Пример #1
0
def main(args):
    if args.cfg_file is not None:
        cfg.update_from_file(args.cfg_file)
    if args.opts:
        cfg.update_from_list(args.opts)
    if args.enable_ce:
        random.seed(0)
        np.random.seed(0)

    cfg.TRAINER_ID = int(os.getenv("PADDLE_TRAINER_ID", 0))
    cfg.NUM_TRAINERS = int(os.environ.get('PADDLE_TRAINERS_NUM', 1))

    cfg.check_and_infer()
    print_info(pprint.pformat(cfg))

    name = cfg.TRAIN.MODEL_SAVE_DIR.replace("output/", "")
    store_config = {
        "model_name": cfg.MODEL.MODEL_NAME,
        "solver": cfg.SOLVER.OPTIMIZER,
        "lr": cfg.SOLVER.LR,
        "lr_policy": cfg.SOLVER.LR_POLICY,
    }
    wandb.init(project="rs_segmentation",
               name=name,
               config=store_config,
               dir=cfg.LOG_DIR,
               notes="")

    train(cfg)
Пример #2
0
def main(args):
    if args.cfg_file is not None:
        cfg.update_from_file(args.cfg_file)
    if args.opts is not None:
        cfg.update_from_list(args.opts)
    cfg.check_and_infer(reset_dataset=True)
    print(pprint.pformat(cfg))
    train(cfg)
Пример #3
0
def main():
    args = parse_args()
    if args.cfg_file is not None:
        cfg.update_from_file(args.cfg_file)
    if args.opts:
        cfg.update_from_list(args.opts)
    cfg.check_and_infer()
    print(pprint.pformat(cfg))
    export_inference_model(args)
Пример #4
0
def main():
    args = parse_args()
    if args.cfg_file is not None:
        cfg.update_from_file(args.cfg_file)
    if args.opts:
        cfg.update_from_list(args.opts)
    cfg.check_and_infer()
    print(pprint.pformat(cfg))
    evaluate(cfg, **args.__dict__)
Пример #5
0
def parse_args():
    parser = argparse.ArgumentParser(description="数据预处理")
    parser.add_argument("-c", "--cfg_file", type=str, help="配置文件路径")
    parser.add_argument("opts", nargs=argparse.REMAINDER)
    args = parser.parse_args()

    if args.cfg_file is not None:
        cfg.update_from_file(args.cfg_file)
    if args.opts:
        cfg.update_from_list(args.opts)
Пример #6
0
def main(args):
    if args.cfg_file is not None:
        cfg.update_from_file(args.cfg_file)
    if args.opts:
        cfg.update_from_list(args.opts)

    cfg.TRAINER_ID = int(os.getenv("PADDLE_TRAINER_ID", 0))
    cfg.NUM_TRAINERS = int(os.environ.get('PADDLE_TRAINERS_NUM', 1))

    cfg.check_and_infer()
    print_info(pprint.pformat(cfg))
    train(cfg)
Пример #7
0
def main(args):
    if args.cfg_file is not None:
        cfg.update_from_file(args.cfg_file)
    cfg.check_and_infer(reset_dataset=True)
    logger.info(pprint.pformat(cfg))

    init_global_variable()
    check_train_dataset()

    init_global_variable()
    check_val_dataset()

    init_global_variable()
    check_test_dataset()

    inf_resize_value_check()
Пример #8
0
def main(args):
    if args.cfg_file is not None:
        cfg.update_from_file(args.cfg_file)
    cfg.check_and_infer()
    logger.info(pprint.pformat(cfg))

    init_global_variable()
    check_train_dataset()

    init_global_variable()
    check_val_dataset()

    init_global_variable()
    check_test_dataset()

    inf_resize_value_check()

    print("\nDetailed error information can be viewed in detail.log file.")
Пример #9
0
def parse_args():
    parser = argparse.ArgumentParser(description="预测")
    parser.add_argument("-c", "--cfg_file", type=str, help="配置文件路径")
    parser.add_argument("--use_gpu",
                        action="store_true",
                        default=False,
                        help="使用GPU推理")
    parser.add_argument("opts", nargs=argparse.REMAINDER)
    args = parser.parse_args()

    if args.cfg_file is not None:
        cfg.update_from_file(args.cfg_file)
    if args.opts:
        cfg.update_from_list(args.opts)
    if args.use_gpu:  # 命令行参数只能从false改成true,不能声明false
        cfg.TRAIN.USE_GPU = True

    cfg.set_immutable(True)
Пример #10
0
                # BGR->RGB
                img = cv2.imread(
                    os.path.join(cfg.DATASET.DATA_DIR,
                                 img_names[i]))[..., ::-1]
                log_writer.add_image("Images/{}".format(img_names[i]),
                                     img,
                                     epoch,
                                     dataformats='HWC')
                #add ground truth (label) images
                if grt is not None:
                    log_writer.add_image("Label/{}".format(img_names[i]),
                                         grt[..., ::-1],
                                         epoch,
                                         dataformats='HWC')

        # If in local_test mode, only visualize 5 images just for testing
        # procedure
        if local_test and img_cnt >= 5:
            break


if __name__ == '__main__':
    args = parse_args()
    if args.cfg_file is not None:
        cfg.update_from_file(args.cfg_file)
    if args.opts:
        cfg.update_from_list(args.opts)
    cfg.check_and_infer()
    print(pprint.pformat(cfg))
    visualize(cfg, **args.__dict__)
Пример #11
0
def train(cfg):
    # startup_prog = fluid.Program()
    # train_prog = fluid.Program()

    drop_last = True

    dataset = SegDataset(
        file_list=cfg.DATASET.TRAIN_FILE_LIST,
        mode=ModelPhase.TRAIN,
        shuffle=True,
        data_dir=cfg.DATASET.DATA_DIR)

    def data_generator():
        if args.use_mpio:
            data_gen = dataset.multiprocess_generator(
                num_processes=cfg.DATALOADER.NUM_WORKERS,
                max_queue_size=cfg.DATALOADER.BUF_SIZE)
        else:
            data_gen = dataset.generator()

        batch_data = []
        for b in data_gen:
            batch_data.append(b)
            if len(batch_data) == (cfg.BATCH_SIZE // cfg.NUM_TRAINERS):
                for item in batch_data:
                    yield item[0], item[1], item[2]
                batch_data = []
        # If use sync batch norm strategy, drop last batch if number of samples
        # in batch_data is less then cfg.BATCH_SIZE to avoid NCCL hang issues
        if not cfg.TRAIN.SYNC_BATCH_NORM:
            for item in batch_data:
                yield item[0], item[1], item[2]

    # Get device environment
    # places = fluid.cuda_places() if args.use_gpu else fluid.cpu_places()
    # place = places[0]
    gpu_id = int(os.environ.get('FLAGS_selected_gpus', 0))
    place = fluid.CUDAPlace(gpu_id) if args.use_gpu else fluid.CPUPlace()
    places = fluid.cuda_places() if args.use_gpu else fluid.cpu_places()

    # Get number of GPU
    dev_count = cfg.NUM_TRAINERS if cfg.NUM_TRAINERS > 1 else len(places)
    print_info("#Device count: {}".format(dev_count))

    # Make sure BATCH_SIZE can divided by GPU cards
    assert cfg.BATCH_SIZE % dev_count == 0, (
        'BATCH_SIZE:{} not divisble by number of GPUs:{}'.format(
            cfg.BATCH_SIZE, dev_count))
    # If use multi-gpu training mode, batch data will allocated to each GPU evenly
    batch_size_per_dev = cfg.BATCH_SIZE // dev_count
    print_info("batch_size_per_dev: {}".format(batch_size_per_dev))

    data_loader, loss, lr, pred, grts, masks, image = build_model(
        phase=ModelPhase.TRAIN)
    data_loader.set_sample_generator(
        data_generator, batch_size=batch_size_per_dev, drop_last=drop_last)

    exe = fluid.Executor(place)

    cfg.update_from_file(args.teacher_cfg_file)
    # teacher_arch = teacher_cfg.architecture
    teacher_program = fluid.Program()
    teacher_startup_program = fluid.Program()

    with fluid.program_guard(teacher_program, teacher_startup_program):
        with fluid.unique_name.guard():
            _, teacher_loss, _, _, _, _, _ = build_model(
                teacher_program,
                teacher_startup_program,
                phase=ModelPhase.TRAIN,
                image=image,
                label=grts,
                mask=masks)

    exe.run(teacher_startup_program)

    teacher_program = teacher_program.clone(for_test=True)
    ckpt_dir = cfg.SLIM.KNOWLEDGE_DISTILL_TEACHER_MODEL_DIR
    assert ckpt_dir is not None
    print('load teacher model:', ckpt_dir)
    if os.path.exists(ckpt_dir):
        try:
            fluid.load(teacher_program, os.path.join(ckpt_dir, 'model'), exe)
        except:
            fluid.io.load_params(exe, ckpt_dir, main_program=teacher_program)

    # cfg = load_config(FLAGS.config)
    cfg.update_from_file(args.cfg_file)
    data_name_map = {
        'image': 'image',
        'label': 'label',
        'mask': 'mask',
    }
    merge(teacher_program, fluid.default_main_program(), data_name_map, place)
    distill_pairs = [[
        'teacher_bilinear_interp_2.tmp_0', 'bilinear_interp_0.tmp_0'
    ]]

    def distill(pairs, weight):
        """
        Add 3 pairs of distillation losses, each pair of feature maps is the
        input of teacher and student's yolov3_loss respectively
        """
        loss = l2_loss(pairs[0][0], pairs[0][1])
        weighted_loss = loss * weight
        return weighted_loss

    distill_loss = distill(distill_pairs, 0.1)
    cfg.update_from_file(args.cfg_file)
    optimizer = solver.Solver(None, None)
    all_loss = loss + distill_loss
    lr = optimizer.optimise(all_loss)

    exe.run(fluid.default_startup_program())

    exec_strategy = fluid.ExecutionStrategy()
    # Clear temporary variables every 100 iteration
    if args.use_gpu:
        exec_strategy.num_threads = fluid.core.get_cuda_device_count()
    exec_strategy.num_iteration_per_drop_scope = 100
    build_strategy = fluid.BuildStrategy()
    build_strategy.fuse_all_reduce_ops = False
    build_strategy.fuse_all_optimizer_ops = False
    build_strategy.fuse_elewise_add_act_ops = True
    if cfg.NUM_TRAINERS > 1 and args.use_gpu:
        dist_utils.prepare_for_multi_process(exe, build_strategy,
                                             fluid.default_main_program())
        exec_strategy.num_threads = 1

    if cfg.TRAIN.SYNC_BATCH_NORM and args.use_gpu:
        if dev_count > 1:
            # Apply sync batch norm strategy
            print_info("Sync BatchNorm strategy is effective.")
            build_strategy.sync_batch_norm = True
        else:
            print_info(
                "Sync BatchNorm strategy will not be effective if GPU device"
                " count <= 1")
    compiled_train_prog = fluid.CompiledProgram(
        fluid.default_main_program()).with_data_parallel(
            loss_name=all_loss.name,
            exec_strategy=exec_strategy,
            build_strategy=build_strategy)

    # Resume training
    begin_epoch = cfg.SOLVER.BEGIN_EPOCH
    if cfg.TRAIN.RESUME_MODEL_DIR:
        begin_epoch = load_checkpoint(exe, fluid.default_main_program())
    # Load pretrained model
    elif os.path.exists(cfg.TRAIN.PRETRAINED_MODEL_DIR):
        load_pretrained_weights(exe, fluid.default_main_program(),
                                cfg.TRAIN.PRETRAINED_MODEL_DIR)
    else:
        print_info(
            'Pretrained model dir {} not exists, training from scratch...'.
            format(cfg.TRAIN.PRETRAINED_MODEL_DIR))

    #fetch_list = [avg_loss.name, lr.name]
    fetch_list = [
        loss.name, 'teacher_' + teacher_loss.name, distill_loss.name, lr.name
    ]

    if args.debug:
        # Fetch more variable info and use streaming confusion matrix to
        # calculate IoU results if in debug mode
        np.set_printoptions(
            precision=4, suppress=True, linewidth=160, floatmode="fixed")
        fetch_list.extend([pred.name, grts.name, masks.name])
        cm = ConfusionMatrix(cfg.DATASET.NUM_CLASSES, streaming=True)

    if args.use_vdl:
        if not args.vdl_log_dir:
            print_info("Please specify the log directory by --vdl_log_dir.")
            exit(1)

        from visualdl import LogWriter
        log_writer = LogWriter(args.vdl_log_dir)

    # trainer_id = int(os.getenv("PADDLE_TRAINER_ID", 0))
    # num_trainers = int(os.environ.get('PADDLE_TRAINERS_NUM', 1))
    step = 0
    all_step = cfg.DATASET.TRAIN_TOTAL_IMAGES // cfg.BATCH_SIZE
    if cfg.DATASET.TRAIN_TOTAL_IMAGES % cfg.BATCH_SIZE and drop_last != True:
        all_step += 1
    all_step *= (cfg.SOLVER.NUM_EPOCHS - begin_epoch + 1)

    avg_loss = 0.0
    avg_t_loss = 0.0
    avg_d_loss = 0.0
    best_mIoU = 0.0

    timer = Timer()
    timer.start()
    if begin_epoch > cfg.SOLVER.NUM_EPOCHS:
        raise ValueError(
            ("begin epoch[{}] is larger than cfg.SOLVER.NUM_EPOCHS[{}]").format(
                begin_epoch, cfg.SOLVER.NUM_EPOCHS))

    if args.use_mpio:
        print_info("Use multiprocess reader")
    else:
        print_info("Use multi-thread reader")

    for epoch in range(begin_epoch, cfg.SOLVER.NUM_EPOCHS + 1):
        data_loader.start()
        while True:
            try:
                if args.debug:
                    # Print category IoU and accuracy to check whether the
                    # traning process is corresponed to expectation
                    loss, lr, pred, grts, masks = exe.run(
                        program=compiled_train_prog,
                        fetch_list=fetch_list,
                        return_numpy=True)
                    cm.calculate(pred, grts, masks)
                    avg_loss += np.mean(np.array(loss))
                    step += 1

                    if step % args.log_steps == 0:
                        speed = args.log_steps / timer.elapsed_time()
                        avg_loss /= args.log_steps
                        category_acc, mean_acc = cm.accuracy()
                        category_iou, mean_iou = cm.mean_iou()

                        print_info((
                            "epoch={} step={} lr={:.5f} loss={:.4f} acc={:.5f} mIoU={:.5f} step/sec={:.3f} | ETA {}"
                        ).format(epoch, step, lr[0], avg_loss, mean_acc,
                                 mean_iou, speed,
                                 calculate_eta(all_step - step, speed)))
                        print_info("Category IoU: ", category_iou)
                        print_info("Category Acc: ", category_acc)
                        if args.use_vdl:
                            log_writer.add_scalar('Train/mean_iou', mean_iou,
                                                  step)
                            log_writer.add_scalar('Train/mean_acc', mean_acc,
                                                  step)
                            log_writer.add_scalar('Train/loss', avg_loss, step)
                            log_writer.add_scalar('Train/lr', lr[0], step)
                            log_writer.add_scalar('Train/step/sec', speed, step)
                        sys.stdout.flush()
                        avg_loss = 0.0
                        cm.zero_matrix()
                        timer.restart()
                else:
                    # If not in debug mode, avoid unnessary log and calculate
                    loss, t_loss, d_loss, lr = exe.run(
                        program=compiled_train_prog,
                        fetch_list=fetch_list,
                        return_numpy=True)
                    avg_loss += np.mean(np.array(loss))
                    avg_t_loss += np.mean(np.array(t_loss))
                    avg_d_loss += np.mean(np.array(d_loss))
                    step += 1

                    if step % args.log_steps == 0 and cfg.TRAINER_ID == 0:
                        avg_loss /= args.log_steps
                        avg_t_loss /= args.log_steps
                        avg_d_loss /= args.log_steps
                        speed = args.log_steps / timer.elapsed_time()
                        print((
                            "epoch={} step={} lr={:.5f} loss={:.4f} teacher loss={:.4f} distill loss={:.4f} step/sec={:.3f} | ETA {}"
                        ).format(epoch, step, lr[0], avg_loss, avg_t_loss,
                                 avg_d_loss, speed,
                                 calculate_eta(all_step - step, speed)))
                        if args.use_vdl:
                            log_writer.add_scalar('Train/loss', avg_loss, step)
                            log_writer.add_scalar('Train/lr', lr[0], step)
                            log_writer.add_scalar('Train/speed', speed, step)
                        sys.stdout.flush()
                        avg_loss = 0.0
                        avg_t_loss = 0.0
                        avg_d_loss = 0.0
                        timer.restart()

            except fluid.core.EOFException:
                data_loader.reset()
                break
            except Exception as e:
                print(e)

        if (epoch % cfg.TRAIN.SNAPSHOT_EPOCH == 0
                or epoch == cfg.SOLVER.NUM_EPOCHS) and cfg.TRAINER_ID == 0:
            ckpt_dir = save_checkpoint(fluid.default_main_program(), epoch)

            if args.do_eval:
                print("Evaluation start")
                _, mean_iou, _, mean_acc = evaluate(
                    cfg=cfg,
                    ckpt_dir=ckpt_dir,
                    use_gpu=args.use_gpu,
                    use_mpio=args.use_mpio)
                if args.use_vdl:
                    log_writer.add_scalar('Evaluate/mean_iou', mean_iou, step)
                    log_writer.add_scalar('Evaluate/mean_acc', mean_acc, step)

                if mean_iou > best_mIoU:
                    best_mIoU = mean_iou
                    update_best_model(ckpt_dir)
                    print_info("Save best model {} to {}, mIoU = {:.4f}".format(
                        ckpt_dir,
                        os.path.join(cfg.TRAIN.MODEL_SAVE_DIR, 'best_model'),
                        mean_iou))

            # Use VisualDL to visualize results
            if args.use_vdl and cfg.DATASET.VIS_FILE_LIST is not None:
                visualize(
                    cfg=cfg,
                    use_gpu=args.use_gpu,
                    vis_file_list=cfg.DATASET.VIS_FILE_LIST,
                    vis_dir="visual",
                    ckpt_dir=ckpt_dir,
                    log_writer=log_writer)
        if cfg.TRAINER_ID == 0:
            ckpt_dir = save_checkpoint(fluid.default_main_program(), epoch)

    # save final model
    if cfg.TRAINER_ID == 0:
        save_checkpoint(fluid.default_main_program(), 'final')
Пример #12
0
from __future__ import print_function

import os
import json
from flask import Flask
from flask import request

# GPU memory garbage collection optimization flags
os.environ['FLAGS_eager_delete_tensor_gb'] = "0.0"

import numpy as np
from PIL import Image
import paddle.fluid as fluid

from utils.config import cfg
cfg.update_from_file("demo_server.yaml")
from models.model_builder import build_model
from models.model_builder import ModelPhase

server = Flask(__name__)


# ###### global init ######
def load_model():
    startup_prog = fluid.Program()
    test_prog = fluid.Program()
    pred, logit = build_model(test_prog, startup_prog, phase=ModelPhase.VISUAL)
    fetch_list = [pred.name]
    # Clone forward graph
    test_prog = test_prog.clone(for_test=True)