Пример #1
0
def pixel_drill(task_id=None):
    parameters = parse_parameters_from_task(task_id=task_id)
    validate_parameters(parameters, task_id=task_id)
    task = TsmTask.objects.get(pk=task_id)

    if task.status == "ERROR":
        return None

    dc = DataAccessApi(config=task.config_path)
    single_pixel = dc.get_stacked_datasets_by_extent(**parameters)
    clear_mask = task.satellite.get_clean_mask_func()(single_pixel)
    single_pixel = single_pixel.where(single_pixel != task.satellite.no_data_value)

    dates = single_pixel.time.values
    if len(dates) < 2:
        task.update_status("ERROR", "There is only a single acquisition for your parameter set.")
        return None

    # Ensure data variables have the range of Landsat 7 Collection 1 Level 2
    # since the color scales are tailored for that dataset.
    platform = task.satellite.platform
    collection = task.satellite.collection
    level = task.satellite.level
    if (platform, collection) != ('LANDSAT_7', 'c1'):
        single_pixel = \
            convert_range(single_pixel, from_platform=platform, 
                        from_collection=collection, from_level=level,
                        to_platform='LANDSAT_7', to_collection='c1', to_level='l2')

    wofs_data = task.get_processing_method()(single_pixel,
                                             clean_mask=clear_mask,
                                             no_data=task.satellite.no_data_value)
    wofs_data = \
        wofs_data.where(wofs_data != task.satellite.no_data_value)
    wofs_data = wofs_data.squeeze()
    tsm_data = \
        tsm(single_pixel, clean_mask=clear_mask, no_data=task.satellite.no_data_value)
    tsm_data = \
        tsm_data.where(tsm_data != task.satellite.no_data_value)\
        .squeeze().where(wofs_data.wofs.values == 1)

    # Remove NaNs to avoid errors and yield a nicer plot.
    water_non_nan_times = ~np.isnan(wofs_data.wofs.values)
    wofs_data = wofs_data.isel(time=water_non_nan_times)
    tsm_non_nan_times = ~np.isnan(tsm_data.tsm.values)
    tsm_data = tsm_data.isel(time=tsm_non_nan_times)

    datasets = [wofs_data.wofs.values.transpose().squeeze(), 
                tsm_data.tsm.values.transpose().squeeze()] + \
                [clear_mask.squeeze()]
    dates = [dates[water_non_nan_times], dates[tsm_non_nan_times]] + [dates]
    data_labels = ["Water/Non Water", "TSM (g/L)"] + ["Clear"]
    titles = ["Water/Non Water", "TSM Values"] + ["Clear Mask"]
    style = ['.', 'ro', '.']

    task.plot_path = os.path.join(task.get_result_path(), "plot_path.png")
    create_2d_plot(task.plot_path, dates=dates, datasets=datasets, data_labels=data_labels, titles=titles, style=style)

    task.complete = True
    task.update_status("OK", "Done processing pixel drill.")
Пример #2
0
def pixel_drill(task_id=None):
    parameters = parse_parameters_from_task(task_id=task_id)
    validate_parameters(parameters, task_id=task_id)
    task = TsmTask.objects.get(pk=task_id)

    if task.status == "ERROR":
        return None

    dc = DataAccessApi(config=task.config_path)
    single_pixel = dc.get_stacked_datasets_by_extent(**parameters)
    clear_mask = task.satellite.get_clean_mask_func()(single_pixel.isel(
        latitude=0, longitude=0))
    single_pixel = single_pixel.where(
        single_pixel != task.satellite.no_data_value)

    dates = single_pixel.time.values
    if len(dates) < 2:
        task.update_status(
            "ERROR",
            "There is only a single acquisition for your parameter set.")
        return None

    wofs_data = task.get_processing_method()(
        single_pixel,
        clean_mask=clear_mask,
        enforce_float64=True,
        no_data=task.satellite.no_data_value)
    wofs_data = wofs_data.where(
        wofs_data != task.satellite.no_data_value).isel(latitude=0,
                                                        longitude=0)
    tsm_data = tsm(single_pixel,
                   clean_mask=clear_mask,
                   no_data=task.satellite.no_data_value)
    tsm_data = tsm_data.where(tsm_data != task.satellite.no_data_value).isel(
        latitude=0, longitude=0).where((wofs_data.wofs.values == 1))

    datasets = [
        wofs_data.wofs.values.transpose(),
        tsm_data.tsm.values.transpose()
    ] + [clear_mask]
    data_labels = ["Water/Non Water", "TSM (g/L)"] + ["Clear"]
    titles = ["Water/Non Water", "TSM Values"] + ["Clear Mask"]
    style = ['.', 'r-o', '.']

    task.plot_path = os.path.join(task.get_result_path(), "plot_path.png")
    create_2d_plot(task.plot_path,
                   dates=dates,
                   datasets=datasets,
                   data_labels=data_labels,
                   titles=titles,
                   style=style)

    task.complete = True
    task.update_status("OK", "Done processing pixel drill.")
Пример #3
0
def pixel_drill(task_id=None):
    parameters = parse_parameters_from_task(task_id=task_id)
    validate_parameters(parameters, task_id=task_id)
    task = TsmTask.objects.get(pk=task_id)

    if task.status == "ERROR":
        return None

    dc = DataAccessApi(config=task.config_path)
    single_pixel = dc.get_stacked_datasets_by_extent(**parameters)
    clear_mask = task.satellite.get_clean_mask_func()(single_pixel)
    single_pixel = single_pixel.where(single_pixel != task.satellite.no_data_value)

    dates = single_pixel.time.values
    if len(dates) < 2:
        task.update_status("ERROR", "There is only a single acquisition for your parameter set.")
        return None

    wofs_data = task.get_processing_method()(single_pixel,
                                             clean_mask=clear_mask,
                                             no_data=task.satellite.no_data_value)
    wofs_data = \
        wofs_data.where(wofs_data != task.satellite.no_data_value)
    wofs_data = wofs_data.squeeze()
    tsm_data = \
        tsm(single_pixel, clean_mask=clear_mask, no_data=task.satellite.no_data_value)
    tsm_data = \
        tsm_data.where(tsm_data != task.satellite.no_data_value)\
        .squeeze().where(wofs_data.wofs.values == 1)

    # Remove NaNs to avoid errors and yield a nicer plot.
    water_non_nan_times = ~np.isnan(wofs_data.wofs.values)
    wofs_data = wofs_data.isel(time=water_non_nan_times)
    tsm_non_nan_times = ~np.isnan(tsm_data.tsm.values)
    tsm_data = tsm_data.isel(time=tsm_non_nan_times)

    datasets = [wofs_data.wofs.values.transpose().squeeze(), 
                tsm_data.tsm.values.transpose().squeeze()] + \
                [clear_mask.squeeze()]
    dates = [dates[water_non_nan_times], dates[tsm_non_nan_times]] + [dates]
    data_labels = ["Water/Non Water", "TSM (g/L)"] + ["Clear"]
    titles = ["Water/Non Water", "TSM Values"] + ["Clear Mask"]
    style = ['.', 'ro', '.']

    task.plot_path = os.path.join(task.get_result_path(), "plot_path.png")
    create_2d_plot(task.plot_path, dates=dates, datasets=datasets, data_labels=data_labels, titles=titles, style=style)

    task.complete = True
    task.update_status("OK", "Done processing pixel drill.")
Пример #4
0
def processing_task(self,
                    task_id=None,
                    geo_chunk_id=None,
                    time_chunk_id=None,
                    geographic_chunk=None,
                    time_chunk=None,
                    **parameters):
    """Process a parameter set and save the results to disk.

    Uses the geographic and time chunk id to identify output products.
    **params is updated with time and geographic ranges then used to load data.
    the task model holds the iterative property that signifies whether the algorithm
    is iterative or if all data needs to be loaded at once.

    Args:
        task_id, geo_chunk_id, time_chunk_id: identification for the main task and what chunk this is processing
        geographic_chunk: range of latitude and longitude to load - dict with keys latitude, longitude
        time_chunk: list of acquisition dates
        parameters: all required kwargs to load data.

    Returns:
        path to the output product, metadata dict, and a dict containing the geo/time ids
    """
    chunk_id = "_".join([str(geo_chunk_id), str(time_chunk_id)])
    task = TsmTask.objects.get(pk=task_id)
    if check_cancel_task(self, task): return

    logger.info("Starting chunk: " + chunk_id)
    if not os.path.exists(task.get_temp_path()):
        return None

    metadata = {}

    def _get_datetime_range_containing(*time_ranges):
        return (min(time_ranges) - timedelta(microseconds=1), max(time_ranges) + timedelta(microseconds=1))

    times = list(
        map(_get_datetime_range_containing, time_chunk)
        if task.get_iterative() else [_get_datetime_range_containing(time_chunk[0], time_chunk[-1])])
    dc = DataAccessApi(config=task.config_path)
    updated_params = parameters
    updated_params.update(geographic_chunk)
    #updated_params.update({'products': parameters['']})
    water_analysis = None
    tsm_analysis = None
    combined_data = None
    base_index = (task.get_chunk_size()['time'] if task.get_chunk_size()['time'] is not None else 1) * time_chunk_id
    for time_index, time in enumerate(times):
        updated_params.update({'time': time})
        data = dc.get_stacked_datasets_by_extent(**updated_params)

        if check_cancel_task(self, task): return

        if data is None or 'time' not in data:
            logger.info("Invalid chunk.")
            continue

        clear_mask = task.satellite.get_clean_mask_func()(data)

        wofs_data = task.get_processing_method()(data,
                                                 clean_mask=clear_mask,
                                                 enforce_float64=True,
                                                 no_data=task.satellite.no_data_value)
        water_analysis = perform_timeseries_analysis(
            wofs_data, 'wofs', intermediate_product=water_analysis, no_data=task.satellite.no_data_value)

        clear_mask[(data.swir2.values > 100) | (wofs_data.wofs.values == 0)] = False
        tsm_data = tsm(data, clean_mask=clear_mask, no_data=task.satellite.no_data_value)
        tsm_analysis = perform_timeseries_analysis(
            tsm_data, 'tsm', intermediate_product=tsm_analysis, no_data=task.satellite.no_data_value)

        if check_cancel_task(self, task): return

        combined_data = tsm_analysis
        combined_data['wofs'] = water_analysis.total_data
        combined_data['wofs_total_clean'] = water_analysis.total_clean

        metadata = task.metadata_from_dataset(metadata, tsm_data, clear_mask, updated_params)
        if task.animated_product.animation_id != "none":
            path = os.path.join(task.get_temp_path(),
                                "animation_{}_{}.nc".format(str(geo_chunk_id), str(base_index + time_index)))
            animated_data = tsm_data.isel(
                time=0, drop=True) if task.animated_product.animation_id == "scene" else combined_data
            animated_data.to_netcdf(path)

        task.scenes_processed = F('scenes_processed') + 1
        task.save(update_fields=['scenes_processed'])
    if combined_data is None:
        return None
    path = os.path.join(task.get_temp_path(), chunk_id + ".nc")
    combined_data.to_netcdf(path)
    dc.close()
    logger.info("Done with chunk: " + chunk_id)
    return path, metadata, {'geo_chunk_id': geo_chunk_id, 'time_chunk_id': time_chunk_id}