def show(): results = datasets.np_load_data(RESULTS_FOLDER_PATH, "results.npy") for result in results: plot.plt_validation_curve(result[2], result[3], result[1], result[0], plot_tile="Validation curve for TOR/NonTor dataset with Decision Tree") result = datasets.pk_load(RESULTS_FOLDER_PATH, "learning_curves") plot.plt_learning_curve(result[0], result[1], result[2], "Learning curve for TOR/NonTor dataset with Decision Tree")
def show(): results = datasets.np_load_data(RESULTS_FOLDER_PATH, "results.npy") for result in results: plot.plt_validation_curve( result[2], result[3], result[1], result[0], plot_tile= "Validation curve for CICAndMal2017 dataset with Random Forest")
def show(scor='roc_auc'): results = datasets.np_load_data(RESULTS_FOLDER_PATH, "results.npy") for result in results: plot.plt_validation_curve( result[2], result[3], result[1], result[0], plot_tile= "Validation curve for CICIDS2017 dataset with Linear Regression")
def show(): for parameter_dir in os.listdir(RESULTS_FOLDER_PATH): result_dir = os.path.join(RESULTS_FOLDER_PATH, parameter_dir) if not os.path.isdir(result_dir): continue parameter_name = parameter_dir.replace("_", " ").capitalize() for file in os.listdir(result_dir): if file.endswith(".npy"): if "roc_fpr_tpr_thres" in file: fpr_tpr_thres = datasets.np_load_data(result_dir, file) plot.initialize_roc_plt(parameter_name) for i in range(0, len(fpr_tpr_thres)): plot.plt_add_roc_curve(fpr_tpr_thres[i][1], fpr_tpr_thres[i][2], fpr_tpr_thres[i][0]) elif "roc_auc_scores" in file: auc_score = datasets.np_load_data(result_dir, file) plot.plot_auc_score(auc_score[:, 0], auc_score[:, 1], parameter_name) plot.show()