Пример #1
0
def denoise(fname, plot=False, stopping_mode="AMNS"):
    start_time = datetime.now()
    torch.backends.cudnn.enabled = True
    torch.backends.cudnn.benchmark = True
    dtype = torch.cuda.FloatTensor
    dtype = torch.cuda.FloatTensor
    # dtype = torch.DoubleTensor

    imsize =-1
    plot = False
    sigma = 25
    sigma_ = sigma/255.
    OVERLAP = 16

    patch_size = 128
    patch_stride = 64

    # Add synthetic noise
    orig_img_pil = crop_image(get_image(fname, imsize)[0], d=32)
    orig_img_np = pil_to_np(orig_img_pil)
    np.random.seed(7)
    orig_img_noisy_pil, orig_img_noisy_np = get_noisy_image(orig_img_np, sigma_)

    if plot:
        plot_image_grid([orig_img_np, orig_img_noisy_np], 4, 6);

    regions_n_y = orig_img_np.shape[1]//128
    regions_n_x = orig_img_np.shape[2]//128
    print("Splitting image of shape {} in ({}, {}) regions".format(orig_img_np.shape, regions_n_y, regions_n_x))

    noisy_regions = get_regions(orig_img_noisy_np, regions_n_y, regions_n_x, OVERLAP)
    clean_regions = get_regions(orig_img_np, regions_n_y, regions_n_x, OVERLAP)
    denoised = [[var_to_np(denoise_region(noisy_region, clean_region)[0]) for noisy_region, clean_region in zip(noisy_row, clean_row)] for noisy_row, clean_row in zip(noisy_regions, clean_regions)]
    out = image_from_regions(denoised, OVERLAP)
    print("Patched PSNR: {:.4f}".format(compare_psnr(orig_img_np, out)))
    return out
Пример #2
0
    if len(sys.argv) > 1:
        stopping_mode = sys.argv[1]

    IMAGES = ["data/denoising/" + image for image in [
        'house.png',
        # 'F16.png',
        # 'lena.png',
        # 'baboon.png',
        # 'kodim03.png',
        # 'kodim01.png',
        # 'peppers.png',
        # 'kodim02.png',
        # 'kodim12.png'
    ]]

    psnrs = []

    for fname in IMAGES:

        img_np = pil_to_np(crop_image(get_image(fname, -1)[0], d=32))

        run1 = denoise(fname, False, stopping_mode)
        run2 = denoise(fname, False, stopping_mode)

        psnr1, psnr2, psnr_avg = [compare_psnr(i, img_np) for i in [run1, run2, 0.5 * (run1 + run2)]]

        print("Run 1: {}\nRun 2: {}\n PSNR of Average: {}".format(psnr1, psnr2, psnr_avg))
        psnrs.append(psnr_avg)

    print("Average PSNR over test set: {}".format(np.mean(psnrs)))
def main(img: int = 0,
         num_iter: int = 40000,
         lr: float = 3e-4,
         gpu: int = 0,
         seed: int = 42,
         save: bool = True):
    np.random.seed(seed)
    torch.manual_seed(seed)
    os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu)

    torch.backends.cudnn.benchmark = False
    torch.backends.cudnn.deterministic = True

    dtype = torch.cuda.FloatTensor if torch.cuda.is_available(
    ) else torch.FloatTensor

    global i, out_avg, psnr_noisy_last, last_net, net_input, losses, psnrs, ssims, average_dropout_rate, no_layers, \
           img_mean, sample_count, recons, uncerts, uncerts_ale, loss_last, roll_back

    imsize = (256, 256)
    PLOT = True

    timestamp = int(time.time())
    save_path = '/media/fastdata/laves/unsure'
    os.mkdir(f'{save_path}/{timestamp}')

    # denoising
    if img == 0:
        fname = '../NORMAL-4951060-8.jpeg'
        imsize = (256, 256)
    elif img == 1:
        fname = '../BACTERIA-1351146-0006.png'
        imsize = (256, 256)
    elif img == 2:
        fname = '../081_HC.png'
        imsize = (256, 256)
    elif img == 3:
        fname = '../CNV-9997680-30.png'
        imsize = (256, 256)
    else:
        assert False

    if fname == '../NORMAL-4951060-8.jpeg':

        # Add Gaussian noise to simulate speckle
        img_pil = crop_image(get_image(fname, imsize)[0], d=32)
        img_np = pil_to_np(img_pil)
        print(img_np.shape)
        p_sigma = 0.1
        img_noisy_pil, img_noisy_np = get_noisy_image_gaussian(img_np, p_sigma)

    elif fname == '../BACTERIA-1351146-0006.png':

        # Add Poisson noise to simulate low dose X-ray
        img_pil = crop_image(get_image(fname, imsize)[0], d=32)
        img_np = pil_to_np(img_pil)
        print(img_np.shape)
        #p_lambda = 50.0
        #img_noisy_pil, img_noisy_np = get_noisy_image_poisson(img_np, p_lambda)
        # for lam > 20, poisson can be approximated with Gaussian
        p_sigma = 0.1
        img_noisy_pil, img_noisy_np = get_noisy_image_gaussian(img_np, p_sigma)

    elif fname == '../081_HC.png':

        # Add Gaussian noise to simulate speckle
        img_pil = crop_image(get_image(fname, imsize)[0], d=32)
        img_np = pil_to_np(img_pil)
        print(img_np.shape)
        p_sigma = 0.1
        img_noisy_pil, img_noisy_np = get_noisy_image_gaussian(img_np, p_sigma)

    elif fname == '../CNV-9997680-30.png':

        # Add Gaussian noise to simulate speckle
        img_pil = crop_image(get_image(fname, imsize)[0], d=32)
        img_np = pil_to_np(img_pil)
        print(img_np.shape)
        p_sigma = 0.1
        img_noisy_pil, img_noisy_np = get_noisy_image_gaussian(img_np, p_sigma)

    else:
        assert False

    if PLOT:
        q = plot_image_grid([img_np, img_noisy_np], 4, 6)
        out_pil = np_to_pil(q)
        out_pil.save(f'{save_path}/{timestamp}/input.png', 'PNG')

    INPUT = 'noise'
    pad = 'reflection'
    OPT_OVER = 'net'  # 'net,input'

    reg_noise_std = 1. / 10.
    LR = lr
    roll_back = False  # To solve the oscillation of model training
    input_depth = 32

    show_every = 100
    exp_weight = 0.99

    mse = torch.nn.MSELoss()

    img_noisy_torch = np_to_torch(img_noisy_np).type(dtype)

    LOSSES = {}
    RECONS = {}
    UNCERTS = {}
    UNCERTS_ALE = {}
    PSNRS = {}
    SSIMS = {}

    # # SGD

    OPTIMIZER = 'adamw'
    weight_decay = 0
    LOSS = 'mse'
    figsize = 4

    NET_TYPE = 'skip'

    skip_n33d = 128
    skip_n33u = 128
    skip_n11 = 4
    num_scales = 5
    upsample_mode = 'bilinear'

    dropout_mode_down = 'None'
    dropout_p_down = 0.0
    dropout_mode_up = 'None'
    dropout_p_up = dropout_p_down
    dropout_mode_skip = 'None'
    dropout_p_skip = dropout_p_down
    dropout_mode_output = 'None'
    dropout_p_output = dropout_p_down

    net_input = get_noise(
        input_depth, INPUT,
        (img_pil.size[1], img_pil.size[0])).type(dtype).detach()

    net_input_saved = net_input.detach().clone()
    noise = net_input.detach().clone()

    out_avg = None
    last_net = None
    mc_iter = 1

    def closure_dip():

        global i, out_avg, psnr_noisy_last, last_net, net_input, losses, psnrs, ssims, average_dropout_rate, no_layers,\
               img_mean, sample_count, recons, uncerts, loss_last

        if reg_noise_std > 0:
            net_input = net_input_saved + (noise.normal_() * reg_noise_std)

        out = net(net_input)
        out[:, :1] = out[:, :1].sigmoid()

        _loss = mse(out[:, :1], img_noisy_torch)
        _loss.backward()

        # Smoothing
        if out_avg is None:
            out_avg = out.detach()
        else:
            out_avg = out_avg * exp_weight + out.detach() * (1 - exp_weight)

        losses.append(mse(out_avg[:, :1], img_noisy_torch).item())

        _out = out.detach().cpu().numpy()[0, :1]
        _out_avg = out_avg.detach().cpu().numpy()[0, :1]

        psnr_noisy = compare_psnr(img_noisy_np, _out)
        psnr_gt = compare_psnr(img_np, _out)
        psnr_gt_sm = compare_psnr(img_np, _out_avg)

        ssim_noisy = compare_ssim(img_noisy_np[0], _out[0])
        ssim_gt = compare_ssim(img_np[0], _out[0])
        ssim_gt_sm = compare_ssim(img_np[0], _out_avg[0])

        psnrs.append([psnr_noisy, psnr_gt, psnr_gt_sm])
        ssims.append([ssim_noisy, ssim_gt, ssim_gt_sm])

        if PLOT and i % show_every == 0:
            print(
                f'Iteration: {i} Loss: {_loss.item():.4f} PSNR_noisy: {psnr_noisy:.4f} PSRN_gt: {psnr_gt:.4f} PSNR_gt_sm: {psnr_gt_sm:.4f}'
            )

            out_np = _out

            psnr_noisy = compare_psnr(img_noisy_np, out_np)
            psnr_gt = compare_psnr(img_np, out_np)

            if sample_count != 0:
                psnr_mean = compare_psnr(img_np, img_mean / sample_count)
            else:
                psnr_mean = 0

            print('###################')

            recons.append(out_np)

        i += 1

        return _loss

    if '../NORMAL-4951060-8.jpeg':
        net = get_net(input_depth,
                      NET_TYPE,
                      pad,
                      skip_n33d=skip_n33d,
                      skip_n33u=skip_n33u,
                      skip_n11=skip_n11,
                      num_scales=num_scales,
                      n_channels=1,
                      upsample_mode=upsample_mode,
                      dropout_mode_down=dropout_mode_down,
                      dropout_p_down=dropout_p_down,
                      dropout_mode_up=dropout_mode_up,
                      dropout_p_up=dropout_p_up,
                      dropout_mode_skip=dropout_mode_skip,
                      dropout_p_skip=dropout_p_skip,
                      dropout_mode_output=dropout_mode_output,
                      dropout_p_output=dropout_p_output).type(dtype)
    else:
        assert False

    net.apply(init_normal)

    losses = []
    recons = []
    uncerts = []
    uncerts_ale = []
    psnrs = []
    ssims = []

    img_mean = 0
    sample_count = 0
    i = 0
    psnr_noisy_last = 0
    loss_last = 1e16

    parameters = get_params(OPT_OVER, net, net_input)
    out_avg = None
    optimizer = torch.optim.AdamW(parameters, lr=LR, weight_decay=weight_decay)
    optimize(optimizer, closure_dip, num_iter)

    LOSSES['dip'] = losses
    RECONS['dip'] = recons
    UNCERTS['dip'] = uncerts
    UNCERTS_ALE['dip'] = uncerts_ale
    PSNRS['dip'] = psnrs
    SSIMS['dip'] = ssims

    to_plot = [img_np] + [np.clip(img, 0, 1) for img in RECONS['dip']]
    q = plot_image_grid(to_plot, factor=13)

    out_pil = np_to_pil(q)
    out_pil.save(f'{save_path}/{timestamp}/dip_recons.png', 'PNG')

    ## SGLD

    weight_decay = 1e-4
    LOSS = 'mse'
    input_depth = 32
    param_noise_sigma = 2

    NET_TYPE = 'skip'

    skip_n33d = 128
    skip_n33u = 128
    skip_n11 = 4
    num_scales = 5
    upsample_mode = 'bilinear'

    dropout_mode_down = 'None'
    dropout_p_down = 0.0
    dropout_mode_up = 'None'
    dropout_p_up = dropout_p_down
    dropout_mode_skip = 'None'
    dropout_p_skip = dropout_p_down
    dropout_mode_output = 'None'
    dropout_p_output = dropout_p_down

    net_input = get_noise(
        input_depth, INPUT,
        (img_pil.size[1], img_pil.size[0])).type(dtype).detach()

    net_input_saved = net_input.detach().clone()
    noise = net_input.detach().clone()

    mc_iter = 25

    def add_noise(model):
        for n in [x for x in model.parameters() if len(x.size()) == 4]:
            noise = torch.randn(n.size()) * param_noise_sigma * LR
            noise = noise.type(dtype)
            n.data = n.data + noise

    def closure_sgld():

        global i, out_avg, psnr_noisy_last, last_net, net_input, losses, psnrs, ssims, average_dropout_rate, no_layers, img_mean, sample_count, recons, uncerts, loss_last

        add_noise(net)

        if reg_noise_std > 0:
            net_input = net_input_saved + (noise.normal_() * reg_noise_std)

        out = net(net_input)
        out[:, :1] = out[:, :1].sigmoid()

        _loss = mse(out[:, :1], img_noisy_torch)
        _loss.backward()

        # Smoothing
        if out_avg is None:
            out_avg = out.detach()
        else:
            out_avg = out_avg * exp_weight + out.detach() * (1 - exp_weight)

        losses.append(mse(out_avg[:, :1], img_noisy_torch).item())

        _out = out.detach().cpu().numpy()[0, :1]
        _out_avg = out_avg.detach().cpu().numpy()[0, :1]

        psnr_noisy = compare_psnr(img_noisy_np, _out)
        psnr_gt = compare_psnr(img_np, _out)
        psnr_gt_sm = compare_psnr(img_np, _out_avg)

        ssim_noisy = compare_ssim(img_noisy_np[0], _out[0])
        ssim_gt = compare_ssim(img_np[0], _out[0])
        ssim_gt_sm = compare_ssim(img_np[0], _out_avg[0])

        psnrs.append([psnr_noisy, psnr_gt, psnr_gt_sm])
        ssims.append([ssim_noisy, ssim_gt, ssim_gt_sm])

        if PLOT and i % show_every == 0:
            print(
                f'Iteration: {i} Loss: {_loss.item():.4f} PSNR_noisy: {psnr_noisy:.4f} PSRN_gt: {psnr_gt:.4f} PSNR_gt_sm: {psnr_gt_sm:.4f}'
            )

            out_np = _out
            recons.append(out_np)

            out_np_var = np.var(np.array(recons[-mc_iter:]), axis=0)[:1]

            print('mean epi', out_np_var.mean())
            print('###################')

            uncerts.append(out_np_var)

        i += 1

        return _loss

    if '../NORMAL-4951060-8.jpeg':
        net = get_net(input_depth,
                      NET_TYPE,
                      pad,
                      skip_n33d=skip_n33d,
                      skip_n33u=skip_n33u,
                      skip_n11=skip_n11,
                      num_scales=num_scales,
                      n_channels=1,
                      upsample_mode=upsample_mode,
                      dropout_mode_down=dropout_mode_down,
                      dropout_p_down=dropout_p_down,
                      dropout_mode_up=dropout_mode_up,
                      dropout_p_up=dropout_p_up,
                      dropout_mode_skip=dropout_mode_skip,
                      dropout_p_skip=dropout_p_skip,
                      dropout_mode_output=dropout_mode_output,
                      dropout_p_output=dropout_p_output).type(dtype)
    else:
        assert False

    net.apply(init_normal)

    losses = []
    recons = []
    uncerts = []
    uncerts_ale = []
    psnrs = []
    ssims = []

    img_mean = 0
    sample_count = 0
    i = 0
    psnr_noisy_last = 0
    loss_last = 1e10
    out_avg = None
    last_net = None

    parameters = get_params(OPT_OVER, net, net_input)
    optimizer = torch.optim.AdamW(parameters, lr=LR, weight_decay=weight_decay)
    optimize(optimizer, closure_sgld, num_iter)

    LOSSES['sgld'] = losses
    RECONS['sgld'] = recons
    UNCERTS['sgld'] = uncerts
    UNCERTS_ALE['sgld'] = uncerts_ale
    PSNRS['sgld'] = psnrs
    SSIMS['sgld'] = ssims

    to_plot = [img_np] + [np.clip(img, 0, 1) for img in RECONS['sgld']]
    q = plot_image_grid(to_plot, factor=13)

    out_pil = np_to_pil(q)
    out_pil.save(f'{save_path}/{timestamp}/sgld_recons.png', 'PNG')

    errs = img_noisy_torch.cpu() - torch.tensor(RECONS['sgld'][-1])
    uncerts_epi = torch.tensor(UNCERTS['sgld'][-1]).unsqueeze(0)
    uncerts = uncerts_epi
    uce, err, uncert, freq = uceloss(errs**2, uncerts, n_bins=21)
    fig, ax = plot_uncert(err, uncert, freq, outlier_freq=0.001)
    ax.set_title(
        f'U = {uncerts.mean().sqrt().item():.4f}, UCE = {uce.item()*100:.3f}')
    plt.tight_layout()
    fig.savefig(f'{save_path}/{timestamp}/sgld_calib.png')

    ## SGLD + NLL

    LOSS = 'nll'

    net_input = get_noise(
        input_depth, INPUT,
        (img_pil.size[1], img_pil.size[0])).type(dtype).detach()

    net_input_saved = net_input.detach().clone()
    noise = net_input.detach().clone()

    def closure_sgldnll():

        global i, out_avg, psnr_noisy_last, last_net, net_input, losses, psnrs, ssims, average_dropout_rate, no_layers,\
               img_mean, sample_count, recons, uncerts, uncerts_ale, loss_last

        add_noise(net)

        if reg_noise_std > 0:
            net_input = net_input_saved + (noise.normal_() * reg_noise_std)

        out = net(net_input)
        out[:, :1] = out[:, :1].sigmoid()

        _loss = gaussian_nll(out[:, :1], out[:, 1:], img_noisy_torch)
        _loss.backward()

        out[:, 1:] = torch.exp(-out[:, 1:])  # aleatoric uncertainty

        # Smoothing
        if out_avg is None:
            out_avg = out.detach()
        else:
            out_avg = out_avg * exp_weight + out.detach() * (1 - exp_weight)

        with torch.no_grad():
            mse_loss = mse(out_avg[:, :1], img_noisy_torch).item()

        losses.append(mse_loss)

        _out = out.detach().cpu().numpy()[0, :1]
        _out_avg = out_avg.detach().cpu().numpy()[0, :1]

        psnr_noisy = compare_psnr(img_noisy_np, _out)
        psnr_gt = compare_psnr(img_np, _out)
        psnr_gt_sm = compare_psnr(img_np, _out_avg)

        ssim_noisy = compare_ssim(img_noisy_np[0], _out[0])
        ssim_gt = compare_ssim(img_np[0], _out[0])
        ssim_gt_sm = compare_ssim(img_np[0], _out_avg[0])

        psnrs.append([psnr_noisy, psnr_gt, psnr_gt_sm])
        ssims.append([ssim_noisy, ssim_gt, ssim_gt_sm])

        if PLOT and i % show_every == 0:
            print(
                f'Iteration: {i} Loss: {_loss.item():.4f} PSNR_noisy: {psnr_noisy:.4f} PSRN_gt: {psnr_gt:.4f} PSNR_gt_sm: {psnr_gt_sm:.4f}'
            )

            out_np = _out
            recons.append(out_np)
            out_np_ale = out.detach().cpu().numpy()[0, 1:]
            out_np_var = np.var(np.array(recons[-mc_iter:]), axis=0)[:1]

            print('mean epi', out_np_var.mean())
            print('mean ale', out_np_ale.mean())
            print('###################')

            uncerts.append(out_np_var)
            uncerts_ale.append(out_np_ale)

        i += 1

        return _loss

    if '../NORMAL-4951060-8.jpeg':
        net = get_net(input_depth,
                      NET_TYPE,
                      pad,
                      skip_n33d=skip_n33d,
                      skip_n33u=skip_n33u,
                      skip_n11=skip_n11,
                      num_scales=num_scales,
                      n_channels=2,
                      upsample_mode=upsample_mode,
                      dropout_mode_down=dropout_mode_down,
                      dropout_p_down=dropout_p_down,
                      dropout_mode_up=dropout_mode_up,
                      dropout_p_up=dropout_p_up,
                      dropout_mode_skip=dropout_mode_skip,
                      dropout_p_skip=dropout_p_skip,
                      dropout_mode_output=dropout_mode_output,
                      dropout_p_output=dropout_p_output).type(dtype)
    else:
        assert False

    net.apply(init_normal)

    losses = []
    recons = []
    uncerts = []
    uncerts_ale = []
    psnrs = []
    ssims = []

    img_mean = 0
    sample_count = 0
    i = 0
    psnr_noisy_last = 0
    loss_last = 1e6
    out_avg = None
    last_net = None

    parameters = get_params(OPT_OVER, net, net_input)
    optimizer = torch.optim.AdamW(parameters, lr=LR, weight_decay=weight_decay)
    optimize(optimizer, closure_sgldnll, num_iter)

    LOSSES['sgldnll'] = losses
    RECONS['sgldnll'] = recons
    UNCERTS['sgldnll'] = uncerts
    UNCERTS_ALE['sgldnll'] = uncerts_ale
    PSNRS['sgldnll'] = psnrs
    SSIMS['sgldnll'] = ssims

    to_plot = [img_np] + [np.clip(img, 0, 1) for img in RECONS['sgldnll']]
    q = plot_image_grid(to_plot, factor=13)

    out_pil = np_to_pil(q)
    out_pil.save(f'{save_path}/{timestamp}/sgldnll_recons.png', 'PNG')

    errs = img_noisy_torch.cpu() - torch.tensor(RECONS['sgldnll'][-1])
    uncerts_epi = torch.tensor(UNCERTS['sgldnll'][-1]).unsqueeze(0)
    uncerts_ale = torch.tensor(UNCERTS_ALE['sgldnll'][-1]).unsqueeze(0)
    uncerts = uncerts_epi + uncerts_ale
    uce, err, uncert, freq = uceloss(errs**2, uncerts, n_bins=21)
    fig, ax = plot_uncert(err, uncert, freq, outlier_freq=0.001)
    ax.set_title(
        f'U = {uncerts.mean().sqrt().item():.4f}, UCE = {uce.item()*100:.3f}')
    plt.tight_layout()
    fig.savefig(f'{save_path}/{timestamp}/sgldnll_calib.png')

    errs = torch.tensor(img_np).unsqueeze(0) - torch.tensor(
        RECONS['sgldnll'][-1])
    uncerts_epi = torch.tensor(UNCERTS['sgldnll'][-1]).unsqueeze(0)
    uncerts_ale = torch.tensor(UNCERTS_ALE['sgldnll'][-1]).unsqueeze(0)
    uncerts = uncerts_epi + uncerts_ale
    uce, err, uncert, freq = uceloss(errs**2, uncerts, n_bins=21)
    fig, ax = plot_uncert(err, uncert, freq, outlier_freq=0.001)
    ax.set_title(
        f'U = {uncerts.mean().sqrt().item():.4f}, UCE = {uce.item()*100:.3f}')
    plt.tight_layout()
    fig.savefig(f'{save_path}/{timestamp}/sgldnll_calib2.png')

    ## MCDIP

    OPTIMIZER = 'adamw'
    weight_decay = 1e-4
    LOSS = 'nll'
    input_depth = 32
    figsize = 4

    NET_TYPE = 'skip'

    skip_n33d = 128
    skip_n33u = 128
    skip_n11 = 4
    num_scales = 5
    upsample_mode = 'bilinear'

    dropout_mode_down = '2d'
    dropout_p_down = 0.3
    dropout_mode_up = '2d'
    dropout_p_up = dropout_p_down
    dropout_mode_skip = 'None'
    dropout_p_skip = dropout_p_down
    dropout_mode_output = 'None'
    dropout_p_output = dropout_p_down

    net_input = get_noise(
        input_depth, INPUT,
        (img_pil.size[1], img_pil.size[0])).type(dtype).detach()

    net_input_saved = net_input.detach().clone()
    noise = net_input.detach().clone()

    mc_iter = 25

    def closure_mcdip():

        global i, out_avg, psnr_noisy_last, last_net, net_input, losses, psnrs, ssims, average_dropout_rate, no_layers,\
               img_mean, sample_count, recons, uncerts, uncerts_ale, loss_last

        if reg_noise_std > 0:
            net_input = net_input_saved + (noise.normal_() * reg_noise_std)

        out = net(net_input)
        out[:, :1] = out[:, :1].sigmoid()

        _loss = gaussian_nll(out[:, :1], out[:, 1:], img_noisy_torch)
        _loss.backward()

        out[:, 1:] = torch.exp(-out[:, 1:])  # aleatoric uncertainty

        # Smoothing
        if out_avg is None:
            out_avg = out.detach()
        else:
            out_avg = out_avg * exp_weight + out.detach() * (1 - exp_weight)

        losses.append(mse(out_avg[:, :1], img_noisy_torch).item())

        _out = out.detach().cpu().numpy()[0, :1]
        _out_avg = out_avg.detach().cpu().numpy()[0, :1]

        psnr_noisy = compare_psnr(img_noisy_np, _out)
        psnr_gt = compare_psnr(img_np, _out)
        psnr_gt_sm = compare_psnr(img_np, _out_avg)

        ssim_noisy = compare_ssim(img_noisy_np[0], _out[0])
        ssim_gt = compare_ssim(img_np[0], _out[0])
        ssim_gt_sm = compare_ssim(img_np[0], _out_avg[0])

        psnrs.append([psnr_noisy, psnr_gt, psnr_gt_sm])
        ssims.append([ssim_noisy, ssim_gt, ssim_gt_sm])

        if PLOT and i % show_every == 0:
            print(
                f'Iteration: {i} Loss: {_loss.item():.4f} PSNR_noisy: {psnr_noisy:.4f} PSRN_gt: {psnr_gt:.4f} PSNR_gt_sm: {psnr_gt_sm:.4f}'
            )

            img_list = []
            aleatoric_list = []

            with torch.no_grad():
                net_input = net_input_saved + (noise.normal_() * reg_noise_std)

                for _ in range(mc_iter):
                    img = net(net_input)
                    img[:, :1] = img[:, :1].sigmoid()
                    img[:, 1:] = torch.exp(-img[:, 1:])
                    img_list.append(torch_to_np(img[:1]))
                    aleatoric_list.append(torch_to_np(img[:, 1:]))

            img_list_np = np.array(img_list)
            out_np = np.mean(img_list_np, axis=0)[:1]
            out_np_ale = np.mean(aleatoric_list, axis=0)[:1]
            out_np_var = np.var(img_list_np, axis=0)[:1]

            psnr_noisy = compare_psnr(img_noisy_np, out_np)
            psnr_gt = compare_psnr(img_np, out_np)

            print('mean epi', out_np_var.mean())
            print('mean ale', out_np_ale.mean())
            print('###################')

            recons.append(out_np)
            uncerts.append(out_np_var)
            uncerts_ale.append(out_np_ale)

        i += 1

        return _loss

    if '../NORMAL-4951060-8.jpeg':
        net = get_net(input_depth,
                      NET_TYPE,
                      pad,
                      skip_n33d=skip_n33d,
                      skip_n33u=skip_n33u,
                      skip_n11=skip_n11,
                      num_scales=num_scales,
                      n_channels=2,
                      upsample_mode=upsample_mode,
                      dropout_mode_down=dropout_mode_down,
                      dropout_p_down=dropout_p_down,
                      dropout_mode_up=dropout_mode_up,
                      dropout_p_up=dropout_p_up,
                      dropout_mode_skip=dropout_mode_skip,
                      dropout_p_skip=dropout_p_skip,
                      dropout_mode_output=dropout_mode_output,
                      dropout_p_output=dropout_p_output).type(dtype)
    else:
        assert False

    net.apply(init_normal)

    losses = []
    recons = []
    uncerts = []
    uncerts_ale = []
    psnrs = []
    ssims = []

    img_mean = 0
    sample_count = 0
    i = 0
    psnr_noisy_last = 0
    loss_last = 1e16
    out_avg = None
    last_net = None

    parameters = get_params(OPT_OVER, net, net_input)
    optimizer = torch.optim.AdamW(parameters, lr=LR, weight_decay=weight_decay)
    optimize(optimizer, closure_mcdip, num_iter)

    LOSSES['mcdip'] = losses
    RECONS['mcdip'] = recons
    UNCERTS['mcdip'] = uncerts
    UNCERTS_ALE['mcdip'] = uncerts_ale
    PSNRS['mcdip'] = psnrs
    SSIMS['mcdip'] = ssims

    # In[75]:

    to_plot = [img_np] + [np.clip(img, 0, 1) for img in RECONS['mcdip']]
    q = plot_image_grid(to_plot, factor=13)

    out_pil = np_to_pil(q)
    out_pil.save(f'{save_path}/{timestamp}/mcdip_recons.png', 'PNG')

    # In[85]:

    errs = img_noisy_torch.cpu() - torch.tensor(RECONS['mcdip'][-1])
    uncerts_epi = torch.tensor(UNCERTS['mcdip'][-1]).unsqueeze(0)
    uncerts_ale = torch.tensor(UNCERTS_ALE['mcdip'][-1]).unsqueeze(0)
    uncerts = uncerts_epi + uncerts_ale
    uce, err, uncert, freq = uceloss(errs**2, uncerts, n_bins=21)
    fig, ax = plot_uncert(err, uncert, freq, outlier_freq=0.001)
    ax.set_title(
        f'U = {uncerts.mean().sqrt().item():.4f}, UCE = {uce.item()*100:.3f}')
    plt.tight_layout()
    fig.savefig(f'{save_path}/{timestamp}/mcdip_calib.png')

    # In[86]:

    errs = torch.tensor(img_np).unsqueeze(0) - torch.tensor(
        RECONS['mcdip'][-1])
    uncerts_epi = torch.tensor(UNCERTS['mcdip'][-1]).unsqueeze(0)
    uncerts_ale = torch.tensor(UNCERTS_ALE['mcdip'][-1]).unsqueeze(0)
    uncerts = uncerts_epi + uncerts_ale
    uce, err, uncert, freq = uceloss(errs**2, uncerts, n_bins=21)
    fig, ax = plot_uncert(err, uncert, freq, outlier_freq=0.001)
    ax.set_title(
        f'U = {uncerts.mean().sqrt().item():.4f}, UCE = {uce.item()*100:.3f}')
    plt.tight_layout()
    fig.savefig(f'{save_path}/{timestamp}/mcdip_calib2.png')

    fig, ax0 = plt.subplots(1, 1)

    for key, loss in LOSSES.items():
        ax0.plot(range(len(loss)), loss, label=key)
        ax0.set_title('MSE')
        ax0.set_xlabel('iteration')
        ax0.set_ylabel('mse loss')
        ax0.set_ylim(0, 0.03)
        ax0.grid(True)
        ax0.legend()

    plt.tight_layout()
    plt.savefig(f'{save_path}/{timestamp}/losses.png')
    plt.show()

    fig, axs = plt.subplots(1, 3, constrained_layout=True)
    labels = ["psnr_noisy", "psnr_gt", "psnr_gt_sm"]

    for key, psnr in PSNRS.items():
        psnr = np.array(psnr)
        for i in range(psnr.shape[1]):
            axs[i].plot(range(psnr.shape[0]), psnr[:, i], label=key)
            axs[i].set_title(labels[i])
            axs[i].set_xlabel('iteration')
            axs[i].set_ylabel('psnr')
            axs[i].legend()

    plt.savefig(f'{save_path}/{timestamp}/psnrs.png')
    plt.show()

    fig, axs = plt.subplots(1, 3, constrained_layout=True)
    labels = ["ssim_noisy", "ssim_gt", "ssim_gt_sm"]

    for key, ssim in SSIMS.items():
        ssim = np.array(ssim)
        for i in range(ssim.shape[1]):
            axs[i].plot(range(ssim.shape[0]), ssim[:, i], label=key)
            axs[i].set_title(labels[i])
            axs[i].set_xlabel('iteration')
            axs[i].legend()
            axs[i].set_ylabel('ssim')

    plt.savefig(f'{save_path}/{timestamp}/ssims.png')
    plt.show()

    # save stuff for plotting
    if save:
        np.savez(f"{save_path}/{timestamp}/save.npz",
                 noisy_img=img_noisy_np,
                 losses=LOSSES,
                 recons=RECONS,
                 uncerts=UNCERTS,
                 uncerts_ale=UNCERTS_ALE,
                 psnrs=PSNRS,
                 ssims=SSIMS)
Пример #4
0
def denoise(fname, plot=False, stopping_mode="AMNS"):
    """Add AWGN with sigma=25 to the given image and denoise it.

    Args:
        fname: Path to the image.
        mode: Stopping mode to use. either "AMNS" or "SMNS"

    Returns:
        A tuple with the denoised image in numpy format as the first element,
        and a history of the PSNR in the second element.

    """
    dtype = torch.cuda.FloatTensor

    sigma = 25
    sigma_ = sigma / 255.
    np.random.seed(7)

    img_pil = crop_image(get_image(fname, imsize)[0], d=32)
    img_np = pil_to_np(img_pil)
    img_noisy_pil, img_noisy_np = get_noisy_image(img_np, sigma_)

    if plot:
        plot_image_grid([img_np, img_noisy_np], 4, 6)

    INPUT = 'noise'  # 'meshgrid'
    pad = 'reflection'
    OPT_OVER = 'net'  # 'net,input'

    reg_noise_std = 1. / 30.  # set to 1./20. for sigma=50
    if stopping_mode == "AMNS":
        target_method_noise_std = predict_method_noise_std(
            orig_img_noisy_np, sigma / 255) * 255
    elif stopping_mode == "SMNS":
        target_method_noise_std = 24.45
    else:
        raise ValueError("Unknown stopping mode {}".format(stopping_mode))

    print("Predicted method noise std: {:.4f}".format(target_method_noise_std))
    LR = 0.01
    exp_weight = 0.99  # Exponential averaging coefficient

    OPTIMIZER = 'adam'  # 'LBFGS'
    show_every = 500

    num_iter = 4000
    input_depth = 32
    figsize = 4

    net = get_net(input_depth,
                  'skip',
                  pad,
                  skip_n33d=128,
                  skip_n33u=128,
                  skip_n11=4,
                  num_scales=5,
                  upsample_mode='bilinear').type(dtype)

    # net_input = get_noise(input_depth, INPUT, (img_pil.size[1], img_pil.size[0])).type(dtype).detach()
    net_input = get_noise(
        input_depth, INPUT,
        (img_np.shape[1], img_np.shape[2])).type(dtype).detach()

    # Compute number of parameters
    s = sum([np.prod(list(p.size())) for p in net.parameters()])
    print('Number of params: %d' % s)

    # Loss
    mse = torch.nn.MSELoss().type(dtype)

    img_noisy_torch = np_to_torch(img_noisy_np).type(dtype)
    net_input_saved = net_input.detach().clone()
    noise = net_input.detach().clone()
    out_avg = None
    max_out = None
    max_psnr = 0
    last_net = None
    psrn_noisy_last = 0

    i = 0
    psnr_history = []
    overfit_counter = -75

    def closure():
        nonlocal i, out_avg, psrn_noisy_last, last_net, psnr_history, overfit_counter, max_out, max_psnr

        if reg_noise_std > 0:
            net_input = net_input_saved + (noise.normal_() * reg_noise_std)

        out = net(net_input)

        # Smoothing
        if exp_weight is not None:
            if out_avg is None:
                out_avg = out.detach()
            else:
                out_avg = out_avg * exp_weight + out.detach() * (1 -
                                                                 exp_weight)

        total_loss = mse(out, img_noisy_torch)
        total_loss.backward()

        psrn_noisy = compare_psnr(img_noisy_np, out.detach().cpu().numpy()[0])
        psrn_gt = compare_psnr(img_np, out.detach().cpu().numpy()[0])
        psrn_gt_sm = compare_psnr(img_np, out_avg.detach().cpu().numpy()[0])
        method_noise_mse = np.sqrt(
            compare_mse(
                img_noisy_np -
                out_avg.detach().cpu().type(torch.FloatTensor).numpy()[0],
                np.zeros(img_np.shape, dtype=np.float32)) * 255**2)
        psnr_history.append((psrn_gt_sm, method_noise_mse))

        print(
            'Iteration %05d    Loss %f   PSNR_noisy: %f   PSRN_gt: %f PSNR_gt_sm: %f'
            % (i, total_loss.item(), psrn_noisy, psrn_gt, psrn_gt_sm),
            '\r',
            end='')
        if plot and i % show_every == 0:
            out_np = torch_to_np(out)
            plot_image_grid(
                [np.clip(out_np, 0, 1),
                 np.clip(torch_to_np(out_avg), 0, 1)],
                factor=figsize,
                nrow=1)

        if method_noise_mse < 24.45:
            overfit_counter += 1
            if overfit_counter == 0:
                raise StopIteration()
        if psrn_gt_sm > max_psnr:
            max_out = out_avg
            max_psnr = psrn_gt_sm

        # Backtracking
        if i % show_every:
            if psrn_noisy - psrn_noisy_last < -5:
                print('Falling back to previous checkpoint.')

                for new_param, net_param in zip(last_net, net.parameters()):
                    net_param.data.copy_(new_param.cuda())

                return total_loss * 0
            else:
                last_net = [x.data.cpu() for x in net.parameters()]
                psrn_noisy_last = psrn_noisy

        i += 1
        return total_loss

    p = get_params(OPT_OVER, net, net_input)
    try:
        optimize(OPTIMIZER, p, closure, LR, num_iter)
    except StopIteration:
        pass

    return out_avg, psnr_history
Пример #5
0
def denoise(fname, plot=False, stopping_mode="AMNS"):
    """Add AWGN with sigma=25 to the given image and denoise it.

    Args:
        fname: Path to the image.
        mode: Stopping mode to use. either "AMNS", "SMNS", or "static".

    Returns:
        A tuple with the denoised image in numpy format as the first element,
        and a history of the PSNR in the second element.

    """
    start_time = datetime.now()
    dtype = torch.cuda.FloatTensor

    imsize = -1
    sigma = 25
    sigma_ = sigma/255.

    MAX_LEVEL = 5

    # Fix the random seed to that the noisy image are identical everytime.
    # This is mandatory as in the report we compute PSNR by averaging two runs.
    # If the runs used images corrupted with different noise, the noise would
    # cancel out, artificially inflating PSNR.
    np.random.seed(7)
    orig_img_pil = crop_image(get_image(fname, imsize)[0], d=32)
    orig_img_np = pil_to_np(orig_img_pil)

    # Comment the following line and uncomment the next when ground truth is not known
    orig_img_noisy_pil, orig_img_noisy_np = get_noisy_image(orig_img_np, sigma_)
    # orig_img_noisy_pil, orig_img_noisy_np = orig_img_pil, orig_img_np

    if plot:
        plot_image_grid([orig_img_noisy_np], 4, 5)

    # # Set up parameters and net

    input_depth = 3 if "snail" in fname else 32

    INPUT = 'noise'
    OPT_OVER = 'net'
    KERNEL_TYPE = 'lanczos2'

    tv_weight = 0.0

    OPTIMIZER = 'adam'
    LR = 0.01
    weight_decay = 0.0

    show_every = 100
    RAMPUP_DURATION = 70
    figsize = 10

    def get_reg_noise_std(sigma):
        return sigma/(60*25)+1/60

    reg_noise_std = get_reg_noise_std(sigma)
    if stopping_mode == "AMNS":
        target_method_noise_std = predict_method_noise_std(orig_img_noisy_np, sigma/255) * 255
    elif stopping_mode == "SMNS":
        target_method_noise_std = 24.45
    elif stopping_mode is None:
        target_method_noise_std = -1

    print("Target method noise: {:.4f}".format(target_method_noise_std))


    def get_phase_duration(level, phase):
        return 2
        if level <= MAX_LEVEL - 1:
            if phase == 'trans':
                return 70
            elif phase == 'stab':
                return 50
        else:
            if phase == 'trans':
                return 100
            elif phase == 'stab':
                # Use a fixed number of iterations when no stopping_mode
                # otherwise use arbitrarily large number such that early stopping
                # kicks in before it is reached.
                return 650 if stopping_mode is None else 2000000


    net = SkipNetwork(
        input_channels=input_depth,
        skip_channels=[4, 4, 4, 4, 4],
        down_channels=[128, 128, 128, 128, 128],
        norm_fun="BatchNorm"
    ).type(dtype)

    exp_weight = 0.99

    mse = torch.nn.MSELoss().type(dtype)

    s = sum(np.prod(list(p.size())) for p in net.parameters())
    print('Number of params for D: %d' % s)

    last_out = None
    out_avg = None
    psrn_noisy_last = 0
    psnr_history = []
    overfit_counter = -25

    def closure(i, j, max_iter, cur_level, phase, image_target):
        """Innermost loop of the optimization procedure."""
        nonlocal out_avg, psrn_noisy_last, psnr_history, overfit_counter

        # note: j and max_iter are relative to the current phase
        # i counts the total number of iterations since the beginning of execution

        if reg_noise_std > 0:
            # Adapt regularization noise amplitude to current level.
            # It seems like at lower resolutions, reg. noise is too strong when using values from DIP
            net_input.data = net_input_saved + (noise.normal_() * (reg_noise_std * 10**(-(MAX_LEVEL - cur_level))))

        out = net(net_input)

        # If at last level, start computing exponential moving average
        if exp_weight is not None and cur_level == MAX_LEVEL:
            if out_avg is None:
                out_avg = out.detach()
            else:
                out_avg = out_avg * exp_weight + out.detach() * (1 - exp_weight)

        if cur_level == MAX_LEVEL:
            # Measure PSNR
            psrn_noisy = compare_psnr(img_noisy_np, out.detach().cpu().numpy()[0])
            psrn_gt = compare_psnr(orig_img_np, out.detach().cpu().numpy()[0])
            psrn_gt_avg = compare_psnr(orig_img_np, out_avg.detach().cpu().numpy()[0])
            method_noise_mse = np.sqrt(compare_mse(orig_img_noisy_np - out_avg.detach().cpu().type(torch.FloatTensor).numpy()[0], np.zeros(orig_img_np.shape, dtype=np.float32))*255**2)

            if method_noise_mse < target_method_noise_std:
                overfit_counter += 1

            if overfit_counter == 0:
                raise StopIteration()
            psnr_history.append((psrn_gt_avg, method_noise_mse))

        if plot and (i % show_every == 0 or j == max_iter - 1):
            print("i:{} j:{}/{} phase:{}\n".format(i, j+1, max_iter, phase))
            out_np = var_to_np(out)
            img = np.clip(out_np, 0, 1)
            plot_image_grid([img], factor=figsize, nrow=2)

        total_loss = mse(out, image_target)
        total_loss.backward()

        if cur_level == MAX_LEVEL:
            print('Iteration %05d    Loss %f   Noise_stddev %f    PSNR_noisy: %f   PSRN_gt: %f PSNR_gt_sm: %f' % (i, total_loss.item(), method_noise_mse, psrn_noisy, psrn_gt, psrn_gt_avg), '\r', end='')
        else:
            print('Iteration %05d    Loss %f' % (i, total_loss.item()), '\r', end='')
        if i%100 == 0:
            print("")

        return total_loss, out

    i = 0  # Global iteration count

    # Init fixed random code vector.
    orig_noise = get_noise(
            input_depth,
            INPUT,
            (
                int(orig_img_pil.size[1]),
                int(orig_img_pil.size[0])
            )
        ).type(dtype).detach()
    img_noisy_np = None

    # Iterate over each resolution level
    for cur_level in range(1, MAX_LEVEL + 1):
        net.grow()
        net = net.type(dtype)
        print("Increased network size")
        s = sum(np.prod(list(p.size())) for p in net.parameters())
        print('Number of params: %d' % s)

        # Downsample z
        if cur_level != MAX_LEVEL:
            net_input = nn.AvgPool2d(kernel_size=2**(MAX_LEVEL - cur_level))(orig_noise)
        else:
            net_input = orig_noise

        # Save a copy of z as z will be perturbed by normal noise at each iteration
        net_input_saved = net_input.data.clone()

        img_noisy_pil = orig_img_noisy_pil.resize(
            (
                orig_img_noisy_pil.size[0] // (2**(MAX_LEVEL - cur_level)),
                orig_img_noisy_pil.size[1] // (2**(MAX_LEVEL - cur_level))
            ),
            Image.ANTIALIAS
        )

        # Save the downsampled noisy image from the previous level for when we need to interpolate it
        # with the current resolution

        if cur_level != 1:
            prev_img_noisy_np = img_noisy_np

        img_noisy_np = pil_to_np(img_noisy_pil)
        img_noisy_var = np_to_var(img_noisy_np).type(dtype)
        noise = net_input.data.clone()

        # Skip transition and stabilization phases if we're at first level
        for phase in ["trans", "stab"] if cur_level != 1 else ["stab"]:
            # Re-create a new optimizer after each flush()/grow() calls, as we need to let the optimizer know about
            # New or removed model parameters.
            optimizer = torch.optim.Adam(net.parameters(), lr=LR, weight_decay=weight_decay)

            # Flush the network before starting the stabilization phase
            if phase == "stab":
                net.flush()
                net = net.type(dtype)

            for j in range(get_phase_duration(cur_level, phase)):
                # Increase alpha smoothly from 0 at the first iteration to 1 at the last iteration
                alpha = min(j / RAMPUP_DURATION, 1.0)
                LR_rampup = np.sin((alpha + 1.5) * np.pi)/2 + 0.5
                set_lr(optimizer, LR*LR_rampup)

                if phase == "trans":
                    set_lr(optimizer, LR*LR_rampup)
                    net.update_alpha(alpha)
                    img_noisy_var = np_to_var(interpolate_lr(img_noisy_np, prev_img_noisy_np, alpha)).type(dtype)

                optimizer.zero_grad()
                try:
                    _, last_out = closure(i, j, get_phase_duration(cur_level, phase), cur_level, phase, img_noisy_var)
                except StopIteration:
                    break
                i += 1
                optimizer.step()
    print("finished, time: {}".format(datetime.now() - start_time))
    return out_avg, psnr_history