def main(): """Create the model and start the training.""" print(args) if not os.path.exists(args.snapshot_dir): os.makedirs(args.snapshot_dir) writer = SummaryWriter(args.snapshot_dir) gpus = [int(i) for i in args.gpu.split(',')] if not args.gpu == 'None': os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu h, w = map(int, args.input_size.split(',')) input_size = [h, w] # cudnn related setting cudnn.enabled = True cudnn.benchmark = True torch.backends.cudnn.deterministic = False torch.backends.cudnn.enabled = True deeplab = get_cls_net(config=config, is_train=True) # model = DataParallelModel(deeplab) print('-------Load Weight', args.restore_from) saved_state_dict = torch.load(args.restore_from) if args.start_epoch > 0: model = DataParallelModel(deeplab) model.load_state_dict(saved_state_dict['state_dict']) else: new_params = deeplab.state_dict().copy() state_dict_pretrain = saved_state_dict for state_name in state_dict_pretrain: if state_name in new_params: new_params[state_name] = state_dict_pretrain[state_name] print('LOAD', state_name) else: print('NOT LOAD', state_name) deeplab.load_state_dict(new_params) model = DataParallelModel(deeplab) print('-------Load Weight', args.restore_from) model.cuda() criterion = CriterionAll(loss_type=args.loss) criterion = DataParallelCriterion(criterion) criterion.cuda() normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) transform = transforms.Compose([ transforms.ToTensor(), normalize, ]) print("-------Loading data...") if 'vehicle_parsing_dataset' in args.data_dir: parsing_dataset = VPDataSet(args.data_dir, args.dataset, crop_size=input_size, transform=transform) elif 'LIP' in args.data_dir: parsing_dataset = LIPDataSet(args.data_dir, args.dataset, crop_size=input_size, transform=transform) print("Data dir : ", args.data_dir) print("Dataset : ", args.dataset) trainloader = data.DataLoader(parsing_dataset, batch_size=args.batch_size * len(gpus), shuffle=True, num_workers=8, pin_memory=True) ''' list_map = [] for part in deeplab.path_list: list_map = list_map + list(map(id, part.parameters())) base_params = filter(lambda p: id(p) not in list_map, deeplab.parameters()) params_list = [] params_list.append({'params': base_params, 'lr':args.learning_rate*0.1}) for part in deeplab.path_list: params_list.append({'params': part.parameters()}) print ('len(params_list)',len(params_list)) ''' optimizer = optim.SGD(model.parameters(), lr=args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay) if args.start_epoch > 0: optimizer.load_state_dict(saved_state_dict['optimizer']) print('========Load Optimizer', args.restore_from) total_iters = args.epochs * len(trainloader) for epoch in range(args.start_epoch, args.epochs): model.train() for i_iter, batch in enumerate(trainloader): i_iter += len(trainloader) * epoch lr = adjust_learning_rate(optimizer, i_iter, total_iters) images, labels, _ = batch labels = labels.long().cuda(non_blocking=True) preds = model(images) loss = criterion(preds, labels) optimizer.zero_grad() loss.backward() optimizer.step() if i_iter % 100 == 0: writer.add_scalar('learning_rate', lr, i_iter) writer.add_scalar('loss', loss.data.cpu().numpy(), i_iter) print( f'epoch = {epoch}, iter = {i_iter}/{total_iters}, lr={lr:.6f}, loss = {loss.data.cpu().numpy():.6f}' ) if (epoch + 1) % args.save_step == 0 or epoch == args.epochs: time.sleep(10) print("-------Saving checkpoint...") save_checkpoint(model, epoch, optimizer) time.sleep(10) save_checkpoint(model, epoch, optimizer) end = timeit.default_timer() print(end - start, 'seconds')
def main(): """Create the model and start the training.""" if not os.path.exists(args.snapshot_dir): os.makedirs(args.snapshot_dir) writer = SummaryWriter(args.snapshot_dir) gpus = [int(i) for i in args.gpu.split(',')] if not args.gpu == 'None': os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu h, w = map(int, args.input_size.split(',')) input_size = [h, w] cudnn.enabled = True # cudnn related setting cudnn.benchmark = True torch.backends.cudnn.deterministic = False torch.backends.cudnn.enabled = True deeplab = Res_Deeplab(num_classes=args.num_classes) # dump_input = torch.rand((args.batch_size, 3, input_size[0], input_size[1])) # writer.add_graph(deeplab.cuda(), dump_input.cuda(), verbose=False) saved_state_dict = torch.load(args.restore_from) new_params = deeplab.state_dict().copy() for i in saved_state_dict: i_parts = i.split('.') # print(i_parts) if not i_parts[0] == 'fc': new_params['.'.join(i_parts[0:])] = saved_state_dict[i] deeplab.load_state_dict(new_params) model = DataParallelModel(deeplab) model.cuda() criterion = CriterionAll() criterion = DataParallelCriterion(criterion) criterion.cuda() normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) transform = transforms.Compose([ transforms.ToTensor(), normalize, ]) trainloader = data.DataLoader(LIPDataSet(args.data_dir, args.dataset, crop_size=input_size, transform=transform), batch_size=args.batch_size * len(gpus), shuffle=True, num_workers=2, pin_memory=True) #lip_dataset = LIPDataSet(args.data_dir, 'val', crop_size=input_size, transform=transform) #num_samples = len(lip_dataset) #valloader = data.DataLoader(lip_dataset, batch_size=args.batch_size * len(gpus), # shuffle=False, pin_memory=True) optimizer = optim.SGD(model.parameters(), lr=args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay) optimizer.zero_grad() total_iters = args.epochs * len(trainloader) for epoch in range(args.start_epoch, args.epochs): model.train() for i_iter, batch in enumerate(trainloader): i_iter += len(trainloader) * epoch lr = adjust_learning_rate(optimizer, i_iter, total_iters) images, labels, edges, _ = batch labels = labels.long().cuda(non_blocking=True) edges = edges.long().cuda(non_blocking=True) preds = model(images) loss = criterion(preds, [labels, edges]) optimizer.zero_grad() loss.backward() optimizer.step() if i_iter % 100 == 0: writer.add_scalar('learning_rate', lr, i_iter) writer.add_scalar('loss', loss.data.cpu().numpy(), i_iter) if i_iter % 500 == 0: images_inv = inv_preprocess(images, args.save_num_images) labels_colors = decode_parsing(labels, args.save_num_images, args.num_classes, is_pred=False) edges_colors = decode_parsing(edges, args.save_num_images, 2, is_pred=False) if isinstance(preds, list): preds = preds[0] preds_colors = decode_parsing(preds[0][-1], args.save_num_images, args.num_classes, is_pred=True) pred_edges = decode_parsing(preds[1][-1], args.save_num_images, 2, is_pred=True) img = vutils.make_grid(images_inv, normalize=False, scale_each=True) lab = vutils.make_grid(labels_colors, normalize=False, scale_each=True) pred = vutils.make_grid(preds_colors, normalize=False, scale_each=True) edge = vutils.make_grid(edges_colors, normalize=False, scale_each=True) pred_edge = vutils.make_grid(pred_edges, normalize=False, scale_each=True) writer.add_image('Images/', img, i_iter) writer.add_image('Labels/', lab, i_iter) writer.add_image('Preds/', pred, i_iter) writer.add_image('Edges/', edge, i_iter) writer.add_image('PredEdges/', pred_edge, i_iter) print('iter = {} of {} completed, loss = {}'.format( i_iter, total_iters, loss.data.cpu().numpy())) torch.save( model.state_dict(), osp.join(args.snapshot_dir, 'LIP_epoch_' + str(epoch) + '.pth')) #parsing_preds, scales, centers = valid(model, valloader, input_size, num_samples, len(gpus)) #mIoU = compute_mean_ioU(parsing_preds, scales, centers, args.num_classes, args.data_dir, input_size) #print(mIoU) #writer.add_scalars('mIoU', mIoU, epoch) end = timeit.default_timer() print(end - start, 'seconds')
def main(): """Create the model and start the training.""" print(args) if not os.path.exists(args.snapshot_dir): os.makedirs(args.snapshot_dir) writer = SummaryWriter(args.snapshot_dir) gpus = [int(i) for i in args.gpu.split(',')] if not args.gpu == 'None': os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu h, w = map(int, args.input_size.split(',')) input_size = [h, w] # cudnn related setting cudnn.enabled = True cudnn.benchmark = True torch.backends.cudnn.deterministic = False torch.backends.cudnn.enabled = True deeplab = get_cls_net(config=config, num_classes=args.num_classes, is_train=True) print('-------Load Weight', args.restore_from) saved_state_dict = torch.load(args.restore_from) if args.start_epoch > 0: model = DataParallelModel(deeplab) model.load_state_dict(saved_state_dict['state_dict']) else: new_params = deeplab.state_dict().copy() state_dict_pretrain = saved_state_dict for state_name in state_dict_pretrain: if state_name in new_params: new_params[state_name] = state_dict_pretrain[state_name] else: print('NOT LOAD', state_name) deeplab.load_state_dict(new_params) model = DataParallelModel(deeplab) print('-------Load Weight Finish', args.restore_from) model.cuda() criterion0 = CriterionAll(loss_type='ohem') criterion0 = DataParallelCriterion(criterion0) criterion0.cuda() criterion1 = LovaszSoftmax(input_size=input_size) criterion1 = DataParallelCriterion(criterion1) criterion1.cuda() transform = build_transforms(args) print("-------Loading data...") parsing_dataset = WYDataSet(args.data_dir, args.dataset, crop_size=input_size, transform=transform) print("Data dir : ", args.data_dir) print("Dataset : ", args.dataset, "Sample Number: ", parsing_dataset.number_samples) trainloader = data.DataLoader(parsing_dataset, batch_size=args.batch_size * len(gpus), shuffle=True, num_workers=8, collate_fn=fast_collate_fn_mask, pin_memory=True) optimizer = optim.SGD(model.parameters(), lr=args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay) if args.start_epoch > 0: optimizer.load_state_dict(saved_state_dict['optimizer']) print('========Load Optimizer', args.restore_from) total_iters = args.epochs * len(trainloader) for epoch in range(args.start_epoch, args.epochs): model.train() tng_prefetcher = data_prefetcher_mask(trainloader) batch = tng_prefetcher.next() n_batch = 0 while batch[0] is not None: # for i_iter, batch in enumerate(trainloader): i_iter = n_batch + len(trainloader) * epoch lr = adjust_learning_rate(optimizer, i_iter, total_iters) images, labels, _ = batch labels = labels.squeeze(1) labels = labels.long().cuda(non_blocking=True) preds = model(images) loss0 = criterion0(preds, labels) loss1 = criterion1(preds, labels) loss = loss0 + loss1 optimizer.zero_grad() loss.backward() optimizer.step() batch = tng_prefetcher.next() n_batch += 1 if i_iter % 1 == 0: writer.add_scalar('learning_rate', lr, i_iter) writer.add_scalar('loss', loss.data.cpu().numpy(), i_iter) writer.add_scalar('loss0', loss0.data.cpu().numpy(), i_iter) writer.add_scalar('loss1', loss1.data.cpu().numpy(), i_iter) print( f'epoch = {epoch}, iter = {i_iter}/{total_iters}, lr={lr:.6f}, \ loss = {loss.data.cpu().numpy():.6f}, \ loss0 = {loss0.data.cpu().numpy():.6f}, \ loss1 = {loss1.data.cpu().numpy():.6f}') if (epoch + 1) % args.save_step == 0 or epoch == args.epochs: time.sleep(10) print("-------Saving checkpoint...") save_checkpoint(model, epoch, optimizer) time.sleep(10) save_checkpoint(model, epoch, optimizer) end = timeit.default_timer() print(end - start, 'seconds')
def main(): """Create the model and start the training.""" if not os.path.exists(args.snapshot_dir): os.makedirs(args.snapshot_dir) f = open('./tlip.txt','w') f.write(str(args)+'\n') gpus = [int(i) for i in args.gpu.split(',')] if not args.gpu == 'None': os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu h, w = map(int, args.input_size.split(',')) input_size = [h, w] cudnn.enabled = True #cudnn.benchmark = False torch.backends.cudnn.deterministic = False torch.backends.cudnn.enabled = True deeplab = EEN(num_classes=args.num_classes) # Initialize the model with resnet101-imagenet.pth saved_state_dict = torch.load(args.restore_from) new_params = deeplab.state_dict().copy() for i in saved_state_dict: i_parts = i.split('.') if not i_parts[0] == 'fc': new_params['.'.join(i_parts[0:])] = saved_state_dict[i] deeplab.load_state_dict(new_params) # Initialize the model with cihp_11.pth """args.start_epoch = 11 res = './scihp/cihp_11.pth' state_dict = deeplab.state_dict().copy() state_dict_old = torch.load(res) for key, nkey in zip(state_dict_old.keys(), state_dict.keys()): if key != nkey: state_dict[key[7:]] = deepcopy(state_dict_old[key]) else: state_dict[key] = deepcopy(state_dict_old[key]) deeplab.load_state_dict(state_dict)""" ######### model = DataParallelModel(deeplab) model.cuda() criterion = CriterionAll() criterion = DataParallelCriterion(criterion) criterion.cuda() normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) transform = transforms.Compose([ transforms.ToTensor(), normalize, ]) trainloader = data.DataLoader(HumanDataSet(args.data_dir, args.dataset, crop_size=input_size, transform=transform), batch_size=args.batch_size * len(gpus), shuffle=True, num_workers=2, pin_memory=True) optimizer = optim.SGD( model.parameters(), lr=args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay ) optimizer.zero_grad() total_iters = args.epochs * len(trainloader) print(len(trainloader)) for epoch in range(args.start_epoch, args.epochs): start_time = timeit.default_timer() model.train() for i_iter, batch in enumerate(trainloader): i_iter += len(trainloader) * epoch lr = adjust_learning_rate(optimizer, i_iter, total_iters) images, labels, edges, _ = batch #pdb.set_trace() labels = labels.long().cuda(non_blocking=True) edges = edges.long().cuda(non_blocking=True) preds = model(images) #pdb.set_trace() loss = criterion(preds, [labels, edges]) optimizer.zero_grad() loss.backward() optimizer.step() if i_iter % 100 ==0: print('iter = {} of {} completed, loss = {}'.format(i_iter, total_iters, loss.data.cpu().numpy())) f.write('iter = '+str(i_iter)+', loss = '+str(loss.data.cpu().numpy())+', lr = '+str(lr)+'\n') torch.save(model.state_dict(), osp.join(args.snapshot_dir, 'lip_' + str(epoch) + '.pth')) end_time = timeit.default_timer() print('epoch: ', epoch ,', the time is: ',(end_time-start_time)) end = timeit.default_timer() print(end - start, 'seconds') f.close()
def main(): """Create the model and start the training.""" if not os.path.exists(args.snapshot_dir): os.makedirs(args.snapshot_dir) timestramp = args.date writer = SummaryWriter(os.path.join(args.snapshot_dir, timestramp)) gpus = [int(i) for i in args.gpu.split(',')] if not args.gpu == 'None': os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu h, w = map(int, args.input_size.split(',')) input_size = [h, w] cudnn.enabled = True # cudnn related setting cudnn.benchmark = True torch.backends.cudnn.deterministic = False torch.backends.cudnn.enabled = True deeplab = Res_Deeplab(num_classes=args.num_classes) # dump_input = torch.rand((args.batch_size, 3, input_size[0], input_size[1])) # writer.add_graph(deeplab.cuda(), dump_input.cuda(), verbose=False) model = DataParallelModel(deeplab) if args.resume: # when restore form the same network, it is useful here checkpoint = torch.load(args.restore_from) model.load_state_dict(checkpoint['net']) args.start_epoch = checkpoint['epoch'] else: saved_state_dict = torch.load(args.restore_from) new_params = deeplab.state_dict().copy() for i in saved_state_dict: i_parts = i.split('.') if not i_parts[0] == 'fc': new_params['.'.join(i_parts[0:])] = saved_state_dict[i] deeplab.load_state_dict(new_params) model.cuda() criterion = CriterionAll() criterion = DataParallelCriterion(criterion) criterion.cuda() normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) transform = transforms.Compose([ transforms.ToTensor(), normalize, ]) trainloader = data.DataLoader(LIPDataSet(args.data_dir, args.dataset, crop_size=input_size, transform=transform), batch_size=args.batch_size * len(gpus), shuffle=True, num_workers=2, pin_memory=True) lip_dataset = LIPDataSet(args.data_dir, 'val', crop_size=input_size, transform=transform) num_samples = len(lip_dataset) valloader = data.DataLoader(lip_dataset, batch_size=args.batch_size * len(gpus), shuffle=False, pin_memory=True) optimizer = optim.SGD(model.parameters(), lr=args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay) optimizer.zero_grad() total_iters = args.epochs * len(trainloader) log = Logger(os.path.join(args.log_dir, '{}_train.log'.format(timestramp)), level='debug') for epoch in range(args.start_epoch, args.epochs): model.train() #lr = adjust_learning_rate_pose(optimizer, epoch) for i_iter, batch in enumerate(trainloader): i_iter += len(trainloader) * epoch lr = adjust_learning_rate(optimizer, i_iter, total_iters) images, labels, r1, r2, r3, r4, l0, l1, l2, l3, l4, l5, _ = batch labels = labels.long().cuda(non_blocking=True) r1 = r1.long().cuda(non_blocking=True) r2 = r2.long().cuda(non_blocking=True) r3 = r3.long().cuda(non_blocking=True) r4 = r4.long().cuda(non_blocking=True) l0 = l0.long().cuda(non_blocking=True) l1 = l1.long().cuda(non_blocking=True) l2 = l2.long().cuda(non_blocking=True) l3 = l3.long().cuda(non_blocking=True) l4 = l4.long().cuda(non_blocking=True) l5 = l5.long().cuda(non_blocking=True) preds = model(images) loss = criterion( preds, [[labels], [r1, r2, r3, r4], [l0, l1, l2, l3, l4, l5]]) optimizer.zero_grad() loss.backward() optimizer.step() if i_iter % 100 == 0: writer.add_scalar('learning_rate', lr, i_iter) writer.add_scalar('loss', loss.data.cpu().numpy(), i_iter) if i_iter % 10 == 0: log.logger.info( 'epoch = {} iter = {} of {} completed, lr = {}, loss = {}'. format(epoch, i_iter, total_iters, lr, loss.data.cpu().numpy())) parsing_preds, scales, centers = valid(model, valloader, input_size, num_samples, len(gpus)) mIoU = compute_mean_ioU(parsing_preds, scales, centers, args.num_classes, args.data_dir, input_size) log.logger.info('epoch = {}'.format(epoch)) log.logger.info(str(mIoU)) writer.add_scalars('mIoU', mIoU, epoch) # save the model snapshot state = {"net": model.module.state_dict(), "epoch": epoch} torch.save( state, osp.join(args.snapshot_dir, timestramp, 'LIP_epoch_' + str(epoch) + '.pth')) end = timeit.default_timer() print(end - start, 'seconds')
def main(): """Create the model and start the training.""" print(args) if not os.path.exists(args.snapshot_dir): os.makedirs(args.snapshot_dir) writer = SummaryWriter(args.snapshot_dir) gpus = [int(i) for i in args.gpu.split(',')] if not args.gpu == 'None': os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu h, w = map(int, args.input_size.split(',')) input_size = [h, w] cudnn.enabled = True # cudnn related setting cudnn.benchmark = True torch.backends.cudnn.deterministic = False torch.backends.cudnn.enabled = True model = DenseASPP(n_class=args.num_classes) # dump_input = torch.rand((args.batch_size, 3, input_size[0], input_size[1])) # writer.add_graph(deeplab.cuda(), dump_input.cuda(), verbose=False) saved_state_dict = torch.load(args.restore_from) if args.start_epoch > 0: model = DataParallelModel(model) model.load_state_dict(saved_state_dict['state_dict']) else: model = DataParallelModel(model) new_params = model.state_dict().copy() state_dict_pretrain = saved_state_dict #['state_dict'] for state_name in state_dict_pretrain: if state_name in new_params: new_params[state_name] = state_dict_pretrain[state_name] elif 'norm.' in state_name: new_params[state_name.replace( 'norm.', 'norm_')] = state_dict_pretrain[state_name] elif 'relu.' in state_name: new_params[state_name.replace( 'relu.', 'relu_')] = state_dict_pretrain[state_name] elif 'conv.' in state_name: new_params[state_name.replace( 'conv.', 'conv_')] = state_dict_pretrain[state_name] else: print('NOT LOAD', state_name) model.load_state_dict(new_params) print('-------Load Weight', args.restore_from) model.cuda() criterion = CriterionAll() criterion = DataParallelCriterion(criterion) criterion.cuda() normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) transform = transforms.Compose([ transforms.ToTensor(), normalize, ]) trainloader = data.DataLoader(LIPDataSet(args.data_dir, args.dataset, crop_size=input_size, transform=transform, list_path=args.list_path), batch_size=args.batch_size * len(gpus), shuffle=True, num_workers=4, pin_memory=True) num_samples = 5000 ''' list_map = [] for part in deeplab.path_list: list_map = list_map + list(map(id, part.parameters())) base_params = filter(lambda p: id(p) not in list_map, deeplab.parameters()) params_list = [] params_list.append({'params': base_params, 'lr':args.learning_rate*0.1}) for part in deeplab.path_list: params_list.append({'params': part.parameters()}) print ('len(params_list)',len(params_list)) ''' optimizer = optim.SGD(model.parameters(), lr=args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay) if args.start_epoch > 0: optimizer.load_state_dict(saved_state_dict['optimizer']) print('========Load Optimizer', args.restore_from) total_iters = args.epochs * len(trainloader) for epoch in range(args.start_epoch, args.epochs): model.train() for i_iter, batch in enumerate(trainloader): i_iter += len(trainloader) * epoch lr = adjust_learning_rate(optimizer, i_iter, total_iters) images, labels, _ = batch labels = labels.long().cuda(non_blocking=True) preds = model(images) loss = criterion(preds, labels) optimizer.zero_grad() loss.backward() optimizer.step() if i_iter % 100 == 0: writer.add_scalar('learning_rate', lr, i_iter) writer.add_scalar('loss', loss.data.cpu().numpy(), i_iter) print('epoch = {}, iter = {} of {} completed,lr={}, loss = {}'. format(epoch, i_iter, total_iters, lr, loss.data.cpu().numpy())) if epoch % args.save_step == 0 or epoch == args.epochs: time.sleep(10) save_checkpoint(model, epoch, optimizer) # parsing_preds, scales, centers = valid(model, valloader, input_size, num_samples, len(gpus)) # mIoU = compute_mean_ioU(parsing_preds, scales, centers, args.num_classes, args.data_dir, input_size) # print(mIoU) # writer.add_scalars('mIoU', mIoU, epoch) time.sleep(10) save_checkpoint(model, epoch, optimizer) end = timeit.default_timer() print(end - start, 'seconds')
def main(): args = get_arguments() print(args) start_epoch = 0 cycle_n = 0 if not os.path.exists(args.log_dir): os.makedirs(args.log_dir) with open(os.path.join(args.log_dir, 'args.json'), 'w') as opt_file: json.dump(vars(args), opt_file) gpus = [int(i) for i in args.gpu.split(',')] if not args.gpu == 'None': os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu input_size = list(map(int, args.input_size.split(','))) cudnn.enabled = True cudnn.benchmark = True # Model Initialization AugmentCE2P = networks.init_model(args.arch, num_classes=args.num_classes, pretrained=args.imagenet_pretrain) model = DataParallelModel(AugmentCE2P) model.cuda() IMAGE_MEAN = AugmentCE2P.mean IMAGE_STD = AugmentCE2P.std INPUT_SPACE = AugmentCE2P.input_space print('image mean: {}'.format(IMAGE_MEAN)) print('image std: {}'.format(IMAGE_STD)) print('input space:{}'.format(INPUT_SPACE)) restore_from = args.model_restore if os.path.exists(restore_from): print('Resume training from {}'.format(restore_from)) checkpoint = torch.load(restore_from) model.load_state_dict(checkpoint['state_dict']) start_epoch = checkpoint['epoch'] SCHP_AugmentCE2P = networks.init_model(args.arch, num_classes=args.num_classes, pretrained=args.imagenet_pretrain) schp_model = DataParallelModel(SCHP_AugmentCE2P) schp_model.cuda() if os.path.exists(args.schp_restore): print('Resuming schp checkpoint from {}'.format(args.schp_restore)) schp_checkpoint = torch.load(args.schp_restore) schp_model_state_dict = schp_checkpoint['state_dict'] cycle_n = schp_checkpoint['cycle_n'] schp_model.load_state_dict(schp_model_state_dict) # Loss Function criterion = CriterionAll(lambda_1=args.lambda_s, lambda_2=args.lambda_e, lambda_3=args.lambda_c, num_classes=args.num_classes) criterion = DataParallelCriterion(criterion) criterion.cuda() # Data Loader if INPUT_SPACE == 'BGR': print('BGR Transformation') transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=IMAGE_MEAN, std=IMAGE_STD), ]) elif INPUT_SPACE == 'RGB': print('RGB Transformation') transform = transforms.Compose([ transforms.ToTensor(), BGR2RGB_transform(), transforms.Normalize(mean=IMAGE_MEAN, std=IMAGE_STD), ]) train_dataset = LIPDataSet(args.data_dir, args.split_name, crop_size=input_size, transform=transform) train_loader = data.DataLoader(train_dataset, batch_size=args.batch_size * len(gpus), num_workers=16, shuffle=True, pin_memory=True, drop_last=True) print('Total training samples: {}'.format(len(train_dataset))) # Optimizer Initialization optimizer = optim.SGD(model.parameters(), lr=args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay) lr_scheduler = SGDRScheduler(optimizer, total_epoch=args.epochs, eta_min=args.learning_rate / 100, warmup_epoch=10, start_cyclical=args.schp_start, cyclical_base_lr=args.learning_rate / 2, cyclical_epoch=args.cycle_epochs) total_iters = args.epochs * len(train_loader) start = timeit.default_timer() for epoch in range(start_epoch, args.epochs): lr_scheduler.step(epoch=epoch) lr = lr_scheduler.get_lr()[0] model.train() for i_iter, batch in enumerate(train_loader): i_iter += len(train_loader) * epoch images, labels, _ = batch labels = labels.cuda(non_blocking=True) edges = generate_edge_tensor(labels) labels = labels.type(torch.cuda.LongTensor) edges = edges.type(torch.cuda.LongTensor) preds = model(images) # Online Self Correction Cycle with Label Refinement if cycle_n >= 1: with torch.no_grad(): soft_preds = schp_model(images) soft_parsing = [] soft_edge = [] for soft_pred in soft_preds: soft_parsing.append(soft_pred[0][-1]) soft_edge.append(soft_pred[1][-1]) soft_preds = torch.cat(soft_parsing, dim=0) soft_edges = torch.cat(soft_edge, dim=0) else: soft_preds = None soft_edges = None loss = criterion(preds, [labels, edges, soft_preds, soft_edges], cycle_n) optimizer.zero_grad() loss.backward() optimizer.step() if i_iter % 100 == 0: print('iter = {} of {} completed, lr = {}, loss = {}'.format( i_iter, total_iters, lr, loss.data.cpu().numpy())) if (epoch + 1) % (args.eval_epochs) == 0: schp.save_checkpoint( { 'epoch': epoch + 1, 'state_dict': model.state_dict(), }, False, args.log_dir, filename='checkpoint_{}.pth.tar'.format(epoch + 1)) # Self Correction Cycle with Model Aggregation if (epoch + 1) >= args.schp_start and ( epoch + 1 - args.schp_start) % args.cycle_epochs == 0: print('Self-correction cycle number {}'.format(cycle_n)) schp.moving_average(schp_model, model, 1.0 / (cycle_n + 1)) cycle_n += 1 schp.bn_re_estimate(train_loader, schp_model) schp.save_schp_checkpoint( { 'state_dict': schp_model.state_dict(), 'cycle_n': cycle_n, }, False, args.log_dir, filename='schp_{}_checkpoint.pth.tar'.format(cycle_n)) torch.cuda.empty_cache() end = timeit.default_timer() print('epoch = {} of {} completed using {} s'.format( epoch, args.epochs, (end - start) / (epoch - start_epoch + 1))) end = timeit.default_timer() print('Training Finished in {} seconds'.format(end - start))