss / test_counter)

            logger.info("☛ All Test Dataset: Loss {0:g} | AUC {1:g} | AUPRC {2:g}"
                        .format(test_loss, test_auc, test_prc))

            # Predict by threshold
            logger.info("☛ Predict by threshold: Precision {0:g}, Recall {1:g}, F1 {2:g}"
                        .format(test_pre_ts, test_rec_ts, test_F_ts))

            # Predict by topK
            logger.info("☛ Predict by topK:")
            for top_num in range(FLAGS.top_num):
                logger.info("Top{0}: Precision {1:g}, Recall {2:g}, F {3:g}"
                            .format(top_num + 1, test_pre_tk[top_num], test_rec_tk[top_num], test_F_tk[top_num]))

            # Save the prediction result
            if not os.path.exists(SAVE_DIR):
                os.makedirs(SAVE_DIR)
            dh.create_prediction_file(output_file=SAVE_DIR + "/predictions.json", data_id=test_data.testid,
                                      all_labels=true_labels, all_predict_labels=predicted_labels,
                                      all_predict_scores=predicted_scores)

    logger.info("✔︎ Done.")
Пример #25
0
def test():
    test_students, test_max_num_problems, test_max_skill_num = dh.read_test_data_from_csv_file(
        FLAGS.test_data_file)
    max_num_steps = test_max_num_problems
    max_num_skills = test_max_skill_num
    fileName = "clustered_skill_name.txt"
    same_b, differ_b = eb.embedding(fileName)

    BEST_OR_LATEST = input("Load Best or Latest Model?(B/L): ")

    while not (BEST_OR_LATEST.isalpha()
               and BEST_OR_LATEST.upper() in ['B', 'L']):
        BEST_OR_LATEST = input(
            "he format of your input is illegal, please re-input: ")
    if BEST_OR_LATEST == 'B':
        logger.info("Loading best model...")
        checkpoint_file = cm.get_best_checkpoint(FLAGS.best_checkpoint_dir,
                                                 select_maximum_value=True)
    if BEST_OR_LATEST == 'L':
        logger.info("latest")
        checkpoint_file = tf.train.latest_checkpoint(FLAGS.checkpoint_dir)
    logger.info(checkpoint_file)

    graph = tf.Graph()
    with graph.as_default():
        session_conf = tf.ConfigProto(
            allow_soft_placement=FLAGS.allow_soft_placement,
            log_device_placement=FLAGS.log_device_placement)
        session_conf.gpu_options.allow_growth = FLAGS.gpu_options_allow_growth
        sess = tf.Session(config=session_conf)
        with sess.as_default():
            saver = tf.train.import_meta_graph(
                "{0}.meta".format(checkpoint_file))
            saver.restore(sess, checkpoint_file)

            input_data = graph.get_operation_by_name("input_data").outputs[0]
            next_id = graph.get_operation_by_name("next_id").outputs[0]
            target_id = graph.get_operation_by_name("target_id").outputs[0]
            target_correctness = graph.get_operation_by_name(
                "target_correctness").outputs[0]
            dropout_keep_prob = graph.get_operation_by_name(
                "dropout_keep_prob").outputs[0]
            is_training = graph.get_operation_by_name("is_training").outputs[0]
            same = graph.get_operation_by_name("same").outputs[0]
            differ = graph.get_operation_by_name("differ").outputs[0]
            skill = graph.get_operation_by_name("skill_w").outputs[0]
            states = graph.get_operation_by_name("states").outputs[0]
            pred = graph.get_operation_by_name("pred").outputs[0]

            data_size = len(test_students)
            index = 0
            actual_labels = []
            pred_labels = []
            while (index < data_size):
                x = np.zeros((FLAGS.batch_size, max_num_steps))
                xx = np.zeros((FLAGS.batch_size, max_num_steps))
                next_id_b = np.zeros((FLAGS.batch_size, max_num_steps))
                l_b = np.ones(
                    (FLAGS.batch_size, max_num_steps, max_num_skills))
                target_id_b = []
                target_correctness_b = []
                for i in range(FLAGS.batch_size):
                    student = test_students[index + i]
                    problem_ids = student[1]
                    correctness = student[2]
                    correct_num = np.zeros(max_num_skills)
                    answer_count = np.ones(max_num_skills)
                    for j in range(len(problem_ids) - 1):
                        problem_id = int(problem_ids[j])
                        if (int(correctness[j]) == 0):
                            x[i, j] = problem_id + max_num_skills
                        else:
                            x[i, j] = problem_id
                            correct_num[problem_id] += 1
                        l_b[i, j] = correct_num / answer_count
                        answer_count[problem_id] += 1
                        xx[i, j] = problem_id
                        next_id_b[i, j] = int(problem_ids[j + 1])
                        target_id_b.append(i * max_num_steps + j)
                        target_correctness_b.append(int(correctness[j + 1]))
                        actual_labels.append(int(correctness[j + 1]))
                index += FLAGS.batch_size

                feed_dict = {
                    input_data: x,
                    next_id: next_id_b,
                    target_id: target_id_b,
                    target_correctness: target_correctness_b,
                    dropout_keep_prob: 1.0,
                    is_training: False,
                    same: same_b,
                    differ: differ_b
                }

                pred_b, state, skill_b = sess.run([pred, states, skill],
                                                  feed_dict)
                for p in pred_b:
                    pred_labels.append(p)

            rmse = sqrt(mean_squared_error(actual_labels, pred_labels))
            fpr, tpr, thresholds = metrics.roc_curve(actual_labels,
                                                     pred_labels,
                                                     pos_label=1)
            auc = metrics.auc(fpr, tpr)
            r2 = r2_score(actual_labels, pred_labels)
            pred_score = np.greater_equal(pred_labels, 0.5)
            pred_score = pred_score.astype(int)
            pred_score = np.equal(actual_labels, pred_score)
            acc = np.mean(pred_score.astype(int))
            logger.info(
                "epochs {0}: rmse {1:g}  auc {2:g}  r2 {3:g}  acc {4:g}".
                format(1, rmse, auc, r2, acc))