Пример #1
0
def classification(df, n_estimators, k_fold_times, n_features, experience_name,
                   data_folder, output_folder):
    # Read X matrix (values), y column (target class) and feature names from dataframe
    #convert the data frame to a matrix X
    X = df.values
    #y: last column of the file, the target class column
    y = X[:, -1]
    #cast all y elements to int
    y = y.astype(int)
    #remove first (subject id) and last (target class) columns of the data matrix to only keep the data
    X = X[:, list(range(1, len(df.columns) - 1))]
    #cast all X elements to int
    X = X.astype(int)
    #get list of feature names (also removing first and last columns)
    feature_names = list(df)[1:-1]
    # Split data set into training and test set (75% and 25%) with stratification
    X_train, X_test, y_train, y_test = train_test_split(X,
                                                        y,
                                                        test_size=0.25,
                                                        random_state=0,
                                                        stratify=y)
    printShapes(X_train, X_test, y_train, y_test)

    # Fit RF classifier
    rf = fitRFClassifier(X_train, y_train, n_estimators)
    # Get classification metrics without cross validation
    getClassificationMetrics(rf, X_train, X_test, y_train, y_test)
    # Get classification metrics with stratified k-fold cross validation
    getClassificationMetricsCV(rf, k_fold_times, X, y)

    # Most important features output image file name (Random Forest Permutation Importance metric MLxtend lib)
    mlxtend_features_file_name = mlxtend_features + "_merged_data"

    # get permutation importance values for top-30 features
    most_important_features_perm = getPermutationImportanceMLxtend(number_perm_runs, rf, X_test, y_test, \
                                                                   feature_names, width_perm_imp_plot, \
                                                                   output_folder, mlxtend_features_file_name, n_features)

    # get patterns of the most important Biclusters on a separate file
    # Remove Bic_0 and Bic_ parts from features to get bicluster ids
    most_important_features_perm = [
        str(int(x.split("_")[1])) for x in most_important_features_perm
        if x.startswith("Bic_")
    ]
    # Create dummy exp_list
    exp_list = [[experience_name, most_important_features_perm]]
    # Get purest biclusters by experience (from translated_labels files)
    list_bic_file_names = getTranslatedBiclusterFileNames(
        data_folder, exp_list)
    # Get Bicluster text contents per experience
    bics_exp = getBiclusterContentsFlatList(exp_list, list_bic_file_names,
                                            False)
    # Replace the Bicluster contents on the dictionary with the the most frequent
    # pattern for each bicluster
    bics_exp = getBiclustersMostFreqPatterns(bics_exp)
    # Export the most important N feature (biclusters/meta-features) patterns to a tsv file
    writeBiclustersPatternsOutput(bics_exp, output_folder,
                                  mlxtend_features_file_name + ".txt")
def start_processing():

    #create folder if it doesn't exist
    if not os.path.exists(output_folder):
        os.makedirs(output_folder)

    # Read XLSX with the experience's metrics (sheet PurestBiclusters)
    df = readMetricsExcelData(data_folder, xlsx_metrics_file_name,
                              sheet_name_or_index)

    # Get the experience names and the ids of its purest biclusters
    exp_list = getExperiencesWithPurestBiclusters(df, list_classes,
                                                  data_folder, folder_date)
    #print(exp_list)

    # Get string with number of purest biclusters by experience
    bics_per_exp = getNumberOfBiclustersPerExperience(exp_list)

    # Write the number of purest biclusters by experience to a tsv file
    writeNumBicsPerExpOutput(bics_per_exp, output_folder,
                             num_purest_bics_per_exp_filename)

    # Get only one of the experiences (Exp_14)
    exp_list = [l for l in exp_list if l[0] == experience_name]

    # Get minimum number of discriminative Biclusters between all classes
    min_bics = sys.maxsize
    for c in list_classes:
        num_bics_class = len(exp_list[0][1][c])
        if num_bics_class < min_bics:
            min_bics = num_bics_class
        print("class", c, "->", num_bics_class, "biclusters")

    # Randomly sample the Biclusters from the classes with more discriminative Biclusters
    # to equalize the number of Biclusters considered from each class
    for c in list_classes:
        num_bics_class = len(exp_list[0][1][c])
        if num_bics_class > min_bics:
            print("Sampling class", c)
            df_to_sample = pd.DataFrame(exp_list[0][1][c], columns=['Samp'])
            # sampling fixed seed -> Fibonacci prime number 1597
            df_to_sample = df_to_sample.sample(n=min_bics, random_state=1597)
            # sort bicluster ids
            df_to_sample = df_to_sample.astype(int)
            df_to_sample = df_to_sample.sort_values('Samp')
            df_to_sample = df_to_sample.astype(str)
            # replace list
            sampled_list = df_to_sample['Samp'].values.tolist()
            exp_list[0][1][c] = sampled_list
            print("done")

    #print(exp_list)

    # Get purest biclusters by experience (from translated_labels files)
    list_bic_file_names = getTranslatedBiclusterFileNames(
        data_folder, exp_list)

    print("Getting Bicluster Contents...")
    # Get Bicluster text contents per experience
    bics_exp = getBiclusterContents(exp_list, list_bic_file_names, False)
    print("done")

    print("Getting Bicluster Most Frequent Patterns...")
    # Replace the Bicluster contents on the dictionary with the the most frequent
    # pattern for each bicluster
    bics_exp = getBiclustersMostFreqPatterns(bics_exp)
    print("done")

    # Output results to a tsv file
    writeBiclustersPatternsOutput(bics_exp, output_folder,
                                  patterns_output_filename)

    # Get all discriminative biclusters from the experience
    list_all_disc_bics = getAllBiclustersFromExperience(
        exp_list, experience_name)

    # Add the first and last column since these columns should be there, as well as
    # the prefix Bic_ again (if number is < 10 add a 0)
    list_features_to_keep = ['Subject ID'] + [
        ('Bic_0' + x) if int(x) < 10 else ('Bic_' + x)
        for x in list_all_disc_bics
    ] + ['group']

    # Run the scikit-learn RF classifier for the discriminative biclusters in the classification file
    # (subject ids x bicluster presence matrix)
    print(
        "********* Classification (Discriminative Bicluster features only) *********"
    )

    # Get the dataframe from the subject ids x bicluster presence matrix file
    file_path = data_folder / classif_file_name
    df_discriminative = load_to_merge_matrix_data_no_missings(file_path)
    df_discriminative = df_discriminative[list_features_to_keep]

    #print(list(df_discriminative.columns))

    # Run the scikit-learn RF classifier for the classification file (subject ids x bicluster presence matrix
    # but just for the discriminative biclusters)
    classification(df_discriminative, n_estimators, k_fold_times, n_features,
                   experience_name, data_folder, output_folder)
def processData():
    # Read XLSX with the experience's metrics (sheet PurestBiclusters)
    df = readMetricsExcelData(xlsx_data_folder, xlsx_metrics_file_name,
                              sheet_name_or_index)

    # Get the experience names and the ids of its purest biclusters
    exp_list = getExperiencesWithPurestBiclusters(df, list_classes,
                                                  xlsx_data_folder,
                                                  folder_date)

    # Get only one of the experiences (Exp_14)
    exp_list = [l for l in exp_list if l[0] == experience_name]

    # Get minimum number of discriminative Biclusters between all classes
    min_bics = sys.maxsize
    for c in list_classes:
        num_bics_class = len(exp_list[0][1][c])
        if num_bics_class < min_bics:
            min_bics = num_bics_class
        print("class", c, "->", num_bics_class, "biclusters")

    # Randomly sample the Biclusters from the classes with more discriminative Biclusters
    # to equalize the number of Biclusters considered from each class
    for c in list_classes:
        num_bics_class = len(exp_list[0][1][c])
        if num_bics_class > min_bics:
            print("Sampling class", c)
            df_to_sample = pd.DataFrame(exp_list[0][1][c], columns=['Samp'])
            # sampling fixed seed -> Fibonacci prime number 1597
            df_to_sample = df_to_sample.sample(n=min_bics, random_state=1597)
            # sort bicluster ids
            df_to_sample = df_to_sample.astype(int)
            df_to_sample = df_to_sample.sort_values('Samp')
            df_to_sample = df_to_sample.astype(str)
            # replace list
            sampled_list = df_to_sample['Samp'].values.tolist()
            exp_list[0][1][c] = sampled_list

    #print(exp_list)

    # Get purest biclusters by experience (from translated_labels files)
    list_bic_file_names = getTranslatedBiclusterFileNames(
        xlsx_data_folder, exp_list)

    # Get Bicluster features and values per experience (feature|value)
    # Each set of Bicluster features is n transactions (n = bicuster height), including the
    # class target + class value as one of the items: group|1 for Patients, or group|2 for Controls)
    bics_features_values = getBiclusterFeaturesAndValues(
        exp_list, list_bic_file_names)

    # Get translation maps for SPMF algorithm
    translation_map_original_spmf, translation_map_spmf_original = getTranslationMapsSPMF(
        bics_features_values[experience_name])

    # Write both maps to temp files
    with open(output_folder / translation_map_original_spmf_file_name,
              "w") as outFile:
        for key, value in translation_map_original_spmf.items():
            outFile.write(key + '\t' + value + '\n')

    with open(output_folder / translation_map_spmf_original_file_name,
              "w") as outFile:
        for key, value in translation_map_spmf_original.items():
            outFile.write(key + '\t' + value + '\n')

    # Translate original data to SPMF format
    # 1) items are represented by integers
    # 2) features/items should be lexicografically ordered (e.g. 1, 10, 2, 3, ...)
    # 3) items should be separated by spaces
    translated_data = translateDataOriginalToSPMF(
        bics_features_values[experience_name], translation_map_original_spmf)

    # Export translated data to a tsv file
    with open(output_folder / processed_data_file_name, "w") as outFile:
        for feature_list in translated_data:
            #write a row in the file separated by spaces
            row = " ".join(feature_list) + "\n"
            outFile.write(row)