def visu_caller(path, step_ind, relu_idx): ########################## # Initiate the environment ########################## # Choose which gpu to use GPU_ID = '0' # Set GPU visible device os.environ['CUDA_VISIBLE_DEVICES'] = GPU_ID # Disable warnings os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' ########################### # Load the model parameters ########################### # Load model parameters config = Config() config.load(path) ################################## # Change model parameters for test ################################## # Change parameters for the test here. For example, you can stop augmenting the input data. # No augmentation to avoid random inputs config.augment_scale_anisotropic = False config.augment_symmetries = [False, False, False] config.augment_rotation = 'none' config.augment_scale_min = 1.0 config.augment_scale_max = 1.0 config.augment_noise = 0.0 config.augment_occlusion = 'none' config.augment_color = 1.0 config.batch_num = 2 config.in_radius = 5 ############## # Prepare Data ############## print() print('Dataset Preparation') print('*******************') # Initiate dataset configuration if config.dataset.startswith('ModelNet40'): dataset = ModelNet40Dataset(config.input_threads) elif config.dataset == 'S3DIS': dataset = S3DISDataset(config.input_threads) on_val = True elif config.dataset == 'Scannet': dataset = ScannetDataset(config.input_threads, load_test=True) elif config.dataset.startswith('ShapeNetPart'): dataset = ShapeNetPartDataset( config.dataset.split('_')[1], config.input_threads) elif config.dataset == 'NPM3D': dataset = NPM3DDataset(config.input_threads, load_test=True) elif config.dataset == 'Semantic3D': dataset = Semantic3DDataset(config.input_threads) else: raise ValueError('Unsupported dataset : ' + config.dataset) # Create subsample clouds of the models dl0 = config.first_subsampling_dl dataset.load_subsampled_clouds(dl0) # Initiate ERF input pipeleine (only diff is that it is not random) dataset.init_ERF_input_pipeline(config) ############## # Define Model ############## print('Creating Model') print('**************\n') t1 = time.time() if config.dataset.startswith('ShapeNetPart'): model = KernelPointFCNN(dataset.flat_inputs, config) elif config.dataset.startswith('S3DIS'): model = KernelPointFCNN(dataset.flat_inputs, config) elif config.dataset.startswith('Scannet'): model = KernelPointFCNN(dataset.flat_inputs, config) elif config.dataset.startswith('NPM3D'): model = KernelPointFCNN(dataset.flat_inputs, config) elif config.dataset.startswith('ModelNet40'): model = KernelPointCNN(dataset.flat_inputs, config) elif config.dataset.startswith('Semantic3D'): model = KernelPointFCNN(dataset.flat_inputs, config) else: raise ValueError('Unsupported dataset : ' + config.dataset) # Find all snapshot in the chosen training folder snap_path = os.path.join(path, 'snapshots') snap_steps = [ int(f[:-5].split('-')[-1]) for f in os.listdir(snap_path) if f[-5:] == '.meta' ] # Find which snapshot to restore chosen_step = np.sort(snap_steps)[step_ind] chosen_snap = os.path.join(path, 'snapshots', 'snap-{:d}'.format(chosen_step)) # Create a tester class visualizer = ModelVisualizer(model, restore_snap=chosen_snap) t2 = time.time() print('\n----------------') print('Done in {:.1f} s'.format(t2 - t1)) print('----------------\n') ##################### # Start visualization ##################### print('Start visualization') print('*******************\n') visualizer.show_effective_recep_field(model, dataset, relu_idx)
def test_caller(path, step_ind, on_val, dataset_path, noise, calc_tsne): ########################## # Initiate the environment ########################## # Choose which gpu to use GPU_ID = '0' # Set GPU visible device os.environ['CUDA_VISIBLE_DEVICES'] = GPU_ID # Disable warnings os.environ['TF_CPP_MIN_LOG_LEVEL'] = '0' ########################### # Load the model parameters ########################### # Load model parameters config = Config() config.load(path) ################################## # Change model parameters for test ################################## # Change parameters for the test here. For example, you can stop augmenting the input data. # config.augment_noise = 0.0001 # config.augment_color = 1.0 # Adjust batch num if only a single model is to be completed if on_val: val_data_paths = sorted([ os.path.join(dataset_path, 'val', 'partial', k.rstrip() + '.h5') for k in open(os.path.join(dataset_path, 'val.list')).readlines() ]) if int(len(val_data_paths)) == 1: config.validation_size = 1 config.batch_num = 1 else: test_data_paths = sorted([ os.path.join(dataset_path, 'test', 'partial', k.rstrip() + '.h5') for k in open(os.path.join(dataset_path, 'val.list')).readlines() ]) if int(len(test_data_paths)) == 1: config.validation_size = 1 config.batch_num = 1 # Augmentations config.augment_scale_anisotropic = True config.augment_symmetries = [False, False, False] config.augment_rotation = 'none' config.augment_scale_min = 1.0 config.augment_scale_max = 1.0 config.augment_noise = noise config.augment_occlusion = 'none' ############## # Prepare Data ############## print() print('Dataset Preparation') print('*******************') # Initiate dataset configuration dl0 = 0 # config.first_subsampling_dl if config.dataset.startswith('ShapeNetV1'): dataset = ShapeNetV1Dataset() # Create subsample clouds of the models dataset.load_subsampled_clouds(dl0) elif config.dataset.startswith("pc_shapenetCompletionBenchmark2048"): dataset = ShapeNetBenchmark2048Dataset(config.batch_num, config.num_input_points, dataset_path) # Create subsample clouds of the models dataset.load_subsampled_clouds( dl0) # TODO: careful dl0 is used here - padding? else: raise ValueError('Unsupported dataset : ' + config.dataset) # Initialize input pipelines if on_val: dataset.init_input_pipeline(config) else: dataset.init_test_input_pipeline(config) ############## # Define Model ############## print('Creating Model') print('**************\n') t1 = time.time() if config.dataset.startswith('ShapeNetV1') or config.dataset.startswith( "pc_shapenetCompletionBenchmark2048"): model = KernelPointCompletionNetwork(dataset.flat_inputs, config, args.double_fold) else: raise ValueError('Unsupported dataset : ' + config.dataset) # Find all snapshot in the chosen training folder snap_path = os.path.join(path, 'snapshots') snap_steps = [ int(f[:-5].split('-')[-1]) for f in os.listdir(snap_path) if f[-5:] == '.meta' ] # Find which snapshot to restore if step_ind == -1: chosen_step = np.sort(snap_steps)[step_ind] else: chosen_step = step_ind + 1 chosen_snap = os.path.join(path, 'snapshots', 'snap-{:d}'.format(chosen_step)) # Create a tester class tester = ModelTester(model, restore_snap=chosen_snap) t2 = time.time() print('\n----------------') print('Done in {:.1f} s'.format(t2 - t1)) print('----------------\n') ############ # Start test ############ print('Start Test') print('**********\n') if config.dataset.startswith('ShapeNetV1') or config.dataset.startswith( "pc_shapenetCompletionBenchmark2048"): tester.test_completion(model, dataset, on_val, calc_tsne) else: raise ValueError('Unsupported dataset')