else: device = torch.device("cpu") get_logger(CONFIG.log_dir) writer = get_writer(args.title, CONFIG.write_dir) logging.info( "=================================== Experiment title : {} Start ===========================" .format(args.title)) set_random_seed(CONFIG.seed) train_transform, val_transform, test_transform = get_transforms(CONFIG) train_dataset, val_dataset, test_dataset = get_dataset( train_transform, val_transform, test_transform, CONFIG) train_loader, val_loader, test_loader = get_dataloader( train_dataset, val_dataset, test_dataset, CONFIG) generator = get_generator(CONFIG, 21 * 8) generator.to(device) # ============ OFA ================ accuracy_predictor = AccuracyPredictor(pretrained=True, device=device) print(accuracy_predictor.model) flops_table = FLOPsTable(device=device) # ================================= g_optimizer = get_optimizer(generator, CONFIG.g_optim_state) start_time = time.time()
parser = argparse.ArgumentParser() parser.add_argument("--cfg", type=str, help="path to the config file", required=True) parser.add_argument("--model", type=str, help="model", required=True) parser.add_argument("--pretrain", type=str, help="path to the pretrain weight", required=True) args = parser.parse_args() CONFIG = get_config(args.cfg) device = torch.device("cuda") if torch.cuda.is_available() and CONFIG.cuda else torch.device("cpu") logger = get_logger(CONFIG.log_dir) _, _, test_transform = get_transforms(CONFIG) _, _, test_dataset = get_dataset(None, None, test_transform, CONFIG) _, _, test_loader = get_dataloader(None, None, test_dataset, CONFIG) if args.model == "PONASA": model = PONASA() elif args.model == "PONASB": model = PONASB() elif args.model == "PONASC": model = PONASC() model.load_state_dict(torch.load(args.pretrain)) latency = calculate_latency(model, 3, CONFIG.input_size) counter = MAC_Counter(model, [1, 3, CONFIG.input_size, CONFIG.input_size]) macs = counter.print_summary(False) param_nums = calculate_param_nums(model) logging.info("Inference time : {:.5f}".format(latency))