def main(args): if args.cfg_file is not None: cfg.update_from_file(args.cfg_file) if args.opts: cfg.update_from_list(args.opts) if args.enable_ce: random.seed(0) np.random.seed(0) cfg.TRAINER_ID = int(os.getenv("PADDLE_TRAINER_ID", 0)) cfg.NUM_TRAINERS = int(os.environ.get('PADDLE_TRAINERS_NUM', 1)) cfg.check_and_infer() print_info(pprint.pformat(cfg)) name = cfg.TRAIN.MODEL_SAVE_DIR.replace("output/", "") store_config = { "model_name": cfg.MODEL.MODEL_NAME, "solver": cfg.SOLVER.OPTIMIZER, "lr": cfg.SOLVER.LR, "lr_policy": cfg.SOLVER.LR_POLICY, } wandb.init(project="rs_segmentation", name=name, config=store_config, dir=cfg.LOG_DIR, notes="") train(cfg)
def main(args): if args.cfg_file is not None: cfg.update_from_file(args.cfg_file) if args.opts is not None: cfg.update_from_list(args.opts) cfg.check_and_infer(reset_dataset=True) print(pprint.pformat(cfg)) train(cfg)
def main(): args = parse_args() if args.cfg_file is not None: cfg.update_from_file(args.cfg_file) if args.opts: cfg.update_from_list(args.opts) cfg.check_and_infer() print(pprint.pformat(cfg)) export_inference_model(args)
def main(): args = parse_args() if args.cfg_file is not None: cfg.update_from_file(args.cfg_file) if args.opts: cfg.update_from_list(args.opts) cfg.check_and_infer() print(pprint.pformat(cfg)) evaluate(cfg, **args.__dict__)
def parse_args(): parser = argparse.ArgumentParser(description="数据预处理") parser.add_argument("-c", "--cfg_file", type=str, help="配置文件路径") parser.add_argument("opts", nargs=argparse.REMAINDER) args = parser.parse_args() if args.cfg_file is not None: cfg.update_from_file(args.cfg_file) if args.opts: cfg.update_from_list(args.opts)
def main(args): if args.cfg_file is not None: cfg.update_from_file(args.cfg_file) if args.opts: cfg.update_from_list(args.opts) cfg.TRAINER_ID = int(os.getenv("PADDLE_TRAINER_ID", 0)) cfg.NUM_TRAINERS = int(os.environ.get('PADDLE_TRAINERS_NUM', 1)) cfg.check_and_infer() print_info(pprint.pformat(cfg)) train(cfg)
def main(args): if args.cfg_file is not None: cfg.update_from_file(args.cfg_file) cfg.check_and_infer(reset_dataset=True) logger.info(pprint.pformat(cfg)) init_global_variable() check_train_dataset() init_global_variable() check_val_dataset() init_global_variable() check_test_dataset() inf_resize_value_check()
def main(args): if args.cfg_file is not None: cfg.update_from_file(args.cfg_file) cfg.check_and_infer() logger.info(pprint.pformat(cfg)) init_global_variable() check_train_dataset() init_global_variable() check_val_dataset() init_global_variable() check_test_dataset() inf_resize_value_check() print("\nDetailed error information can be viewed in detail.log file.")
def parse_args(): parser = argparse.ArgumentParser(description="预测") parser.add_argument("-c", "--cfg_file", type=str, help="配置文件路径") parser.add_argument("--use_gpu", action="store_true", default=False, help="使用GPU推理") parser.add_argument("opts", nargs=argparse.REMAINDER) args = parser.parse_args() if args.cfg_file is not None: cfg.update_from_file(args.cfg_file) if args.opts: cfg.update_from_list(args.opts) if args.use_gpu: # 命令行参数只能从false改成true,不能声明false cfg.TRAIN.USE_GPU = True cfg.set_immutable(True)
# BGR->RGB img = cv2.imread( os.path.join(cfg.DATASET.DATA_DIR, img_names[i]))[..., ::-1] log_writer.add_image("Images/{}".format(img_names[i]), img, epoch, dataformats='HWC') #add ground truth (label) images if grt is not None: log_writer.add_image("Label/{}".format(img_names[i]), grt[..., ::-1], epoch, dataformats='HWC') # If in local_test mode, only visualize 5 images just for testing # procedure if local_test and img_cnt >= 5: break if __name__ == '__main__': args = parse_args() if args.cfg_file is not None: cfg.update_from_file(args.cfg_file) if args.opts: cfg.update_from_list(args.opts) cfg.check_and_infer() print(pprint.pformat(cfg)) visualize(cfg, **args.__dict__)
def train(cfg): # startup_prog = fluid.Program() # train_prog = fluid.Program() drop_last = True dataset = SegDataset( file_list=cfg.DATASET.TRAIN_FILE_LIST, mode=ModelPhase.TRAIN, shuffle=True, data_dir=cfg.DATASET.DATA_DIR) def data_generator(): if args.use_mpio: data_gen = dataset.multiprocess_generator( num_processes=cfg.DATALOADER.NUM_WORKERS, max_queue_size=cfg.DATALOADER.BUF_SIZE) else: data_gen = dataset.generator() batch_data = [] for b in data_gen: batch_data.append(b) if len(batch_data) == (cfg.BATCH_SIZE // cfg.NUM_TRAINERS): for item in batch_data: yield item[0], item[1], item[2] batch_data = [] # If use sync batch norm strategy, drop last batch if number of samples # in batch_data is less then cfg.BATCH_SIZE to avoid NCCL hang issues if not cfg.TRAIN.SYNC_BATCH_NORM: for item in batch_data: yield item[0], item[1], item[2] # Get device environment # places = fluid.cuda_places() if args.use_gpu else fluid.cpu_places() # place = places[0] gpu_id = int(os.environ.get('FLAGS_selected_gpus', 0)) place = fluid.CUDAPlace(gpu_id) if args.use_gpu else fluid.CPUPlace() places = fluid.cuda_places() if args.use_gpu else fluid.cpu_places() # Get number of GPU dev_count = cfg.NUM_TRAINERS if cfg.NUM_TRAINERS > 1 else len(places) print_info("#Device count: {}".format(dev_count)) # Make sure BATCH_SIZE can divided by GPU cards assert cfg.BATCH_SIZE % dev_count == 0, ( 'BATCH_SIZE:{} not divisble by number of GPUs:{}'.format( cfg.BATCH_SIZE, dev_count)) # If use multi-gpu training mode, batch data will allocated to each GPU evenly batch_size_per_dev = cfg.BATCH_SIZE // dev_count print_info("batch_size_per_dev: {}".format(batch_size_per_dev)) data_loader, loss, lr, pred, grts, masks, image = build_model( phase=ModelPhase.TRAIN) data_loader.set_sample_generator( data_generator, batch_size=batch_size_per_dev, drop_last=drop_last) exe = fluid.Executor(place) cfg.update_from_file(args.teacher_cfg_file) # teacher_arch = teacher_cfg.architecture teacher_program = fluid.Program() teacher_startup_program = fluid.Program() with fluid.program_guard(teacher_program, teacher_startup_program): with fluid.unique_name.guard(): _, teacher_loss, _, _, _, _, _ = build_model( teacher_program, teacher_startup_program, phase=ModelPhase.TRAIN, image=image, label=grts, mask=masks) exe.run(teacher_startup_program) teacher_program = teacher_program.clone(for_test=True) ckpt_dir = cfg.SLIM.KNOWLEDGE_DISTILL_TEACHER_MODEL_DIR assert ckpt_dir is not None print('load teacher model:', ckpt_dir) if os.path.exists(ckpt_dir): try: fluid.load(teacher_program, os.path.join(ckpt_dir, 'model'), exe) except: fluid.io.load_params(exe, ckpt_dir, main_program=teacher_program) # cfg = load_config(FLAGS.config) cfg.update_from_file(args.cfg_file) data_name_map = { 'image': 'image', 'label': 'label', 'mask': 'mask', } merge(teacher_program, fluid.default_main_program(), data_name_map, place) distill_pairs = [[ 'teacher_bilinear_interp_2.tmp_0', 'bilinear_interp_0.tmp_0' ]] def distill(pairs, weight): """ Add 3 pairs of distillation losses, each pair of feature maps is the input of teacher and student's yolov3_loss respectively """ loss = l2_loss(pairs[0][0], pairs[0][1]) weighted_loss = loss * weight return weighted_loss distill_loss = distill(distill_pairs, 0.1) cfg.update_from_file(args.cfg_file) optimizer = solver.Solver(None, None) all_loss = loss + distill_loss lr = optimizer.optimise(all_loss) exe.run(fluid.default_startup_program()) exec_strategy = fluid.ExecutionStrategy() # Clear temporary variables every 100 iteration if args.use_gpu: exec_strategy.num_threads = fluid.core.get_cuda_device_count() exec_strategy.num_iteration_per_drop_scope = 100 build_strategy = fluid.BuildStrategy() build_strategy.fuse_all_reduce_ops = False build_strategy.fuse_all_optimizer_ops = False build_strategy.fuse_elewise_add_act_ops = True if cfg.NUM_TRAINERS > 1 and args.use_gpu: dist_utils.prepare_for_multi_process(exe, build_strategy, fluid.default_main_program()) exec_strategy.num_threads = 1 if cfg.TRAIN.SYNC_BATCH_NORM and args.use_gpu: if dev_count > 1: # Apply sync batch norm strategy print_info("Sync BatchNorm strategy is effective.") build_strategy.sync_batch_norm = True else: print_info( "Sync BatchNorm strategy will not be effective if GPU device" " count <= 1") compiled_train_prog = fluid.CompiledProgram( fluid.default_main_program()).with_data_parallel( loss_name=all_loss.name, exec_strategy=exec_strategy, build_strategy=build_strategy) # Resume training begin_epoch = cfg.SOLVER.BEGIN_EPOCH if cfg.TRAIN.RESUME_MODEL_DIR: begin_epoch = load_checkpoint(exe, fluid.default_main_program()) # Load pretrained model elif os.path.exists(cfg.TRAIN.PRETRAINED_MODEL_DIR): load_pretrained_weights(exe, fluid.default_main_program(), cfg.TRAIN.PRETRAINED_MODEL_DIR) else: print_info( 'Pretrained model dir {} not exists, training from scratch...'. format(cfg.TRAIN.PRETRAINED_MODEL_DIR)) #fetch_list = [avg_loss.name, lr.name] fetch_list = [ loss.name, 'teacher_' + teacher_loss.name, distill_loss.name, lr.name ] if args.debug: # Fetch more variable info and use streaming confusion matrix to # calculate IoU results if in debug mode np.set_printoptions( precision=4, suppress=True, linewidth=160, floatmode="fixed") fetch_list.extend([pred.name, grts.name, masks.name]) cm = ConfusionMatrix(cfg.DATASET.NUM_CLASSES, streaming=True) if args.use_vdl: if not args.vdl_log_dir: print_info("Please specify the log directory by --vdl_log_dir.") exit(1) from visualdl import LogWriter log_writer = LogWriter(args.vdl_log_dir) # trainer_id = int(os.getenv("PADDLE_TRAINER_ID", 0)) # num_trainers = int(os.environ.get('PADDLE_TRAINERS_NUM', 1)) step = 0 all_step = cfg.DATASET.TRAIN_TOTAL_IMAGES // cfg.BATCH_SIZE if cfg.DATASET.TRAIN_TOTAL_IMAGES % cfg.BATCH_SIZE and drop_last != True: all_step += 1 all_step *= (cfg.SOLVER.NUM_EPOCHS - begin_epoch + 1) avg_loss = 0.0 avg_t_loss = 0.0 avg_d_loss = 0.0 best_mIoU = 0.0 timer = Timer() timer.start() if begin_epoch > cfg.SOLVER.NUM_EPOCHS: raise ValueError( ("begin epoch[{}] is larger than cfg.SOLVER.NUM_EPOCHS[{}]").format( begin_epoch, cfg.SOLVER.NUM_EPOCHS)) if args.use_mpio: print_info("Use multiprocess reader") else: print_info("Use multi-thread reader") for epoch in range(begin_epoch, cfg.SOLVER.NUM_EPOCHS + 1): data_loader.start() while True: try: if args.debug: # Print category IoU and accuracy to check whether the # traning process is corresponed to expectation loss, lr, pred, grts, masks = exe.run( program=compiled_train_prog, fetch_list=fetch_list, return_numpy=True) cm.calculate(pred, grts, masks) avg_loss += np.mean(np.array(loss)) step += 1 if step % args.log_steps == 0: speed = args.log_steps / timer.elapsed_time() avg_loss /= args.log_steps category_acc, mean_acc = cm.accuracy() category_iou, mean_iou = cm.mean_iou() print_info(( "epoch={} step={} lr={:.5f} loss={:.4f} acc={:.5f} mIoU={:.5f} step/sec={:.3f} | ETA {}" ).format(epoch, step, lr[0], avg_loss, mean_acc, mean_iou, speed, calculate_eta(all_step - step, speed))) print_info("Category IoU: ", category_iou) print_info("Category Acc: ", category_acc) if args.use_vdl: log_writer.add_scalar('Train/mean_iou', mean_iou, step) log_writer.add_scalar('Train/mean_acc', mean_acc, step) log_writer.add_scalar('Train/loss', avg_loss, step) log_writer.add_scalar('Train/lr', lr[0], step) log_writer.add_scalar('Train/step/sec', speed, step) sys.stdout.flush() avg_loss = 0.0 cm.zero_matrix() timer.restart() else: # If not in debug mode, avoid unnessary log and calculate loss, t_loss, d_loss, lr = exe.run( program=compiled_train_prog, fetch_list=fetch_list, return_numpy=True) avg_loss += np.mean(np.array(loss)) avg_t_loss += np.mean(np.array(t_loss)) avg_d_loss += np.mean(np.array(d_loss)) step += 1 if step % args.log_steps == 0 and cfg.TRAINER_ID == 0: avg_loss /= args.log_steps avg_t_loss /= args.log_steps avg_d_loss /= args.log_steps speed = args.log_steps / timer.elapsed_time() print(( "epoch={} step={} lr={:.5f} loss={:.4f} teacher loss={:.4f} distill loss={:.4f} step/sec={:.3f} | ETA {}" ).format(epoch, step, lr[0], avg_loss, avg_t_loss, avg_d_loss, speed, calculate_eta(all_step - step, speed))) if args.use_vdl: log_writer.add_scalar('Train/loss', avg_loss, step) log_writer.add_scalar('Train/lr', lr[0], step) log_writer.add_scalar('Train/speed', speed, step) sys.stdout.flush() avg_loss = 0.0 avg_t_loss = 0.0 avg_d_loss = 0.0 timer.restart() except fluid.core.EOFException: data_loader.reset() break except Exception as e: print(e) if (epoch % cfg.TRAIN.SNAPSHOT_EPOCH == 0 or epoch == cfg.SOLVER.NUM_EPOCHS) and cfg.TRAINER_ID == 0: ckpt_dir = save_checkpoint(fluid.default_main_program(), epoch) if args.do_eval: print("Evaluation start") _, mean_iou, _, mean_acc = evaluate( cfg=cfg, ckpt_dir=ckpt_dir, use_gpu=args.use_gpu, use_mpio=args.use_mpio) if args.use_vdl: log_writer.add_scalar('Evaluate/mean_iou', mean_iou, step) log_writer.add_scalar('Evaluate/mean_acc', mean_acc, step) if mean_iou > best_mIoU: best_mIoU = mean_iou update_best_model(ckpt_dir) print_info("Save best model {} to {}, mIoU = {:.4f}".format( ckpt_dir, os.path.join(cfg.TRAIN.MODEL_SAVE_DIR, 'best_model'), mean_iou)) # Use VisualDL to visualize results if args.use_vdl and cfg.DATASET.VIS_FILE_LIST is not None: visualize( cfg=cfg, use_gpu=args.use_gpu, vis_file_list=cfg.DATASET.VIS_FILE_LIST, vis_dir="visual", ckpt_dir=ckpt_dir, log_writer=log_writer) if cfg.TRAINER_ID == 0: ckpt_dir = save_checkpoint(fluid.default_main_program(), epoch) # save final model if cfg.TRAINER_ID == 0: save_checkpoint(fluid.default_main_program(), 'final')
from __future__ import print_function import os import json from flask import Flask from flask import request # GPU memory garbage collection optimization flags os.environ['FLAGS_eager_delete_tensor_gb'] = "0.0" import numpy as np from PIL import Image import paddle.fluid as fluid from utils.config import cfg cfg.update_from_file("demo_server.yaml") from models.model_builder import build_model from models.model_builder import ModelPhase server = Flask(__name__) # ###### global init ###### def load_model(): startup_prog = fluid.Program() test_prog = fluid.Program() pred, logit = build_model(test_prog, startup_prog, phase=ModelPhase.VISUAL) fetch_list = [pred.name] # Clone forward graph test_prog = test_prog.clone(for_test=True)