Пример #1
0
def test_siamesize_train_ds_epoch():
    n_epochs = 10
    dataset = DeepFashionDataset(root_dir, 'val')

    # make it trainable
    dataset.train = True
    siamese_ds = Siamesize(dataset)

    for epoch in range(n_epochs):
        for idx1 in range(len(siamese_ds)):
            idx2, is_similar = siamese_ds._get_idx2_and_target(idx1)
Пример #2
0
def test_siamesize_train_ds():
    """
    One epoch testing
    """
    dataset = DeepFashionDataset(root_dir, 'train')
    siamese_ds = Siamesize(dataset)

    targets = list()
    for idx1 in range(len(siamese_ds)):
        idx2, is_similar = siamese_ds._get_idx2_and_target(idx1)
        # store the targets
        targets.append(is_similar)

    # empirically check probability of the target getting 0 or 1
    prob = np.mean(targets)
    assert 0.48 <= prob <= 0.52
Пример #3
0
def test_siamesize_train_ds_basic():
    """
    Basic testing
    """
    dataset = DeepFashionDataset(root_dir, 'train')
    siamese_ds = Siamesize(dataset)

    targets = list()
    for idx1 in range(5000):
        idx2, is_similar = siamese_ds._get_idx2_and_target(idx1)
        assert is_similar in [0, 1]
        assert idx1 != idx2
        # store the targets
        targets.append(is_similar)

    # empirically check probability of the target getting 0 or 1
    prob = np.mean(targets)
    assert 0.4 <= prob <= 0.6
Пример #4
0
    def prepare_data_loaders(self):
        """
        Our target is to construct embbeding space. Therefore we use the "test set"
        as validation
        """
        # alias
        cfg = FashionMNISTConfig

        # data transform
        data_transform = Compose(
            [ToTensor(), Normalize((cfg.mean, ), (cfg.std, ))])

        # ----------------------------
        # Consturct data loader
        # ----------------------------
        ds_kwargs = {'root': cfg.root, 'transform': data_transform}
        train_ds = FashionMNIST(train=True, download=True, **ds_kwargs)
        val_ds = FashionMNIST(train=False, download=False, **ds_kwargs)

        # ---------------------------------------------------
        # Returns pairs of images and target same/different
        # ---------------------------------------------------
        siamese_train_ds = Siamesize(train_ds)
        siamese_test_ds = Siamesize(val_ds)

        # ----------------------------
        # Consturct loader
        # ----------------------------
        self.train_loader = DataLoader(train_ds,
                                       shuffle=False,
                                       batch_size=self.hparams.batch_size)
        self.val_loader = DataLoader(val_ds,
                                     shuffle=False,
                                     batch_size=self.hparams.batch_size)

        batch_size = self.hparams.batch_size
        self.siamese_train_loader = DataLoader(siamese_train_ds,
                                               batch_size=batch_size,
                                               shuffle=True)
        self.siamese_val_loader = torch.utils.data.DataLoader(
            siamese_test_ds, batch_size=batch_size, shuffle=False)
        self.train_loader_len = len(self.siamese_train_loader)
Пример #5
0
def test_siamesize_mnist_basic():
    cfg = FashionMNISTConfig

    ds_kwargs = {
        'root': cfg.root,
    }
    train_ds = FashionMNIST(train=True, download=True, **ds_kwargs)
    siamese_ds = Siamesize(train_ds)

    targets = list()
    for idx1 in range(5000):
        idx2, is_similar = siamese_ds._get_idx2_and_target(idx1)
        assert is_similar in [0, 1]
        assert idx1 != idx2
        # store the targets
        targets.append(is_similar)

    # empirically check probability of the target getting 0 or 1
    prob = np.mean(targets)
    assert 0.4 <= prob <= 0.6
Пример #6
0
    def datasets(self):
        if self._datasets is None:
            trans = Compose(
                [Resize(cfg.sizes),
                 ToTensor(),
                 Normalize(cfg.mean, cfg.std)])
            # dataset
            train_ds = DeepFashionDataset(cfg.root_dir,
                                          'train',
                                          transform=trans)
            val_ds = DeepFashionDataset(cfg.root_dir, 'val', transform=trans)
            test_ds = DeepFashionDataset(cfg.root_dir, 'test', transform=trans)
            siam_train_ds = Siamesize(train_ds)
            siam_val_ds = Siamesize(val_ds)
            siam_test_ds = Siamesize(test_ds)

            # Subset if needed
            if self._debug:
                train_samples = np.random.choice(len(train_ds),
                                                 1000,
                                                 replace=False)
                val_samples = np.random.choice(len(val_ds), 100, replace=False)
                # Subset the datasets
                train_ds = Subset(train_ds, train_samples)
                val_ds = Subset(val_ds, val_samples)
                test_ds = Subset(test_ds, val_samples)
                siam_train_ds = Subset(siam_train_ds, train_samples)
                siam_val_ds = Subset(siam_val_ds, val_samples)
                siam_test_ds = Subset(siam_test_ds, val_samples)
            # -------------------------------------------------------
            # pack them up
            self._datasets = {
                "train": train_ds,
                "val": val_ds,
                "test": test_ds,
                "siam_train": siam_train_ds,
                "siam_val": siam_val_ds,
                "siam_test": siam_test_ds,
            }

        return self._datasets
Пример #7
0
def test_siamesize_test_ds():
    dataset = DeepFashionDataset(root_dir, 'test')
    siamese_ds = Siamesize(dataset)
    assert not siamese_ds.train

    # first round
    pairs = list()
    targets = list()
    for idx1 in range(len(siamese_ds)):
        idx2, is_similar = siamese_ds._get_idx2_and_target(idx1)
        assert is_similar in [0, 1]
        assert idx1 != idx2
        # store the targets
        pairs.append((idx1, idx2))
        targets.append(is_similar)

    prob = np.mean(targets)
    assert 0.48 <= prob <= 0.52

    # second round
    for idx1 in range(len(siamese_ds)):
        idx2, is_similar = siamese_ds._get_idx2_and_target(idx1)
        assert (idx1, idx2) in pairs
Пример #8
0
    def prepare_data_loaders(self):
        """
        Our target is to construct embbeding space. Therefore we use the "test set"
        as validation
        """

        # data transform
        trans = Compose([
            Resize(cfg.sizes),
            ToTensor(),
            Normalize(cfg.mean, cfg.std),
        ])

        self.train_ds = DeepFashionDataset(cfg.root_dir,
                                           'train',
                                           transform=trans)
        self.val_ds = DeepFashionDataset(cfg.root_dir, 'val', transform=trans)

        # ---------------------------------------------------
        # Returns pairs of images and target same/different
        # ---------------------------------------------------
        siamese_train_ds = Siamesize(self.train_ds)
        # siamese_val_ds = Siamesize(self.val_ds)

        if self._debug:
            # For debug use
            self.train_ds = Subset(self.train_ds, range(5000))
            self.val_ds = Subset(self.val_ds, range(1000))
            siamese_train_ds = Subset(siamese_train_ds, range(5000))
            # siamese_val_ds = Subset(siamese_train_ds, range(1000))

        # ----------------------------
        # Consturct data loader
        # ----------------------------
        loader_kwargs = {
            'pin_memory': True,
            'batch_size': self.hparams.batch_size,
            'num_workers': os.cpu_count(),
        }

        self.siamese_train_loader = DataLoader(siamese_train_ds,
                                               **loader_kwargs)
        self.siamese_val_loader = DataLoader(siamese_train_ds, **loader_kwargs)

        # Set the lenght for tqdm
        self.train_loader_len = len(self.siamese_train_loader)
Пример #9
0
from torchvision.transforms import Compose
from torchvision.transforms import Resize
from torchvision.transforms import ToTensor
from torchvision.transforms import Normalize
from config.deep_fashion import DeepFashionConfig as cfg
from torch.utils.data import DataLoader
from utils.datasets import Siamesize
trans = Compose([
    Resize(cfg.sizes),
    ToTensor(),
    Normalize(cfg.mean, cfg.std),
])
# dataset
train_ds = DeepFashionDataset(cfg.root_dir, 'train', transform=trans)
val_ds = DeepFashionDataset(cfg.root_dir, 'val', transform=trans)
siamese_train_ds = Siamesize(train_ds)
# loader
loader_kwargs = {
    'pin_memory': True,
    'batch_size': 100,
    'num_workers': 4,
}
s_train_loader = DataLoader(siamese_train_ds, **loader_kwargs)
train_loader = DataLoader(val_ds, **loader_kwargs)
val_loader = DataLoader(val_ds, **loader_kwargs)

# Optim
import torch.optim as optim
optimizer = optim.Adam(clsf_net.parameters(), lr=1e-4)
# Loss functions
import torch.nn as nn
Пример #10
0
from torchvision.transforms import Resize
from torchvision.transforms import ToTensor
from torchvision.transforms import Normalize
from config.deep_fashion import DeepFashionConfig as cfg
from torch.utils.data import DataLoader
from torch.utils.data import Subset
from torch.utils.data import TensorDataset
from utils.datasets import Siamesize
trans = Compose([Resize(cfg.sizes), ToTensor(),
                 Normalize(cfg.mean, cfg.std), ])
# dataset
train_ds = DeepFashionDataset(
    cfg.root_dir, 'train', transform=trans)
val_ds = DeepFashionDataset(
    cfg.root_dir, 'val', transform=trans)
siamese_train_ds = Siamesize(train_ds)
siamese_val_ds = Siamesize(val_ds)
if False:  # For overfitting test
    train_samples = np.random.choice(len(train_ds), 300, replace=False)
    val_samples = np.random.choice(len(val_ds), 100, replace=False)
    train_ds = Subset(train_ds, train_samples)
    val_ds = Subset(val_ds, val_samples)
    siamese_train_ds = Subset(siamese_train_ds, train_samples)
    siamese_val_ds = Subset(siamese_val_ds, val_samples)

# loader
import os
batch_size = 128
loader_kwargs = {
    'pin_memory': pin_memory,
    'batch_size': batch_size,