## init from some checkpoint, to resume the previous training if args.init_from_checkpoint: transformer.load(args.init_from_checkpoint) ## init from some pretrain models, to better solve the current task if args.init_from_pretrain_model: transformer.load(args.init_from_pretrain_model, reset_optimizer=True) # model train transformer.fit(train_data=train_loader, eval_data=eval_loader, epochs=args.epoch, eval_freq=1, save_freq=1, save_dir=args.save_model, callbacks=[ TrainCallback(args, train_steps_fn=train_steps_fn, eval_steps_fn=eval_steps_fn) ]) if __name__ == "__main__": args = PDConfig(yaml_file="./transformer.yaml") args.build() args.Print() check_gpu(args.use_cuda) check_version() do_train(args)
def train(multitask_config): print("Loading multi_task configure...................") args = PDConfig(yaml_file=[multitask_config]) args.build() index = 0 reader_map_task = dict() task_args_list = list() reader_args_list = list() id_map_task = {index: args.main_task} print("Loading main task configure....................") main_task_name = args.main_task task_config_files = [i for i in os.listdir(TASKSET_PATH) if i.endswith('.yaml')] main_config_list = [config for config in task_config_files if config.split('.')[0] == main_task_name] main_args = None for config in main_config_list: main_yaml = os.path.join(TASKSET_PATH, config) main_args = PDConfig(yaml_file=[multitask_config, main_yaml]) main_args.build() main_args.Print() if not task_args_list or main_task_name != task_args_list[-1][0]: task_args_list.append((main_task_name, main_args)) reader_args_list.append((config.strip('.yaml'), main_args)) reader_map_task[config.strip('.yaml')] = main_task_name print("Loading auxiliary tasks configure...................") aux_task_name_list = args.auxiliary_task.strip().split() for aux_task_name in aux_task_name_list: index += 1 id_map_task[index] = aux_task_name print("Loading %s auxiliary tasks configure......." % aux_task_name) aux_config_list = [config for config in task_config_files if config.split('.')[0] == aux_task_name] for aux_yaml in aux_config_list: aux_yaml = os.path.join(TASKSET_PATH, aux_yaml) aux_args = PDConfig(yaml_file=[multitask_config, aux_yaml]) aux_args.build() aux_args.Print() if aux_task_name != task_args_list[-1][0]: task_args_list.append((aux_task_name, aux_args)) reader_args_list.append((aux_yaml.strip('.yaml'), aux_args)) reader_map_task[aux_yaml.strip('.yaml')] = aux_task_name # import tasks reader module and build joint_input_shape input_shape_list = [] reader_module_dict = {} input_shape_dict = {}
LacLoss(), ChunkEval(num_labels), inputs=inputs, labels=labels, device=args.device) if args.init_from_checkpoint: model.load(args.init_from_checkpoint) if args.init_from_pretrain_model: model.load(args.init_from_pretrain_model, reset_optimizer=True) model.fit(train_dataset.dataloader, epochs=args.epoch, batch_size=args.batch_size, eval_freq=args.eval_freq, save_freq=args.save_freq, save_dir=args.save_dir) if __name__ == '__main__': args = PDConfig(yaml_file="sequence_tagging.yaml") args.build() args.Print() use_gpu = True if args.device == "gpu" else False check_gpu(use_gpu) check_version() main(args)
def train(multitask_config): # load task config print("Loading multi_task configure...................") args = PDConfig(yaml_file=[multitask_config]) args.build() index = 0 reader_map_task = dict() task_args_list = list() reader_args_list = list() id_map_task = {index: args.main_task} print("Loading main task configure....................") main_task_name = args.main_task task_config_files = [ i for i in os.listdir(TASKSET_PATH) if i.endswith('.yaml') ] main_config_list = [ config for config in task_config_files if config.split('.')[0] == main_task_name ] main_args = None for config in main_config_list: main_yaml = os.path.join(TASKSET_PATH, config) main_args = PDConfig(yaml_file=[multitask_config, main_yaml]) main_args.build() main_args.Print() if not task_args_list or main_task_name != task_args_list[-1][0]: task_args_list.append((main_task_name, main_args)) reader_args_list.append((config.strip('.yaml'), main_args)) reader_map_task[config.strip('.yaml')] = main_task_name print("Loading auxiliary tasks configure...................") aux_task_name_list = args.auxiliary_task.strip().split() for aux_task_name in aux_task_name_list: index += 1 id_map_task[index] = aux_task_name print("Loading %s auxiliary tasks configure......." % aux_task_name) aux_config_list = [ config for config in task_config_files if config.split('.')[0] == aux_task_name ] for aux_yaml in aux_config_list: aux_yaml = os.path.join(TASKSET_PATH, aux_yaml) aux_args = PDConfig(yaml_file=[multitask_config, aux_yaml]) aux_args.build() aux_args.Print() if aux_task_name != task_args_list[-1][0]: task_args_list.append((aux_task_name, aux_args)) reader_args_list.append((aux_yaml.strip('.yaml'), aux_args)) reader_map_task[aux_yaml.strip('.yaml')] = aux_task_name # import tasks reader module and build joint_input_shape input_shape_list = [] reader_module_dict = {} input_shape_dict = {} for params in task_args_list: task_reader_mdl = "%s_reader" % params[0] reader_module = importlib.import_module(task_reader_mdl) reader_servlet_cls = getattr(reader_module, "get_input_shape") reader_input_shape = reader_servlet_cls(params[1]) reader_module_dict[params[0]] = reader_module input_shape_list.append(reader_input_shape) input_shape_dict[params[0]] = reader_input_shape train_input_shape, test_input_shape, task_map_id = joint_reader.joint_input_shape( input_shape_list) # import backbone model backbone_mdl = args.backbone_model backbone_cls = "Model" backbone_module = importlib.import_module(backbone_mdl) backbone_servlet = getattr(backbone_module, backbone_cls) if not (args.do_train or args.do_predict): raise ValueError("For args `do_train` and `do_predict`, at " "least one of them must be True.") if args.use_cuda: place = fluid.CUDAPlace(0) dev_count = fluid.core.get_cuda_device_count() else: place = fluid.CPUPlace() dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count())) exe = fluid.Executor(place) startup_prog = fluid.default_startup_program() if args.random_seed is not None: startup_prog.random_seed = args.random_seed if args.do_train: #create joint pyreader print('creating readers...') gens = [] main_generator = "" for params in reader_args_list: generator_cls = getattr( reader_module_dict[reader_map_task[params[0]]], "DataProcessor") generator_inst = generator_cls(params[1]) reader_generator = generator_inst.data_generator( phase='train', shuffle=True, dev_count=dev_count) if not main_generator: main_generator = generator_inst gens.append((reader_generator, params[1].mix_ratio, reader_map_task[params[0]])) joint_generator, train_pyreader, model_inputs = create_reader( "train_reader", train_input_shape, True, task_map_id, gens) train_pyreader.decorate_tensor_provider(joint_generator) # build task inputs task_inputs_list = [] main_test_input = [] task_id = model_inputs[0] backbone_inputs = model_inputs[task_map_id[0][0]:task_map_id[0][1]] for i in range(1, len(task_map_id)): task_inputs = backbone_inputs + model_inputs[ task_map_id[i][0]:task_map_id[i][1]] task_inputs_list.append(task_inputs) # build backbone model print('building model backbone...') conf = vars(args) if args.pretrain_config_path is not None: model_conf = JsonConfig(args.pretrain_config_path).asdict() for k, v in model_conf.items(): if k in conf: assert k == conf[ k], "ERROR: argument {} in pretrain_model_config is NOT consistent with which in main.yaml" conf.update(model_conf) backbone_inst = backbone_servlet(conf, is_training=True) print('building task models...') num_train_examples = main_generator.get_num_examples() if main_args.in_tokens: max_train_steps = int(main_args.epoch * num_train_examples) // ( main_args.batch_size // main_args.max_seq_len) // dev_count else: max_train_steps = int(main_args.epoch * num_train_examples) // ( main_args.batch_size) // dev_count mix_ratio_list = [ task_args[1].mix_ratio for task_args in task_args_list ] args.max_train_steps = int(max_train_steps * (sum(mix_ratio_list) / main_args.mix_ratio)) print("Max train steps: %d" % max_train_steps) build_strategy = fluid.BuildStrategy() train_program = fluid.default_main_program() with fluid.program_guard(train_program, startup_prog): with fluid.unique_name.guard(): backbone_inst.build_model(backbone_inputs) all_loss_list = [] for i in range(len(task_args_list)): task_name = task_args_list[i][0] task_args = task_args_list[i][1] if hasattr(task_args, 'paradigm'): task_net = task_args.paradigm else: task_net = task_name task_net_mdl = importlib.import_module(task_net) task_net_cls = getattr(task_net_mdl, "create_model") output_tensor = task_net_cls(task_inputs_list[i], base_model=backbone_inst, is_training=True, args=task_args) loss_cls = getattr(task_net_mdl, "compute_loss") task_loss = loss_cls(output_tensor, task_args) all_loss_list.append(task_loss) num_seqs = output_tensor['num_seqs'] task_one_hot = fluid.layers.one_hot(task_id, len(task_args_list)) all_loss = fluid.layers.concat(all_loss_list, axis=0) loss = fluid.layers.reduce_sum(task_one_hot * all_loss) programs = [train_program, startup_prog] optimizer_mdl = importlib.import_module(args.optimizer) optimizer_inst = getattr(optimizer_mdl, "optimization") optimizer_inst(loss, programs, args=args) loss.persistable = True num_seqs.persistable = True ema = fluid.optimizer.ExponentialMovingAverage(args.ema_decay) ema.update() train_compiled_program = fluid.CompiledProgram( train_program).with_data_parallel(loss_name=loss.name, build_strategy=build_strategy) if args.do_predict: conf = vars(args) if args.pretrain_config_path is not None: model_conf = JsonConfig(args.pretrain_config_path).asdict() for k, v in model_conf.items(): if k in conf: assert v == conf[ k], "ERROR: argument {} in pretrain_model_config is NOT consistent with which in main.yaml".format( k) conf.update(model_conf) mod = reader_module_dict[main_task_name] DataProcessor = getattr(mod, 'DataProcessor') predict_processor = DataProcessor(main_args) test_generator = predict_processor.data_generator(phase='predict', shuffle=False, dev_count=dev_count) new_test_input_shape = input_shape_dict[main_task_name][1][ 'backbone'] + input_shape_dict[main_task_name][1]['task'] assert new_test_input_shape == test_input_shape build_strategy = fluid.BuildStrategy() test_prog = fluid.Program() with fluid.program_guard(test_prog, startup_prog): with fluid.unique_name.guard(): placeholder = Placeholder(test_input_shape) test_pyreader, model_inputs = placeholder.build( capacity=100, reader_name="test_reader") test_pyreader.decorate_tensor_provider(test_generator) # create model backbone_inst = backbone_servlet(conf, is_training=False) backbone_inst.build_model(model_inputs) task_net_mdl = importlib.import_module(main_task_name) task_net_cls = getattr(task_net_mdl, "create_model") postprocess = getattr(task_net_mdl, "postprocess") global_postprocess = getattr(task_net_mdl, "global_postprocess") output_tensor = task_net_cls(model_inputs, base_model=backbone_inst, is_training=False, args=main_args) if 'ema' not in dir(): ema = fluid.optimizer.ExponentialMovingAverage( args.ema_decay) pred_fetch_names = [] fetch_vars = [] for i, j in output_tensor.items(): pred_fetch_names.append(i) fetch_vars.append(j) for var in fetch_vars: var.persistable = True pred_fetch_list = [i.name for i in fetch_vars] test_prog = test_prog.clone(for_test=True) test_compiled_program = fluid.CompiledProgram( test_prog).with_data_parallel(build_strategy=build_strategy) exe.run(startup_prog) if args.do_train: if args.pretrain_model_path: init_pretraining_params(exe, args.pretrain_model_path, main_program=startup_prog, use_fp16=args.use_fp16) if args.checkpoint_path: if os.path.exists(args.checkpoint_path): init_checkpoint(exe, args.checkpoint_path, main_program=startup_prog, use_fp16=args.use_fp16) else: os.makedirs(args.checkpoint_path) elif args.do_predict: if not args.checkpoint_path: raise ValueError("args 'checkpoint_path' should be set if" "only doing prediction!") init_checkpoint(exe, args.checkpoint_path, main_program=test_prog, use_fp16=args.use_fp16) if args.do_train: print('start training...') train_pyreader.start() steps = 0 total_cost, total_num_seqs = [], [] time_begin = time.time() while True: try: steps += 1 if steps % args.skip_steps == 0: fetch_list = [loss.name, num_seqs.name, task_id.name] else: fetch_list = [] outputs = exe.run(train_compiled_program, fetch_list=fetch_list) if steps % args.skip_steps == 0: np_loss, np_num_seqs, np_task_id = outputs total_cost.extend(np_loss * np_num_seqs) total_num_seqs.extend(np_num_seqs) time_end = time.time() used_time = time_end - time_begin current_example, epoch = main_generator.get_train_progress( ) cur_task_name = id_map_task[np_task_id[0][0]] print( "epoch: %d, task_name: %s, progress: %d/%d, step: %d, loss: %f, " "speed: %f steps/s" % (epoch, cur_task_name, current_example, num_train_examples, steps, np.sum(total_cost) / np.sum(total_num_seqs), args.skip_steps / used_time)) total_cost, total_num_seqs = [], [] time_begin = time.time() if steps % args.save_steps == 0: save_path = os.path.join(args.checkpoint_path, "step_" + str(steps)) fluid.io.save_persistables(exe, save_path, train_program) if steps == max_train_steps: save_path = os.path.join(args.checkpoint_path, "step_" + str(steps) + "_final") fluid.io.save_persistables(exe, save_path, train_program) break except paddle.fluid.core.EOFException as err: save_path = os.path.join(args.checkpoint_path, "step_" + str(steps) + "_final") fluid.io.save_persistables(exe, save_path, train_program) train_pyreader.reset() break if args.do_predict: print('start predicting...') cnt = 0 if args.use_ema: with ema.apply(exe): test_pyreader.start() pred_buf = [] while True: try: fetch_res = exe.run(fetch_list=pred_fetch_list, program=test_compiled_program) cnt += 1 if cnt % 200 == 0: print('predicting {}th batch...'.format(cnt)) fetch_dict = {} for key, val in zip(pred_fetch_names, fetch_res): fetch_dict[key] = val res = postprocess(fetch_dict) if res is not None: pred_buf.extend(res) except fluid.core.EOFException: test_pyreader.reset() break global_postprocess(pred_buf, predict_processor, args, main_args) else: test_pyreader.start() pred_buf = [] while True: try: fetch_res = exe.run(fetch_list=pred_fetch_list, program=test_compiled_program) cnt += 1 if cnt % 200 == 0: print('predicting {}th batch...'.format(cnt)) fetch_dict = {} for key, val in zip(pred_fetch_names, fetch_res): fetch_dict[key] = val res = postprocess(fetch_dict) if res is not None: pred_buf.extend(res) except fluid.core.EOFException: test_pyreader.reset() break global_postprocess(pred_buf, predict_processor, args, main_args)