Пример #1
0
    def get_web_data(self,
                     comp_code,
                     url,
                     cols,
                     rename_cols,
                     start_date='',
                     date_col_name='date',
                     data_type='json',
                     headers=None):
        df = pd.DataFrame()

        # 다음 웹 크롤링
        page = 1
        while True:
            pg_url = url.format(code=comp_code, page=page)
            if data_type == 'json':
                if headers != None:
                    response = requests.get(pg_url, headers=headers)
                else:
                    response = requests.get(pg_url)
                json = response.json()
                page_data = pd.DataFrame.from_dict(json['data'])
            else:
                page_data = pd.read_html(pg_url, header=0)[0]
                page_data = page_data.dropna()

            if len(page_data) == 0:
                break
            page_data = page_data[cols]
            page_data[date_col_name] = page_data[date_col_name].str.slice(
                0, 10).str.replace("-", ".")
            last_date = page_data.tail(1)[date_col_name].to_string(index=False)
            df = df.append(page_data, ignore_index=True)
            if start_date != '':
                if DateUtils.to_date(start_date) > DateUtils.to_date(
                        last_date):
                    break
            page += 1

        # 필요 없는 날짜 제거
        if start_date != '':
            drop_cnt = 0
            df_len = len(df)
            for i in range(df_len):
                last_date = df.loc[df_len - i - 1, date_col_name]
                if DateUtils.to_date(start_date) > DateUtils.to_date(
                        last_date):
                    drop_cnt += 1
                else:
                    break
            if drop_cnt > 0:
                df = df[:-drop_cnt]

        # 정렬 및 컬럼명 변경
        if df.shape[0] != 0:
            df = df.sort_values(by=date_col_name)
            df.rename(columns=rename_cols, inplace=True)
        return df
Пример #2
0
    def train_months(self, start:str='2018.01', end:str='2018.11', invest_money:float=100000000)->None:

        train_model = self._global_params.train_model
        start_month = DateUtils.to_date(start, '%Y.%m')
        end_month = DateUtils.to_date(end, '%Y.%m')
        between = DateUtils.between_months(start_month, end_month)
        invest_months_result = []
        result_columns = ["month", "invest_money", "result_money"]
        MOCK_MONEY = 10000000
        chart_data = []
        for i in range(between + 1):
            # params.remove_session_file = True
            before_month_start = DateUtils.to_month_str(start_month, i - self._global_params.mock_period_months)
            before_month_end = DateUtils.to_month_str(start_month, i - 1)
            self._global_params.invest_start_date = before_month_start + '.01'
            self._global_params.invest_end_date = before_month_end + '.31'
            self._global_params.result_file_name = "MOCK_" + before_month_start + "-" + before_month_end
            self._global_params.invest_money = MOCK_MONEY
            corp = Corp(self._global_params)
            corps = corp.get_eval_corps_auto(self._global_params.invest_end_date)
            self._env.set_params(params=self._global_params)
            before_result, _ = self.trains(corps)
            now_month = DateUtils.to_month_str(start_month, i)
            before_result = corp.exclude_corps(before_result, now_month)
            before_result = before_result.sort_values(by='invest_result', ascending=False)
            before_result.index = range(len(before_result.index))
            corp10_codes = before_result.loc[:9, 'code']
            corp10_codes.index = range(len(corp10_codes.index))
            corp10 = corp.get_corps_for_codes(corp10_codes)
            corp10_len = len(corp10.index)

            self._global_params.invest_start_date = now_month + '.01'
            self._global_params.invest_end_date = now_month + '.31'
            self._global_params.result_file_name = "INVEST_" + now_month
            self._global_params.invest_money = invest_money / corp10_len
            self._env.set_params(params=self._global_params)
            now_result, invest_chart_data = self.trains(corp10)
            chart_data.append(invest_chart_data)
            invest_money = now_result['invest_result'].sum()
            result = [now_month, self._global_params.invest_money * corp10_len, invest_money]
            invest_months_result.append(result)
            print(result)

            df_imr = pd.DataFrame(invest_months_result, columns=result_columns)
            save_file_name = "recommend_months_" + start + "-" + end + ".xlsx"
            if "_" in train_model:
                save_file_path = os.path.join('result', 'reinforcement', train_model, self._global_params.ensemble_type, save_file_name)
            else:
                save_file_path = os.path.join('result', 'reinforcement', train_model, save_file_name)
            DataUtils.save_excel(df_imr, save_file_path)

            if len(chart_data) > 1:
                visualizer = InvestVisualizer(self._global_params)
                visualizer.draw_invest_months(chart_data, start, end)
                print()
Пример #3
0
    def _get_stock_naver_data(self, comp_code, start_date):
        """네이버 매일 주식정보를 가져온다."""
        url = self._get_naver_url(comp_code)
        df = pd.DataFrame()

        # 네이버 웹 크롤링
        page = 1
        bf_date = ''
        while True:
            pg_url = '{url}&page={page}'.format(url=url, page=page)
            page_data = pd.read_html(pg_url, header=0)[0]
            page_data = page_data.dropna()
            last_date = page_data.tail(1)['날짜'].to_string(index=False)
            if bf_date == last_date:
                break
            df = df.append(page_data, ignore_index=True)
            if start_date != '':
                if DateUtils.to_date(start_date) > DateUtils.to_date(
                        last_date):
                    break
            if len(page_data) < 10:
                break
            page += 1
            bf_date = last_date

            # 필요 없는 날짜 제거
        if start_date != '':
            drop_cnt = 0
            df_len = len(df)
            for i in range(df_len):
                last_date = df.loc[df_len - i - 1, '날짜']
                if DateUtils.to_date(start_date) > DateUtils.to_date(
                        last_date):
                    drop_cnt += 1
                else:
                    break
            if drop_cnt > 0:
                df = df[:-drop_cnt]

        # 정렬 및 컬럼명 변경
        if df.shape[0] != 0:
            df = df.sort_values(by='날짜')
            df.rename(columns={
                '날짜': 'date',
                '종가': 'close',
                '전일비': 'diff',
                '시가': 'open',
                '고가': 'high',
                '저가': 'low',
                '거래량': 'volume'
            },
                      inplace=True)
        return df
Пример #4
0
 def get_stock_daum_data_before(self, comp_code, start_date=''):
     """다음증권의 매일 주식정보를 가져온다."""
     url = self.get_daum_url_before(comp_code, start_date)
     df = pd.DataFrame()
     # 다음 웹 크롤링
     page = 1
     while True:
         pg_url = '{url}&page={page}'.format(url=url, page=page)
         page_data = pd.read_html(pg_url, header=0)[0]
         page_data = page_data.dropna()
         if len(page_data) == 0:
             break
         page_data = page_data[['일자', '종가', '시가', '고가', '저가', '거래량']]
         page_data['일자'] = pd.to_datetime(
             page_data['일자'], format='%y.%m.%d').dt.strftime('%Y.%m.%d')
         last_date = page_data.tail(1)['일자'].to_string(index=False)
         df = df.append(page_data, ignore_index=True)
         if start_date != '':
             if DateUtils.to_date(start_date) > DateUtils.to_date(
                     last_date):
                 break
         page += 1
     # 필요 없는 날짜 제거
     if start_date != '':
         drop_cnt = 0
         df_len = len(df)
         for i in range(df_len):
             last_date = df.loc[df_len - i - 1, '일자']
             if DateUtils.to_date(start_date) > DateUtils.to_date(
                     last_date):
                 drop_cnt += 1
             else:
                 break
         if drop_cnt > 0:
             df = df[:-drop_cnt]
     # 정렬 및 컬럼명 변경
     if df.shape[0] != 0:
         df = df.sort_values(by='일자')
         df.rename(columns={
             '일자': 'date',
             '종가': 'close',
             '시가': 'open',
             '고가': 'high',
             '저가': 'low',
             '거래량': 'volume'
         },
                   inplace=True)
         return df
def recommend_corps(recommend_month: str, train_model: str = 'rnn') -> None:
    """하나의 세션으로 학습시키는 기본 모델 """

    month = DateUtils.to_date(recommend_month, '%Y.%m')
    params = GlobalParams(train_model=train_model)
    #params.remove_session_file = True
    before_month_start = DateUtils.to_month_str(month,
                                                -params.mock_period_months)
    before_month_end = DateUtils.to_month_str(month, -1)
    params.invest_start_date = before_month_start + '.01'
    params.invest_end_date = DateUtils.to_date_str(month -
                                                   datetime.timedelta(days=1))
    params.result_file_name = "MOCK_" + before_month_start + "-" + before_month_end
    corp = Corp(params)
    corps = corp.get_eval_corps_auto(params.invest_end_date)
    invests = LearningNMockInvestment(params)
    invests.train_n_invests(corps)
    before_result = pd.read_csv(invests.get_result_file_path())

    if params.rmse_max_recommend is not None:
        before_result = before_result.query("rmse<" +
                                            str(params.rmse_max_recommend))
    before_result = before_result.sort_values(by='invest_result',
                                              ascending=False)
    before_result.index = range(len(before_result.index))
    save_file_name = "recommend_months_" + recommend_month + ".xlsx"
    save_file_path = os.path.join('result', train_model, save_file_name)
    DataUtils.save_csv(before_result, save_file_path)
    print(before_result)
Пример #6
0
    def get_stock_data(self, comp_code: str) -> pd.DataFrame:
        comp_code = DataUtils.to_string_corp_code(comp_code)
        file_path = os.path.join(self.DIR_STOCKS, comp_code + '.txt')

        if os.path.isfile(file_path):
            stock_data = pd.read_csv(file_path)
            if hasattr(self.params, 'check_stock_data'
                       ) and self.params.check_stock_data == True:
                stock_data = stock_data.dropna()
                stock_data = stock_data[:-1]
                date_last = stock_data.tail(1)['date'].to_string(index=False)
                date_next = DateUtils.to_date(date_last) + datetime.timedelta(
                    days=1)
                date_next = date_next.strftime("%Y.%m.%d")
                new_data = self.get_stock_web_data(comp_code, date_next)
                if len(new_data) > 0:
                    stock_data = stock_data.append(new_data, ignore_index=True)
                    stock_data = stock_data.dropna()
                    stock_data.to_csv(file_path, index=False)
        else:
            stock_data = self.get_stock_web_data(comp_code, '')
            stock_data.to_csv(file_path, index=False)

        stock_data = stock_data.dropna()

        if hasattr(self.params,
                   'forcast_date') and self.params.forcast_date is not None:
            stock_data = stock_data.query("date<'{}'".format(
                self.params.forcast_date))
        elif hasattr(
                self.params,
                'remove_stock_days') and self.params.remove_stock_days > 0:
            stock_data = stock_data[:-self.params.remove_stock_days]
        return stock_data
Пример #7
0
    def get_kospi_kosdaq(self, market='KOSPI'):
        file_path = os.path.join(self.DIR, 'files', market + '.txt')

        if os.path.isfile(file_path):
            kos_data = pd.read_csv(file_path)
            if hasattr(
                    self.params,
                    'check_kos_data') and self.params.check_kos_data == True:
                kos_data = kos_data.dropna()
                kos_data = kos_data[:-1]
                date_last = kos_data.tail(1)['date'].to_string(index=False)
                date_next = DateUtils.to_date(date_last) + datetime.timedelta(
                    days=1)
                date_next = date_next.strftime("%Y.%m.%d")
                new_data = self.get_kospi_kosdaq_from_daum(market, date_next)
                if len(new_data) > 0:
                    kos_data = kos_data.append(new_data, ignore_index=True)
                    kos_data = kos_data.dropna()
                    kos_data.to_csv(file_path, index=False)
        else:
            kos_data = self.get_kospi_kosdaq_from_daum(market, '')
            kos_data.to_csv(file_path, index=False)

        kos_data = kos_data.dropna()
        return kos_data
Пример #8
0
    def get_eval_corps_auto(self, date_maket_cap=None) -> pd.DataFrame:
        """100개의 주식 종목을 정해진 방법에 의해 가져온다"""

        if hasattr(self.params, 'invest_start_date'
                   ) == False or self.params.invest_start_date is None:
            invest_start_date_str = DateUtils.today_str('%Y.%m.%d')
        else:
            invest_start_date_str = self.params.invest_start_date
        invest_start_date = DateUtils.to_date(invest_start_date_str)

        if hasattr(self.params, 'max_listing_period_years'
                   ) == False or self.params.max_listing_period_years is None:
            max_listing_period_years = 20
        else:
            max_listing_period_years = self.params.max_listing_period_years

        max_listing_date = DateUtils.add_years(invest_start_date,
                                               -max_listing_period_years)
        max_listing_date = DateUtils.to_date_str(max_listing_date, '%Y-%m-%d')
        corps = self.get_corps_all()
        corps = corps.query("상장일<'{}'".format(max_listing_date))
        corps.loc[:, '종목코드'] = corps['종목코드'].astype(str).str.zfill(6)
        if date_maket_cap is None:
            date_maket_cap = invest_start_date_str
        #corps_cap = self.get_corps_maket_cap(date_maket_cap)
        corps_cap = self.get_now_corps_maket_cap()
        corps = corps.merge(corps_cap, on='종목코드')
        corps = corps.sort_values(by=["시가총액"], ascending=False)

        selected_corps_first = corps[:50]
        selected_corps_last = corps[len(corps) - 60:-10]
        return selected_corps_first.append(selected_corps_last,
                                           ignore_index=True)
Пример #9
0
    def get_kospi_kosdaq_from_daum(self, market='KOSPI', start_date=''):
        daum_url = 'http://finance.daum.net/api/market_index/days?page={page}&perPage=10&market={market}&pagination=true'

        df = pd.DataFrame()
        # 다음 웹 크롤링
        page = 1
        while True:
            pg_url = daum_url.format(market=market, page=page)
            response = requests.get(pg_url, headers=self.DAUM_HEADER)
            json = response.json()
            page_data = pd.DataFrame.from_dict(json['data'])
            if len(page_data) == 0:
                break
            page_data = page_data[['date', 'tradePrice']]
            page_data['date'] = page_data['date'].str.slice(0, 10).str.replace(
                "-", ".")
            last_date = page_data.tail(1)['date'].to_string(index=False)
            df = df.append(page_data, ignore_index=True)
            if start_date != '':
                if DateUtils.to_date(start_date) > DateUtils.to_date(
                        last_date):
                    break
            page += 1

        # 필요 없는 날짜 제거
        if start_date != '':
            drop_cnt = 0
            df_len = len(df)
            for i in range(df_len):
                last_date = df.loc[df_len - i - 1, 'date']
                if DateUtils.to_date(start_date) > DateUtils.to_date(
                        last_date):
                    drop_cnt += 1
                else:
                    break
            if drop_cnt > 0:
                df = df[:-drop_cnt]

        # 정렬 및 컬럼명 변경
        if df.shape[0] != 0:
            df = df.sort_values(by='date')
            df.rename(columns={
                'date': 'date',
                'tradePrice': 'close'
            },
                      inplace=True)
        return df
Пример #10
0
 def update_stocks_data(self):
     files = glob.glob(self.DIR_STOCKS + "/*.txt")
     for file_path in files:
         file_name = os.path.basename(file_path)
         stock_data = pd.read_csv(file_path)
         stock_data = stock_data.dropna()
         stock_data = stock_data[:-1]
         date_last = stock_data.tail(1)['date'].to_string(index=False)
         date_next = DateUtils.to_date(date_last) + datetime.timedelta(
             days=1)
         date_next = date_next.strftime("%Y.%m.%d")
         comp_code = file_name.replace(".txt", "")
         new_data = self.get_stock_web_data(comp_code, date_next)
         if len(new_data) > 0:
             stock_data = stock_data.append(new_data, ignore_index=True)
             stock_data = stock_data.dropna()
             stock_data.to_csv(file_path, index=False)
Пример #11
0
    def get_train_test(self, data, scaler_close=None):
        """train, test 데이터로 만든다."""
        data = data.copy()
        data = data[(data[['close', 'open', 'high', 'low', 'volume']] !=
                     0).all(1)]
        data.index = pd.RangeIndex(len(data.index))
        #data = self.add_mean_line(data)

        if self.params.invest_end_date is not None:
            data = data.query("date<='{}'".format(self.params.invest_end_date))

        if self.params.invest_start_date is not None:
            invest_data = data.query("date>='{}'".format(
                self.params.invest_start_date))
            invest_count = len(invest_data.index) - 1
            self.params.invest_count = invest_count
            invest_start_date_str = self.params.invest_start_date
        else:
            invest_count = 0
            self.params.invest_count = 0
            invest_start_date_str = data.tail(1)['date'].to_string(index=False)

        invest_start_date = DateUtils.to_date(invest_start_date_str)
        if hasattr(self.params, 'stock_training_period_years'):
            period = self.params.stock_training_period_years
            stock_start_date = DateUtils.add_years(invest_start_date, -period)
            stock_start_date = stock_start_date.strftime("%Y.%m.%d")
            data = data.query("date>='{}'".format(stock_start_date))

        test_count = None
        if hasattr(self.params, 'stock_test_period_years'
                   ) and self.params.stock_test_period_years is not None:
            period = self.params.stock_test_period_years
            test_start_date = DateUtils.add_years(invest_start_date, -period)
            test_start_date = DateUtils.to_date_str(test_start_date)
            test_data = data.query("date>='{}'".format(test_start_date))
            test_count = len(test_data.index) - invest_count

        scaled_data, scaler_close = self.get_scaled_data(data, scaler_close)
        dataX, dataY, dataX_last, y_date = self.get_dataXY(scaled_data)
        data_params = self.split_train_test(dataX, dataY, invest_count,
                                            test_count, y_date)
        return data_params, scaler_close, dataX_last
Пример #12
0
    def get_stock_data(self, comp_code):
        comp_code = DataUtils.to_string_corp_code(comp_code)
        file_path = './data/files/stocks/' + comp_code + '.csv'

        if os.path.isfile(file_path):
            stock_data = pd.read_csv(file_path)
            stock_data = stock_data[:-1]
            date_last = stock_data.tail(1)['date'].to_string(index=False)
            date_next = DateUtils.to_date(date_last) + datetime.timedelta(
                days=1)
            date_next = date_next.strftime("%Y-%m-%d")
            new_data = self._get_stock_naver_data(comp_code, date_next)
            if len(new_data) > 0:
                stock_data = stock_data.append(new_data, ignore_index=True)
                stock_data.to_csv(file_path, index=False)
        else:
            stock_data = self._get_stock_naver_data(comp_code, '')
            stock_data.to_csv(file_path, index=False)

        if self.params.remove_stock_days > 0:
            stock_data = stock_data[:-self.params.remove_stock_days]
        return stock_data
def train_months(start: str = '2018.01',
                 end: str = '2018.09',
                 invest_money: float = 100000000,
                 train_model: str = 'rnn') -> None:
    """하나의 세션으로 학습시키는 기본 모델 """
    start_month = DateUtils.to_date(start, '%Y.%m')
    end_month = DateUtils.to_date(end, '%Y.%m')
    between = DateUtils.between_months(start_month, end_month)
    invest_months_result = []
    result_columns = ["month", "invest_money", "result_money"]
    MOCK_MONEY = 10000000
    chart_data = []
    params = None
    index_money = None
    for i in range(between + 1):

        params = GlobalParams(train_model=train_model)
        #params.remove_session_file = True
        before_month_start = DateUtils.to_month_str(
            start_month, i - params.mock_period_months)
        before_month_end = DateUtils.to_month_str(start_month, i - 1)
        params.invest_start_date = before_month_start + '.01'
        params.invest_end_date = before_month_end + '.31'
        params.result_file_name = "MOCK_" + before_month_start + "-" + before_month_end
        params.invest_money = MOCK_MONEY
        corp = Corp(params)
        corps = corp.get_eval_corps_auto(params.invest_end_date)
        invests = LearningNMockInvestment(params)
        invests.train_n_invests(corps)
        before_result = pd.read_csv(invests.get_result_file_path())

        now_month = DateUtils.to_month_str(start_month, i)
        if params.rmse_max_recommend is not None:
            before_result = before_result.query("rmse<" +
                                                str(params.rmse_max_recommend))
        before_result = corp.exclude_corps(before_result, now_month)
        before_result = before_result.sort_values(by='invest_result',
                                                  ascending=False)
        before_result.index = range(len(before_result.index))
        corp10_codes = before_result.loc[:9, 'code']
        corp10_codes.index = range(len(corp10_codes.index))
        corp10 = corp.get_corps_for_codes(corp10_codes)
        corp10_len = len(corp10_codes.index)

        params = GlobalParams(train_model=train_model)
        #params.remove_session_file = False

        params.invest_start_date = now_month + '.01'
        params.invest_end_date = now_month + '.31'
        params.result_file_name = "INVEST_" + now_month
        params.invest_money = invest_money / corp10_len
        if index_money is not None:
            params.index_money = index_money / corp10_len
        invests = LearningNMockInvestment(params)
        invest_chart_data = invests.train_n_invests(corp10, invest_only=False)
        chart_data.append(invest_chart_data)
        now_result = pd.read_csv(invests.get_result_file_path())
        invest_money = now_result['invest_result'].sum()
        index_money = now_result['all_invest_result'].sum()
        invest_months_result.append(
            [now_month, params.invest_money * corp10_len, invest_money])
        print(now_month, params.invest_money * corp10_len, invest_money)

    df_imr = pd.DataFrame(invest_months_result, columns=result_columns)
    save_file_name = "recommend_months_" + start + "-" + end + ".xlsx"
    if "_" in train_model:
        save_file_path = os.path.join('result', train_model,
                                      params.ensemble_type, save_file_name)
    else:
        save_file_path = os.path.join('result', train_model, save_file_name)
    DataUtils.save_csv(df_imr, save_file_path)

    if len(chart_data) > 1 and params is not None:
        visualizer = InvestVisualizer(params)
        visualizer.draw_invest_months(chart_data, start, end)
        print()