test_solve_KKT_P + test_solve_KKT_sigma * sparse.eye(test_solve_KKT_n), test_solve_KKT_A.T ]), sparse.hstack([ test_solve_KKT_A, -1. / test_solve_KKT_rho * sparse.eye(test_solve_KKT_m) ]) ], format='csc') test_solve_KKT_rhs = rg.standard_normal(test_solve_KKT_m + test_solve_KKT_n) test_solve_KKT_x = spla.splu(test_solve_KKT_KKT).solve(test_solve_KKT_rhs) test_solve_KKT_x[test_solve_KKT_n:] = test_solve_KKT_rhs[test_solve_KKT_n:] + \ test_solve_KKT_x[test_solve_KKT_n:] / test_solve_KKT_rho # Generate test data and solutions data = { 'test_solve_KKT_n': test_solve_KKT_n, 'test_solve_KKT_m': test_solve_KKT_m, 'test_solve_KKT_A': test_solve_KKT_A, 'test_solve_KKT_Pu': test_solve_KKT_Pu, 'test_solve_KKT_rho': test_solve_KKT_rho, 'test_solve_KKT_sigma': test_solve_KKT_sigma, 'test_solve_KKT_KKT': test_solve_KKT_KKT, 'test_solve_KKT_rhs': test_solve_KKT_rhs, 'test_solve_KKT_x': test_solve_KKT_x } # Generate test data cu.generate_data('solve_linsys', data)
'test_mat_ops_ew_abs': test_mat_ops_ew_abs, 'test_mat_ops_inf_norm_cols': test_mat_ops_inf_norm_cols, 'test_mat_ops_inf_norm_rows': test_mat_ops_inf_norm_rows, 'test_mat_vec_n': test_mat_vec_n, 'test_mat_vec_m': test_mat_vec_m, 'test_mat_vec_A': test_mat_vec_A, 'test_mat_vec_Pu': test_mat_vec_Pu, 'test_mat_vec_x': test_mat_vec_x, 'test_mat_vec_y': test_mat_vec_y, 'test_mat_vec_Ax': test_mat_vec_Ax, 'test_mat_vec_Ax_cum': test_mat_vec_Ax_cum, 'test_mat_vec_ATy': test_mat_vec_ATy, 'test_mat_vec_ATy_cum': test_mat_vec_ATy_cum, 'test_mat_vec_Px': test_mat_vec_Px, 'test_mat_vec_Px_cum': test_mat_vec_Px_cum, 'test_mat_extr_triu_n': test_mat_extr_triu_n, 'test_mat_extr_triu_P': test_mat_extr_triu_P, 'test_mat_extr_triu_Pu': test_mat_extr_triu_Pu, 'test_mat_extr_triu_P_inf_norm_cols': test_mat_extr_triu_P_inf_norm_cols, 'test_qpform_n': test_qpform_n, 'test_qpform_Pu': test_qpform_Pu, 'test_qpform_x': test_qpform_x, 'test_qpform_value': test_qpform_value, 'test_mat_trace_P': test_mat_trace_P, 'test_mat_trace_P_trace': test_mat_trace_P_trace, 'test_mat_trace_P_fro_sq': test_mat_trace_P_fro_sq } # Generate test data cu.generate_data('lin_alg', data)
A12 = sparse.csc_matrix([[1., 1.], [1., 0.], [0., 1.]]) A34 = sparse.csc_matrix([[1., 0.], [1., 0.], [0., 1.]]) l = np.array([0., 1., 1.]) u1 = np.array([5., 3., 3.]) u2 = np.array([0., 3., 3.]) u3 = np.array([2., 3., np.inf]) u4 = np.array([0., 3., np.inf]) # Generate problem solutions data = { 'P': P, 'q': q, 'A12': A12, 'A34': A34, 'l': l, 'u1': u1, 'u2': u2, 'u3': u3, 'u4': u4, 'x1': np.array([1., 3.]), 'y1': np.array([0., -2., 1.]), 'obj_value1': -1.5, 'status1': 'optimal', 'status2': 'primal_infeasible', 'status3': 'dual_infeasible', 'status4': 'primal_infeasible' } # Generate problem data cu.generate_data('primal_dual_infeasibility', data)
'test_solve_P_new_x': np.array([-0.36033252, 0.10729745, 0.22965285, 0.06323582, 0.42301398]), 'test_solve_P_new_y': np.zeros(m), 'test_solve_P_new_obj_value': -0.36765, 'test_solve_P_new_status': 'optimal', 'test_solve_A_new': test_solve_A_new, 'test_solve_A_new_x': np.array([-0.34282147, 0.0260615, 0.27197987, -0.01202531, 0.44052732]), 'test_solve_A_new_y': np.zeros(m), 'test_solve_A_new_obj_value': -0.37221, 'test_solve_A_new_status': 'optimal', 'test_solve_P_A_new_x': np.array([-0.36033252, 0.10729745, 0.22965285, 0.06323582, 0.42301398]), 'test_solve_P_A_new_y': np.zeros(m), 'test_solve_P_A_new_obj_value': -0.36765, 'test_solve_P_A_new_status': 'optimal' } # Generate test data cu.generate_data('update_matrices', data)