Пример #1
0
    def _train(self, train_loader, optimizer, epoch, total_epochs):
        total_loss, correct, num_data = 0.0, 0.0, 0.0
        self.model.train()
        for i, data in enumerate(train_loader):
            x = data["image"]
            y = data["label"]
            x = x.to(self.device)
            y = y.to(self.device)

            optimizer.zero_grad()

            do_cutmix = self.cutmix and np.random.rand(1) < 0.5
            if do_cutmix:
                x, labels_a, labels_b, lam = cutmix_data(x=x, y=y, alpha=1.0)
                logit = self.model(x)
                loss = lam * self.criterion(logit, labels_a) + (
                    1 - lam) * self.criterion(logit, labels_b)
            else:
                logit = self.model(x)
                loss = self.criterion(logit, y)

            reg_loss = self.regularization_loss()

            loss += reg_loss
            loss.backward(retain_graph=True)
            optimizer.step()

            _, preds = logit.topk(self.topk, 1, True, True)
            total_loss += loss.item()
            correct += torch.sum(preds == y.unsqueeze(1)).item()
            num_data += y.size(0)

        n_batches = len(train_loader)
        return total_loss / n_batches, correct / num_data
Пример #2
0
    def update_model(self, x, y, criterion, optimizer):
        optimizer.zero_grad()

        do_cutmix = self.cutmix and np.random.rand(1) < 0.5
        if do_cutmix:
            x, labels_a, labels_b, lam = cutmix_data(x=x, y=y, alpha=1.0)
            logit = self.model(x)
            loss = lam * criterion(logit, labels_a) + (1 - lam) * criterion(
                logit, labels_b
            )
        else:
            logit = self.model(x)
            loss = criterion(logit, y)

        _, preds = logit.topk(self.topk, 1, True, True)

        loss.backward()
        optimizer.step()
        return loss.item(), torch.sum(preds == y.unsqueeze(1)).item(), y.size(0)