Пример #1
0
        tk.update()
        time.sleep(0.01)

        if common.is_all_in_target(all_sheep) or step > 2000:
            for per_sheep in sheep_dict.values():
                per_sheep.delete()
            herd.delete()
            break
        step += 1
    return step


if __name__ == '__main__':
    """
    选择不同的角度:10, 20, 30, 40, 50, 60, 70
    羊群规模设定为:60只
    """
    tk, canvas = gui.init_tkinter()
    steps = []
    n = 60
    theta = math.pi / 4.5
    for k in range(1, n):
        all_sheep, sheep_dict, shepherd_a = init_sheep(canvas, n)
        step = run_animation(all_sheep, sheep_dict, shepherd_a, theta, k)
        steps.append(step)
        print("current theta = {}, and step {}".format(k, step))
    print("max double distance animation over!")
    common.print_list(steps)
    tk.mainloop()
Пример #2
0
def run_animation(all_sheep, sheep_dict, herd):
    step = 0
    target = np.array([600, 600])
    r_dist = 250
    r_rep = 14
    speed = 2
    n = len(all_sheep)
    app_dist = n + 50
    theta = math.pi / 4.5
    fn = math.sqrt(n) * r_rep
    last_vector = np.zeros((n, 2), dtype=np.float32)
    # 处理轨迹
    UU = []
    VV = []
    XX = []
    YY = []
    Px = {}
    Py = {}
    for i in range(n):
        Px['coor' + str(i)] = []
        Py['coor' + str(i)] = []

    for i in range(n):
        Px['coor' + str(i)].append(all_sheep[i][0])
        Py['coor' + str(i)].append(all_sheep[i][1])
    dist_center = 0
    dist_shepherd = 0
    pre_mean = np.array([np.mean(all_sheep[:, 0]), np.mean(all_sheep[:, 1])])
    pre_herd = herd.position2point()

    while True:
        herd_point = herd.position2point().copy()
        if common.check_sector(all_sheep, theta, target) and common.check_dist(
                all_sheep, target, fn):
            shepherdR.driving(herd, all_sheep, speed, target, app_dist)
        else:
            shepherdR.collecting(herd, all_sheep, speed, app_dist, target)

        sheepR.sheep_move(herd_point, all_sheep, r_dist, r_rep, speed,
                          sheep_dict, last_vector)

        tk.update()
        time.sleep(0.01)

        if common.is_all_in_target(all_sheep) or step > 4000:
            for per_sheep in sheep_dict.values():
                per_sheep.delete()
            herd.delete()
            print("dispersion: ", common.calculate_dispersion(all_sheep))
            break
        # 处理轨迹
        global_mean = np.array(
            [np.mean(all_sheep[:, 0]),
             np.mean(all_sheep[:, 1])])
        dist_center += la.norm(pre_mean - global_mean)
        pre_mean = global_mean
        dist_shepherd += la.norm(pre_herd - herd.position2point())
        pre_herd = herd.position2point()
        for i in range(n):
            Px['coor' + str(i)].append(all_sheep[i][0])
            Py['coor' + str(i)].append(all_sheep[i][1])
        XX.append(herd.position2point()[0])
        YY.append(herd.position2point()[1])
        UU.append(global_mean[0])
        VV.append(global_mean[1])
        step += 1
    xx = np.array(XX)
    yy = np.array(YY)

    common.print_list(xx)
    common.print_list(yy)

    return step