Пример #1
0
    args = parser.parse_args()
    args_nondefault = utils.parse_nondefault_args(
        args, parser.parse_args(
            ['--model', args.model, '--dataset', args.dataset]))

    if args.dataset is None and args.file is None:
        raise ValueError('dataset or file args must be set.')

    if args.dataset and args.file:
        print('Both dataset and file args was set. Ignoring file args.')

    # GPU configuration
    setup_gpu(args.gpu, args.allow_growth)

    # Loading model
    model, meta = load_model(args.model, return_meta=True,
                             mode='predict', decoder=(not args.no_decoder))

    args = HParams(**meta['training_args']).update(vars(args_nondefault))

    # Features extractor
    input_parser = utils.get_from_module('preprocessing.audio',
                                         args.input_parser,
                                         params=args.input_parser_params)

    # Recovering text parser
    label_parser = utils.get_from_module('preprocessing.text',
                                         args.label_parser,
                                         params=args.label_parser_params)

    if args.dataset is not None:
        data_gen = DatasetGenerator(input_parser, label_parser,
Пример #2
0
    # GPU configuration
    setup_gpu(args.gpu,
              args.allow_growth,
              log_device_placement=args.verbose > 1)

    # Initial configuration
    epoch_offset = 0
    meta = None

    if args.load:
        args_nondefault = utils.parse_nondefault_args(args,
                                                      parser.parse_args([]))

        logger.info('Loading model...')
        model, meta = load_model(args.load, return_meta=True)

        logger.info('Loading parameters...')
        args = HParams(**meta['training_args']).update(vars(args_nondefault))

        epoch_offset = len(meta['epochs'])
        logger.info('Current epoch: %d' % epoch_offset)

        if args_nondefault.lr:
            logger.info('Setting current learning rate to %f...' % args.lr)
            K.set_value(model.optimizer.lr, args.lr)

    else:
        logger.info('Creating model...')
        # Recovering all valid models
        model_fn = utils.get_from_module('core.models', args.model)
Пример #3
0
def main(args):

    # hack in ProgbarLogger: avoid printing the dummy losses
    keras.callbacks.ProgbarLogger = lambda: ProgbarLogger(
        show_metrics=['loss', 'decoder_ler', 'val_loss', 'val_decoder_ler'])

    # GPU configuration
    setup_gpu(args.gpu,
              args.allow_growth,
              log_device_placement=args.verbose > 1)

    # Initial configuration
    epoch_offset = 0
    meta = None

    default_args = parser.parse_args([
        args.mode,
        '--dataset',
        args.dataset,
    ])

    args_nondefault = utils.parse_nondefault_args(args, default_args)

    if args.mode == 'eval':
        model, meta = load_model(args.load, return_meta=True, mode='eval')

        args = HParams(**meta['training_args']).update(vars(args_nondefault))
        args.mode = 'eval'
    else:
        if args.load:

            print('Loading model...')
            model, meta = load_model(args.load, return_meta=True)

            print('Loading parameters...')
            args = HParams(**meta['training_args']).update(
                vars(args_nondefault))

            epoch_offset = len(meta['epochs'])
            print('Current epoch: %d' % epoch_offset)

            if args_nondefault.lr:
                print('Setting current learning rate to %f...' % args.lr)
                K.set_value(model.optimizer.lr, args.lr)
        else:
            print('Creating model...')
            # Load model
            model = sbrt2017(num_hiddens=args.num_hiddens,
                             var_dropout=args.var_dropout,
                             dropout=args.dropout,
                             weight_decay=args.weight_decay)

            print('Setting the optimizer...')
            # Optimization
            opt = Adam(lr=args.lr, clipnorm=args.clipnorm)

            # Compile with dummy loss
            model.compile(loss={
                'ctc': ctc_dummy_loss,
                'decoder': decoder_dummy_loss
            },
                          optimizer=opt,
                          metrics={'decoder': ler},
                          loss_weights=[1, 0])

    print('Creating results folder...')
    if args.save is None:
        args.save = os.path.join('results',
                                 'sbrt2017_%s' % (datetime.datetime.now()))
    if not os.path.isdir(args.save):
        os.makedirs(args.save)

    if args.mode == 'train':
        print('Adding callbacks')
        # Callbacks
        model_ckpt = MetaCheckpoint(os.path.join(args.save, 'model.h5'),
                                    training_args=args,
                                    meta=meta)
        best_ckpt = MetaCheckpoint(os.path.join(args.save, 'best.h5'),
                                   monitor='val_decoder_ler',
                                   save_best_only=True,
                                   mode='min',
                                   training_args=args,
                                   meta=meta)
        callback_list = [model_ckpt, best_ckpt]

    print('Getting the text parser...')
    # Recovering text parser
    label_parser = preprocessing.SimpleCharParser()

    print('Getting the data generator...')
    # Data generator
    data_gen = DatasetGenerator(None,
                                label_parser,
                                batch_size=args.batch_size,
                                seed=args.seed)

    # iterators over datasets
    train_flow, valid_flow, test_flow = None, None, None
    num_val_samples = num_test_samples = 0

    print(str(vars(args)))
    print('Generating flow...')

    if args.mode == 'train':
        train_flow, valid_flow, test_flow = data_gen.flow_from_fname(
            args.dataset, datasets=['train', 'valid', 'test'])
        num_val_samples = valid_flow.len
        print('Initialzing training...')
        # Fit the model
        model.fit_generator(train_flow,
                            samples_per_epoch=train_flow.len,
                            nb_epoch=args.num_epochs,
                            validation_data=valid_flow,
                            nb_val_samples=num_val_samples,
                            max_q_size=10,
                            nb_worker=1,
                            callbacks=callback_list,
                            verbose=1,
                            initial_epoch=epoch_offset)

        del model
        model = load_model(os.path.join(args.save, 'best.h5'), mode='eval')
    else:
        test_flow = data_gen.flow_from_fname(args.dataset, datasets='test')

    print('Evaluating model on test set')
    metrics = model.evaluate_generator(test_flow,
                                       test_flow.len,
                                       max_q_size=10,
                                       nb_worker=1)

    msg = 'Total loss: %.4f\n\
CTC Loss: %.4f\nLER: %.2f%%' % (metrics[0], metrics[1], metrics[3] * 100)
    print(msg)

    K.clear_session()
Пример #4
0
    args = parser.parse_args()
    args_nondefault = utils.parse_nondefault_args(
        args,
        parser.parse_args(['--model', args.model, '--dataset', args.dataset]))

    if args.dataset is None and args.file is None:
        raise ValueError('dataset or file args must be set.')

    if args.dataset and args.file:
        print('Both dataset and file args was set. Ignoring file args.')

    # GPU configuration
    setup_gpu(args.gpu, args.allow_growth)

    # Loading model
    model, meta = load_model(args.model, return_meta=True, mode='eval')

    args = HParams(**meta['training_args']).update(vars(args_nondefault))

    # Features extractor
    input_parser = utils.get_from_module('preprocessing.audio',
                                         args.input_parser,
                                         params=args.input_parser_params)

    # Recovering text parser
    label_parser = utils.get_from_module('preprocessing.text',
                                         args.label_parser,
                                         params=args.label_parser_params)

    if args.dataset is not None:
        data_gen = DatasetGenerator(input_parser,
Пример #5
0
    # Other configs
    parser.add_argument('--gpu', default='0', type=str)
    parser.add_argument('--allow_growth', default=False, action='store_true')

    parser.add_argument('--save_transcriptions', default=None, type=str)

    args = parser.parse_args()
    args_nondefault = utils.parse_nondefault_args(
        args,
        parser.parse_args(['--model', args.model, '--dataset', args.dataset]))

    # GPU configuration
    setup_gpu(args.gpu, args.allow_growth)

    # Loading model
    model, meta = load_model(args.model, return_meta=True, mode='eval')

    args = HParams(**meta['training_args']).update(vars(args_nondefault))

    # Features extractor
    input_parser = utils.get_from_module('preprocessing.audio',
                                         args.input_parser,
                                         params=args.input_parser_params)

    # Recovering text parser
    label_parser = utils.get_from_module('preprocessing.text',
                                         args.label_parser,
                                         params=args.label_parser_params)

    data_gen = DatasetGenerator(input_parser,
                                label_parser,