Пример #1
0
        if suppres_ghost:
            for j in range(1, categories + 1):
                n = len(top_bboxes[image_id][j])
                for k in range(n):
                    inside_score = 0
                    if top_bboxes[image_id][j][k, 4] > 0.2:
                        for t in range(n):
                            if _box_inside(top_bboxes[image_id][j][t],
                                           top_bboxes[image_id][j][k]):
                                inside_score += top_bboxes[image_id][j][t, 4]
                        if inside_score > top_bboxes[image_id][j][k, 4] * 3:
                            top_bboxes[image_id][j][k, 4] /= 2

        if 1:  # visualize
            color_list = colormap(rgb=True)
            mask_color_id = 0
            image = cv2.imread(image_name)
            input_image = image.copy()
            mask_image = image.copy()
            bboxes = {}
            for j in range(1, categories + 1):
                # keep_inds = (top_bboxes[image_id][j][:, 4] > 0.5)
                keep_inds = (top_bboxes[image_id][j][:, 4] > 0.3)
                cat_name = class_name[j]
                for bbox in top_bboxes[image_id][j][keep_inds]:
                    sc = bbox[4]
                    ex = bbox[5:13].astype(np.int32).reshape(4, 2)
                    bbox = bbox[0:4].astype(np.int32)
                    txt = '{}: {:.2f}'.format(cat_name, sc)
                    color_mask = color_list[mask_color_id %
Пример #2
0
def worker(input_q, output_q):
    # Load a (frozen) Tensorflow model into memory.

    cfg_file = os.path.join(
        "/data1/hhq/project/extremenet-inference/config/ExtremeNet.json")
    print("cfg_file: {}".format(cfg_file))

    with open(cfg_file, "r") as f:
        configs = json.load(f)

    configs["system"]["snapshot_name"] = "ExtremeNet"
    system_configs.update_config(configs["system"])
    print("system config...")

    K = configs["db"]["top_k"]
    aggr_weight = configs["db"]["aggr_weight"]
    scores_thresh = configs["db"]["scores_thresh"]
    center_thresh = configs["db"]["center_thresh"]
    suppres_ghost = True
    nms_kernel = 3

    scales = configs["db"]["test_scales"]
    weight_exp = 8
    categories = configs["db"]["categories"]
    nms_threshold = configs["db"]["nms_threshold"]
    max_per_image = configs["db"]["max_per_image"]
    nms_algorithm = {
        "nms": 0,
        "linear_soft_nms": 1,
        "exp_soft_nms": 2
    }["exp_soft_nms"]
    nnet = NetworkFactory(None)
    nnet.load_pretrained_params(
        "/data1/hhq/project/extremenet-inference/model/ExtremeNet_250000.pkl")
    nnet.cuda()
    nnet.eval_mode()

    fps = FPS().start()
    mean = np.array([0.40789654, 0.44719302, 0.47026115], dtype=np.float32)
    std = np.array([0.28863828, 0.27408164, 0.27809835], dtype=np.float32)
    top_bboxes = {}

    while True:
        fps.update()
        frame = input_q.get()
        # image = cv2.imread("/data/project/extremenet-inference/inputs/16004479832_a748d55f21_k.jpg")
        height, width = frame[1].shape[0:2]
        detections = []

        for scale in scales:
            new_height = int(height * scale)
            new_width = int(width * scale)
            new_center = np.array([new_height // 2, new_width // 2])

            inp_height = new_height | 127
            inp_width = new_width | 127

            images = np.zeros((1, 3, inp_height, inp_width), dtype=np.float32)
            ratios = np.zeros((1, 2), dtype=np.float32)
            borders = np.zeros((1, 4), dtype=np.float32)
            sizes = np.zeros((1, 2), dtype=np.float32)

            out_height, out_width = (inp_height + 1) // 4, (inp_width + 1) // 4
            height_ratio = out_height / inp_height
            width_ratio = out_width / inp_width

            resized_image = cv2.resize(frame[1], (new_width, new_height))
            resized_image, border, offset = crop_image(resized_image,
                                                       new_center,
                                                       [inp_height, inp_width])

            resized_image = resized_image / 255.
            normalize_(resized_image, mean, std)

            images[0] = resized_image.transpose((2, 0, 1))
            borders[0] = border
            sizes[0] = [int(height * scale), int(width * scale)]
            ratios[0] = [height_ratio, width_ratio]

            images = np.concatenate((images, images[:, :, :, ::-1]), axis=0)
            images = torch.from_numpy(images)
            dets = kp_decode(nnet,
                             images,
                             K,
                             aggr_weight=aggr_weight,
                             scores_thresh=scores_thresh,
                             center_thresh=center_thresh,
                             kernel=nms_kernel,
                             debug=True)
            dets = dets.reshape(2, -1, 14)
            dets[1, :, [0, 2]] = out_width - dets[1, :, [2, 0]]
            dets[1, :, [5, 7, 9, 11]] = out_width - dets[1, :, [5, 7, 9, 11]]
            dets[1, :, [7, 8, 11, 12]] = dets[1, :, [11, 12, 7, 8]].copy()
            dets = dets.reshape(1, -1, 14)

            _rescale_dets(dets, ratios, borders, sizes)
            _rescale_ex_pts(dets, ratios, borders, sizes)
            dets[:, :, 0:4] /= scale
            dets[:, :, 5:13] /= scale
            detections.append(dets)

        detections = np.concatenate(detections, axis=1)

        classes = detections[..., -1]
        classes = classes[0]
        detections = detections[0]

        # reject detections with negative scores
        keep_inds = (detections[:, 4] > 0)
        detections = detections[keep_inds]
        classes = classes[keep_inds]

        image_id = 0  # image ids
        top_bboxes[image_id] = {}
        for j in range(categories):
            keep_inds = (classes == j)
            top_bboxes[image_id][j + 1] = \
                detections[keep_inds].astype(np.float32)
            soft_nms(top_bboxes[image_id][j + 1],
                     Nt=nms_threshold,
                     method=nms_algorithm)

        scores = np.hstack(
            [top_bboxes[image_id][j][:, 4] for j in range(1, categories + 1)])
        if len(scores) > max_per_image:
            kth = len(scores) - max_per_image
            thresh = np.partition(scores, kth)[kth]
            for j in range(1, categories + 1):
                keep_inds = (top_bboxes[image_id][j][:, 4] >= thresh)
                top_bboxes[image_id][j] = top_bboxes[image_id][j][keep_inds]

        if suppres_ghost:
            for j in range(1, categories + 1):
                n = len(top_bboxes[image_id][j])
                for k in range(n):
                    inside_score = 0
                    if top_bboxes[image_id][j][k, 4] > 0.2:
                        for t in range(n):
                            if _box_inside(top_bboxes[image_id][j][t],
                                           top_bboxes[image_id][j][k]):
                                inside_score += top_bboxes[image_id][j][t, 4]
                        if inside_score > top_bboxes[image_id][j][k, 4] * 3:
                            top_bboxes[image_id][j][k, 4] /= 2

        # plot bound box and oct mask
        color_list = colormap(rgb=True)
        mask_color_id = 0
        # image = cv2.imread("/data/project/extremenet-inference/inputs/16004479832_a748d55f21_k.jpg")
        image = frame[1]
        input_image = image.copy()
        mask_image = image.copy()
        bboxes = {}
        for j in range(1, categories + 1):
            keep_inds = (top_bboxes[image_id][j][:, 4] > 0.5)
            cat_name = class_name[j]
            for bbox in top_bboxes[image_id][j][keep_inds]:
                sc = bbox[4]
                ex = bbox[5:13].astype(np.int32).reshape(4, 2)
                bbox = bbox[0:4].astype(np.int32)
                txt = '{}{:.2f}'.format(cat_name, sc)
                color_mask = color_list[mask_color_id % len(color_list), :3]
                mask_color_id += 1
                image = vis_bbox(
                    image,
                    (bbox[0], bbox[1], bbox[2] - bbox[0], bbox[3] - bbox[1]))
                image = vis_class(image, (bbox[0], bbox[1] - 2), txt)
                image = vis_octagon(image, ex, color_mask)
                image = vis_ex(image, ex, color_mask)

        output_q.put((frame[0], image))
    fps.stop()