class AggManager: """ Manage Searcher aggregations and plotting preparations """ def __init__(self,request): ds = Datasets().activate_dataset(request.session) self.dataset = ds.get_index() self.mapping = ds.get_mapping() self.es_m = ES_Manager(self.dataset, self.mapping) # PREPARE AGGREGATION self.es_params = request.POST interval = self.es_params["interval_1"] self.daterange = self._get_daterange(self.es_params) self.ranges,self.date_labels = self._get_date_intervals(self.daterange,interval) self.agg_query = self.prepare_agg_query() # EXECUTE AGGREGATION agg_results = self.aggregate() # PARSE RESPONSES INTO JSON OBJECT self.agg_data = self.parse_responses(agg_results) @staticmethod def _get_daterange(es_params): daterange = {"min":es_params["agg_daterange_from_1"],"max":es_params["agg_daterange_to_1"]} return daterange @staticmethod def _get_date_intervals(daterange,interval): if daterange['min'] and daterange['max']: frmt = "%Y-%m-%d" start_datetime = datetime.strptime(daterange['min'],frmt) end_datetime = datetime.strptime(daterange['max'],frmt) if interval == 'year': rdelta = relativedelta(years=+1) elif interval == 'quarter': rdelta = relativedelta(months=+3) elif interval == 'month': rdelta = relativedelta(months=+1) elif interval == 'week': rdelta = relativedelta(weeks=+1) elif interval == 'day': rdelta = relativedelta(days=+1) next_calculated_datetime = start_datetime + rdelta dates = [start_datetime, next_calculated_datetime] labels = [start_datetime.strftime(frmt),next_calculated_datetime.strftime(frmt)] while next_calculated_datetime < end_datetime: next_calculated_datetime += rdelta dates.append(next_calculated_datetime) labels.append(next_calculated_datetime.strftime(frmt)) dates.append(end_datetime) labels.append(end_datetime.strftime(frmt)) dates_str = [] for i,date in enumerate(dates[1:]): dates_str.append({'from':dates[i].strftime(frmt),'to':date.strftime(frmt)}) return dates_str,labels else: return [],[] def prepare_agg_query(self): es_params = self.es_params agg_field_1 = es_params["agg_field_1"] agg_field_1 = json.loads(agg_field_1) sort_by_1 = es_params["sort_by_1"] agg_field_2 = es_params["agg_field_2"] agg_field_2 = json.loads(agg_field_2) sort_by_2 = es_params["sort_by_2"] try: agg_size_1 = int(es_params["agg_size_1"]) agg_size_2 = int(es_params["agg_size_2"]) except KeyError: agg_size_1 = 10 agg_size_2 = 10 field_type_to_name = {'date': 'daterange', 'string':'string', 'text': 'string', 'keyword': 'string', 'facts': 'fact', 'fact_str_val': 'fact_str_val', 'fact_num_val': 'fact_num_val'} agg_name_1 = field_type_to_name[agg_field_1['type']] agg_name_2 = field_type_to_name[agg_field_2['type']] # If aggregating over text field, use .keyword instead if agg_field_1['type'] == 'text' and sort_by_1 in ['terms', 'significant_terms']: # NEW PY REQUIREMENT agg_field_1['path'] = '{0}.keyword'.format(agg_field_1['path']) if agg_field_2['type'] == 'text' and sort_by_2 in ['terms', 'significant_terms']: # NEW PY REQUIREMENT agg_field_2['path'] = '{0}.keyword'.format(agg_field_2['path']) # 1st LEVEL AGGREGATION agg = self.create_agg(agg_name_1,sort_by_1,agg_field_1["path"],agg_size_1) if agg_name_1 == 'fact' and es_params["agg_field_2_selected"] == 'false': agg[agg_name_1]["aggs"][agg_name_1]['aggs']['fact_str_val'] = \ self.create_agg('fact_str_val', sort_by_1, agg_field_1['path'], agg_size_1)['fact_str_val']['aggs']['fact_str_val'] # 2nd LEVEL AGGREGATION if es_params["agg_field_2_selected"] == 'true': agg_2 = self.create_agg(agg_name_2,sort_by_2,agg_field_2["path"],agg_size_2) if agg_name_1 == 'fact' and agg_name_2 == 'fact_str_val': agg[agg_name_1]['aggs'][agg_name_1]['aggs'] = agg_2[agg_name_2]['aggs'] agg[agg_name_1]['aggs'][agg_name_1]['aggs']['documents'] = {"reverse_nested": {}} elif 'fact' in agg_name_1 and agg_name_2 == 'string': agg[agg_name_1]['aggs'][agg_name_1]['aggs']['documents']['aggs'] = agg_2 else: if agg_name_2 == 'fact': agg[agg_name_1]["aggregations"] = agg_2 agg[agg_name_1]["aggregations"][agg_name_2]['aggs'][agg_name_2]['aggs'] = self.create_agg('fact_str_val', sort_by_2, agg_field_2['path'], agg_size_2)['fact_str_val']['aggs'] else: agg[agg_name_1]["aggregations"] = agg_2 return agg def create_agg(self, agg_name, sort_by, path, size): if agg_name == "daterange": return {agg_name: {"date_range": {"field": path, "format": date_format, "ranges": self.ranges}}} elif agg_name == 'fact': return { agg_name: { "nested": {"path": "texta_facts"}, "aggs": { agg_name: { sort_by: {"field": "texta_facts.fact", "size": size}, "aggs": {"documents": {"reverse_nested": {}}} } } } } elif agg_name == 'fact_str_val': return { agg_name: { "nested": {"path": "texta_facts"}, "aggs": { agg_name: { sort_by: {"field": "texta_facts.str_val", "size": size, 'order': {'documents.doc_count': 'desc'}}, "aggs": {"documents": {"reverse_nested": {}}} } } } } elif agg_name == 'fact_num_val': return { agg_name: { "nested": {"path": "texta_facts"}, "aggs": { agg_name: { sort_by: {"field": "texta_facts.num_val", "size": size, 'order': {'documents.doc_count': 'desc'}}, "aggs": {"documents": {"reverse_nested": {}}} } } } } else: return {agg_name: {sort_by: {"field": path, "size": size}}} def aggregate(self): responses = [] out = {} # EXECUTE SAVED SEARCHES for item in self.es_params: if 'saved_search' in item: s = Search.objects.get(pk=self.es_params[item]) name = s.description saved_query = json.loads(s.query) self.es_m.load_combined_query(saved_query) self.es_m.set_query_parameter("aggs", self.agg_query) response = self.es_m.search() responses.append({"id":"search_"+str(s.pk),"label":name,"response":response}) # EXECUTE THE LIVE QUERY if "ignore_active_search" not in self.es_params: self.es_m.build(self.es_params) self.es_m.set_query_parameter("aggs", self.agg_query) self.es_m.set_query_parameter("size", 0) response = self.es_m.search() #raise Exception(self.es_m.combined_query['main']['aggs']) responses.append({"id":"query","label":"Current Search","response":response}) out["responses"] = responses # EXECUTE EMPTY TIMELINE QUERY IF RELATIVE FREQUENCY SELECTED if json.loads(self.es_params["agg_field_1"])["type"] == "date" and self.es_params["freq_norm_1"] == "relative_frequency": empty_params = {} self.es_m.build(empty_params) self.es_m.set_query_parameter("aggs", self.agg_query) response = self.es_m.search() out["empty_timeline_response"] = response return out def parse_responses(self,agg_results): """ Parses ES responses into JSON structure and normalises daterange frequencies if necessary """ total_freqs = {} agg_data = [] if "empty_timeline_response" in agg_results: for bucket in agg_results["empty_timeline_response"]["aggregations"]["daterange"]["buckets"]: total_freqs[bucket["from_as_string"]] = bucket["doc_count"] for i,response in enumerate(agg_results["responses"]): aggs = response["response"]["aggregations"] output_type = None response_out = [] for agg_name,agg_results in aggs.items(): output_type = agg_name if agg_name == 'daterange': response_out.extend(self._parse_daterange_buckets(agg_results['buckets'], total_freqs, self.es_params['freq_norm_1'])) elif agg_name == 'string': response_out.extend(self._parse_string_buckets(agg_results['buckets'])) elif agg_name == 'fact': response_out.extend(self._parse_fact_buckets(agg_results['fact']['buckets'])) elif agg_name == 'fact_str_val' or agg_name == 'fact_num_val': response_out.extend(self._parse_fact_buckets(agg_results[agg_name]['buckets'])) agg_data.append({"data":response_out,"type":output_type,"label":response["label"]}) return agg_data def _parse_daterange_buckets(self, buckets, total_freqs, freq_norm_1): results = [] for bucket in buckets: new = {"children":[]} new["key"] = bucket["from_as_string"] # Normalises frequencies if freq_norm_1 == "relative_frequency": try: new["val"] = str(round(float(bucket["doc_count"])/float(total_freqs[bucket["from_as_string"]]),5)) except ZeroDivisionError: new["val"] = 0 else: new["val"] = bucket["doc_count"] if "string" in bucket: for bucket_2 in bucket["string"]["buckets"]: child = {} child["key"] = bucket_2["key"] child["val"] = bucket_2["doc_count"] new["children"].append(child) elif 'fact' in bucket: for inner_bucket in bucket['fact']['fact']['buckets']: child = {'key': inner_bucket['key'], 'val': inner_bucket['doc_count']} grandchildren = [] for super_inner_bucket in inner_bucket['fact_str_val']['buckets']: grandchildren.append({'key': super_inner_bucket['key'], 'val': super_inner_bucket['documents']['doc_count']}) child['children'] = grandchildren new['children'].append(child) elif 'fact_str_val' in bucket: for inner_bucket in bucket['fact_str_val']['fact_str_val']['buckets']: new['children'].append({'key': inner_bucket['key'], 'val': inner_bucket['documents']['doc_count']}) results.append(new) return results def _parse_string_buckets(self, buckets): results = [] for bucket in buckets: new = {"children":[]} new["key"] = bucket["key"] new["val"] = bucket["doc_count"] if "string" in bucket: for bucket_2 in bucket["string"]["buckets"]: child = {} child["key"] = bucket_2["key"] child["val"] = bucket_2["doc_count"] new["children"].append(child) elif 'fact' in bucket: for inner_bucket in bucket['fact']['fact']['buckets']: child = {'key': inner_bucket['key'], 'val': inner_bucket['doc_count']} grandchildren = [] for super_inner_bucket in inner_bucket['fact_str_val']['buckets']: grandchildren.append({'key': super_inner_bucket['key'], 'val': super_inner_bucket['documents']['doc_count']}) child['children'] = grandchildren new['children'].append(child) elif 'fact_str_val' in bucket: for inner_bucket in bucket['fact_str_val']['fact_str_val']['buckets']: new['children'].append({'key': inner_bucket['key'], 'val': inner_bucket['documents']['doc_count']}) results.append(new) return results def _parse_fact_buckets(self, buckets): results = [] for bucket in buckets: new = {"children": []} new["key"] = bucket["key"] new["val"] = bucket["documents"]["doc_count"] if 'fact_str_val' in bucket: for inner_bucket in bucket['fact_str_val']['buckets']: child = {} child['key'] = inner_bucket['key'] child['val'] = inner_bucket['documents']['doc_count'] new['children'].append(child) elif 'documents' in bucket and 'string' in bucket['documents']: for inner_bucket in bucket['documents']['string']['buckets']: child = {} child['key'] = inner_bucket['key'] child['val'] = inner_bucket['doc_count'] new['children'].append(child) results.append(new) return results def _parse_fact_val_results(self, buckets): pass def output_to_searcher(self): count_dict = defaultdict(defaultdict) children_dict = defaultdict(dict) i = 0 data_out = [] for agg in self.agg_data: if agg["type"] == "daterange": i+=1 for row in agg["data"]: count_dict[row["key"]][i] = row["val"] if row["children"]: children_dict[row["key"]][i] = {"data":row["children"],"label":agg["label"]} else: data_out.append(agg) combined_daterange_data = [] labels = [a["label"] for a in self.agg_data] for row in sorted(count_dict.items(),key=lambda l:l[0]): new_row = dict(row[1]) new_row["date"] = row[0] combined_daterange_data.append(new_row) daterange_data = {"type":"daterange", "data":combined_daterange_data, "ykeys":list(range(1,i+1)), "labels":labels, "children":dict(children_dict)} if daterange_data["data"]: data_out.append(daterange_data) return data_out
class Autocomplete: def __init__(self): self.es_m = None self.lookup_type = None self.key_constraints = None self.content = None self.user = None self.limit = None def parse_request(self, request): self.lookup_types = request.POST['lookup_types'].split(',') self.key_constraints = request.POST['key_constraints'].split(',') self.content = request.POST['content'].split('\n')[-1].strip() print(self.content) ds = Datasets().activate_dataset(request.session) self.dataset = ds.get_index() self.mapping = ds.get_mapping() self.es_m = ES_Manager(self.dataset, self.mapping) self.user = request.user def suggest(self, limit=10): self.limit = limit suggestions = {} for i, lookup_type in enumerate(self.lookup_types): if lookup_type == 'FACT_NAME': suggestions['FACT_NAME'] = self._get_facts('fact', lookup_type) elif lookup_type == 'FACT_VAL': suggestions['FACT_VAL'] = self._get_facts( 'str_val', lookup_type, key_constraint=self.key_constraints[i]) elif lookup_type == 'CONCEPT': suggestions['CONCEPT'] = self._get_concepts() elif lookup_type == 'LEXICON': suggestions['LEXICON'] = self._get_lexicons() return suggestions def _get_facts(self, agg_subfield, lookup_type, key_constraint=None): agg_query = { agg_subfield: { "nested": { "path": "texta_facts" }, "aggs": { agg_subfield: { "terms": { "field": "texta_facts.fact" }, "aggs": { "fact_values": { "terms": { "field": "texta_facts.str_val", "size": self.limit, "include": "{0}.*".format(self.content) } } } } } } } self.es_m.build('') self.es_m.set_query_parameter("aggs", agg_query) if lookup_type == 'FACT_VAL' and key_constraint: facts = [] for bucket in self.es_m.search( )["aggregations"][agg_subfield][agg_subfield]["buckets"]: if bucket["key"] == key_constraint: facts += [ self._format_suggestion(sub_bucket["key"], sub_bucket["key"]) for sub_bucket in bucket["fact_values"]["buckets"] ] elif lookup_type == 'FACT_VAL' and not key_constraint: facts = [] for bucket in self.es_m.search( )["aggregations"][agg_subfield][agg_subfield]["buckets"]: facts += [ self._format_suggestion(sub_bucket["key"], sub_bucket["key"]) for sub_bucket in bucket["fact_values"]["buckets"] ] else: facts = [ self._format_suggestion(a["key"], a["key"]) for a in self.es_m.search()["aggregations"][agg_subfield] [agg_subfield]["buckets"] ] return facts def _get_concepts(self): concepts = [] if len(self.content) > 0: terms = Term.objects.filter(term__startswith=self.content).filter( author=self.user) seen = {} for term in terms[:self.limit]: for term_concept in TermConcept.objects.filter(term=term.pk): concept = term_concept.concept concept_term = (concept.pk, term.term) if concept_term not in seen: seen[concept_term] = True display_term = term.term.replace( self.content, '<font color="red">' + self.content + '</font>') display_text = '<b>{0}</b>@C{1}-{2}'.format( display_term, concept.pk, concept.descriptive_term.term) suggestion = self._format_suggestion( concept.descriptive_term.term, display_text, resource_id=concept.pk) concepts.append(suggestion) return concepts def _get_lexicons(self): suggested_lexicons = [] if len(self.content) > 0: lexicons = Lexicon.objects.filter( name__startswith=self.content).filter(author=self.user) for lexicon in lexicons: display_term = lexicon.name.replace( self.content, '<font color="red">' + self.content + '</font>') display_text = '<b>{0}</b>@L{1}-{2}'.format( display_term, lexicon.pk, lexicon.name) suggestion = self._format_suggestion(lexicon.name, display_text, resource_id=lexicon.pk) suggested_lexicons.append(suggestion) return suggested_lexicons @staticmethod def _format_suggestion(entry_text, display_text, resource_id=''): return { 'entry_text': entry_text, 'display_text': display_text, 'resource_id': resource_id }
class Autocomplete: def __init__(self): self.es_m = None self.lookup_type = None self.key_constraints = None self.content = None self.user = None self.limit = None def parse_request(self,request): self.lookup_types = request.POST['lookup_types'].split(',') self.key_constraints = request.POST['key_constraints'].split(',') self.content = request.POST['content'].split('\n')[-1].strip() print(self.content) ds = Datasets().activate_dataset(request.session) self.dataset = ds.get_index() self.mapping = ds.get_mapping() self.es_m = ES_Manager(self.dataset, self.mapping) self.user = request.user def suggest(self,limit=10): self.limit = limit suggestions = {} for i,lookup_type in enumerate(self.lookup_types): if lookup_type == 'FACT_NAME': suggestions['FACT_NAME'] = self._get_facts('fact', lookup_type) elif lookup_type == 'FACT_VAL': suggestions['FACT_VAL'] = self._get_facts('str_val', lookup_type, key_constraint=self.key_constraints[i]) elif lookup_type == 'CONCEPT': suggestions['CONCEPT'] = self._get_concepts() elif lookup_type == 'LEXICON': suggestions['LEXICON'] = self._get_lexicons() return suggestions def _get_facts(self, agg_subfield, lookup_type, key_constraint=None): agg_query = {agg_subfield: {"nested": {"path": "texta_facts"}, "aggs": {agg_subfield: {"terms": {"field": "texta_facts.fact"}, "aggs": {"fact_values": {"terms": {"field": "texta_facts.str_val", "size": self.limit, "include": "{0}.*".format(self.content)}}}}}}} self.es_m.build('') self.es_m.set_query_parameter("aggs", agg_query) if lookup_type == 'FACT_VAL' and key_constraint: facts = [] for bucket in self.es_m.search()["aggregations"][agg_subfield][agg_subfield]["buckets"]: if bucket["key"] == key_constraint: facts += [self._format_suggestion(sub_bucket["key"], sub_bucket["key"]) for sub_bucket in bucket["fact_values"]["buckets"]] elif lookup_type == 'FACT_VAL' and not key_constraint: facts = [] for bucket in self.es_m.search()["aggregations"][agg_subfield][agg_subfield]["buckets"]: facts += [self._format_suggestion(sub_bucket["key"], sub_bucket["key"]) for sub_bucket in bucket["fact_values"]["buckets"]] else: facts = [self._format_suggestion(a["key"],a["key"]) for a in self.es_m.search()["aggregations"][agg_subfield][agg_subfield]["buckets"]] return facts def _get_concepts(self): concepts = [] if len(self.content) > 0: terms = Term.objects.filter(term__startswith=self.content).filter(author=self.user) seen = {} for term in terms[:self.limit]: for term_concept in TermConcept.objects.filter(term=term.pk): concept = term_concept.concept concept_term = (concept.pk,term.term) if concept_term not in seen: seen[concept_term] = True display_term = term.term.replace(self.content,'<font color="red">'+self.content+'</font>') display_text = '<b>{0}</b>@C{1}-{2}'.format(display_term,concept.pk,concept.descriptive_term.term) suggestion = self._format_suggestion(concept.descriptive_term.term,display_text,resource_id=concept.pk) concepts.append(suggestion) return concepts def _get_lexicons(self): suggested_lexicons = [] if len(self.content) > 0: lexicons = Lexicon.objects.filter(name__startswith=self.content).filter(author=self.user) for lexicon in lexicons: display_term = lexicon.name.replace(self.content,'<font color="red">'+self.content+'</font>') display_text = '<b>{0}</b>@L{1}-{2}'.format(display_term,lexicon.pk,lexicon.name) suggestion = self._format_suggestion(lexicon.name,display_text,resource_id=lexicon.pk) suggested_lexicons.append(suggestion) return suggested_lexicons @staticmethod def _format_suggestion(entry_text,display_text,resource_id=''): return {'entry_text':entry_text,'display_text':display_text,'resource_id':resource_id}
class FactManager: """ Manage Searcher facts, like deleting/storing, adding facts. """ def __init__(self, request): self.es_params = request.POST self.ds = Datasets().activate_dataset(request.session) self.index = self.ds.get_index() self.mapping = self.ds.get_mapping() self.es_m = ES_Manager(self.index, self.mapping) self.field = 'texta_facts' def remove_facts_from_document(self, rm_facts_dict, bs=7500): '''remove a certain fact from all documents given a [str]key and [str]val''' logger = LogManager(__name__, 'FACT MANAGER REMOVE FACTS') try: # Clears readonly block just in case the index has been set to read only self.es_m.clear_readonly_block() query = self._fact_deletion_query(rm_facts_dict) self.es_m.load_combined_query(query) response = self.es_m.scroll(size=bs, field_scroll=self.field) scroll_id = response['_scroll_id'] total_docs = response['hits']['total'] docs_left = total_docs # DEBUG print('Starting.. Total docs - ', total_docs) # DEBUG batch = 0 while total_docs > 0: print('Docs left:', docs_left) # DEBUG data = '' for document in response['hits']['hits']: new_field = [] # The new facts field for fact in document['_source'][self.field]: # If the fact name is in rm_facts_dict keys if fact["fact"] in rm_facts_dict: # If the fact value is not in the delete key values if fact['str_val'] not in rm_facts_dict.getlist( fact["fact"]): new_field.append(fact) else: new_field.append(fact) # Update dataset data += json.dumps({ "update": { "_id": document['_id'], "_type": document['_type'], "_index": document['_index'] } }) + '\n' document = {'doc': {self.field: new_field}} data += json.dumps(document) + '\n' response = self.es_m.scroll(scroll_id=scroll_id, size=bs, field_scroll=self.field) total_docs = len(response['hits']['hits']) docs_left -= bs # DEBUG scroll_id = response['_scroll_id'] self.es_m.plain_post_bulk(self.es_m.es_url, data) print('DONE') # DEBUG logger.set_context('docs_left', total_docs) logger.set_context('batch', batch) logger.info('remove_facts_from_document') except: print(traceback.format_exc()) logger.set_context('es_params', self.es_params) logger.exception('remove_facts_from_document_failed') def tag_documents_with_fact(self, es_params, tag_name, tag_value, tag_field): '''Used to tag all documents in the current search with a certain fact''' self.es_m.build(es_params) self.es_m.load_combined_query(self.es_m.combined_query) response = self.es_m.scroll() data = '' for document in response['hits']['hits']: if 'mlp' in tag_field: split_field = tag_field.split('.') span = [ 0, len(document['_source'][split_field[0]][split_field[1]]) ] else: span = [0, len(document['_source'][tag_field].strip())] document['_source'][self.field].append({ "str_val": tag_value, "spans": str([span]), "fact": tag_name, "doc_path": tag_field }) data += json.dumps({ "update": { "_id": document['_id'], "_type": document['_type'], "_index": document['_index'] } }) + '\n' document = {'doc': {self.field: document['_source'][self.field]}} data += json.dumps(document) + '\n' self.es_m.plain_post_bulk(self.es_m.es_url, data) response = requests.post( '{0}/{1}/_update_by_query?refresh&conflicts=proceed'.format( self.es_m.es_url, self.index), headers=self.es_m.HEADERS) def count_cooccurrences(self, fact_pairs): """Finds the counts of cooccuring facts Arguments: fact_pairs {list of tuples of tuples} -- Example:[(('ORG', 'Riigikohus'),('PER', 'Jaan')), (('ORG', 'Riigikohus'),('PER', 'Peeter'))] Returns: [int list] -- Occurances of the given facts """ queries = [] for fact_pair in fact_pairs: fact_constraints = [] for fact in fact_pair: constraint = { "nested": { "path": "texta_facts", "query": { "bool": { "must": [{ "term": { "texta_facts.fact": fact[0] } }, { "term": { "texta_facts.str_val": fact[1] } }] } } } } fact_constraints.append(constraint) query = {"query": {"bool": {"must": fact_constraints}}, "size": 0} queries.append(json.dumps(query)) header = json.dumps({"index": self.index}) data = "\n".join(["{0}\n{1}".format(header, q) for q in queries]) + "\n" responses = requests.post("{0}/{1}/_msearch".format( self.es_m.es_url, self.index), data=data, headers={"Content-Type": "application/json"}) counts = [ response["hits"]["total"] for response in responses.json()['responses'] ] return counts def facts_via_aggregation(self, size=15): """Finds all facts from current search. Parameters: size - [int=15] -- Amount of fact values per fact name to search in query Returns: facts - [dict] -- Details for each fact, ex: {'PER - kostja': {'id': 0, 'name': 'PER', 'value': 'kostja', 'doc_count': 44}} fact_combinations - [list of tuples] -- All possible combinations of all facts: [(('FIRST_FACTNAME', 'FIRST_FACTVAL'), ('SECOND_FACTNAME', 'SECOND_FACTVAL'))] unique_fact_names - [list of string] -- All unique fact names """ aggs = { "facts": { "nested": { "path": "texta_facts" }, "aggs": { "fact_names": { "terms": { "field": "texta_facts.fact" }, "aggs": { "fact_values": { "terms": { "field": "texta_facts.str_val", "size": size } } } } } } } self.es_m.build(self.es_params) self.es_m.set_query_parameter('aggs', aggs) response = self.es_m.search() response_aggs = response['aggregations']['facts']['fact_names'][ 'buckets'] facts = {} fact_combinations = [] fact_count = 0 unique_fact_names = [] for bucket in response_aggs: unique_fact_names.append(bucket['key']) for fact in bucket['fact_values']['buckets']: facts[bucket['key'] + " - " + fact['key']] = { 'id': fact_count, 'name': bucket['key'], 'value': fact['key'], 'doc_count': fact['doc_count'] } fact_combinations.append((bucket['key'], fact['key'])) fact_count += 1 fact_combinations = [ x for x in itertools.combinations(fact_combinations, 2) ] return (facts, fact_combinations, unique_fact_names) def fact_graph(self, search_size): facts, fact_combinations, unique_fact_names = self.facts_via_aggregation( size=search_size) # Get cooccurrences and remove values with 0 fact_combinations = { k: v for k, v in dict( zip(fact_combinations, self.count_cooccurrences(fact_combinations))).items() if v != 0 } shapes = [ "circle", "cross", "diamond", "square", "triangle-down", "triangle-up" ] types = dict(zip(unique_fact_names, itertools.cycle(shapes))) nodes = [] for i, fact in enumerate(facts): nodes.append({ "source": facts[fact]['id'], "size": facts[fact]['doc_count'], "score": facts[fact]['doc_count'], "name": facts[fact]['name'], "id": facts[fact]['value'], "type": types[facts[fact]['name']] }) # Track max/min count count = facts[fact]['doc_count'] if i == 0: max_node_size = count min_node_size = count max_node_size = max(max_node_size, count) min_node_size = min(min_node_size, count) links = [] max_link_size = 0 for fact in fact_combinations.keys(): max_link_size = max(max_link_size, fact_combinations[fact]) links.append({ "source": facts[fact[0][0] + " - " + fact[0][1]]['id'], "target": facts[fact[1][0] + " - " + fact[1][1]]['id'], "count": fact_combinations[fact] }) graph_data = json.dumps({"nodes": nodes, "links": links}) return (graph_data, unique_fact_names, max_node_size, max_link_size, min_node_size) def _fact_deletion_query(self, rm_facts_dict): '''Creates the query for fact deletion based on dict of facts {name: val}''' fact_queries = [] for key in rm_facts_dict: for val in rm_facts_dict.getlist(key): fact_queries.append({ "bool": { "must": [{ "match": { self.field + ".fact": key } }, { "match": { self.field + ".str_val": val } }] } }) query = { "main": { "query": { "nested": { "path": self.field, "query": { "bool": { "should": fact_queries } } } }, "_source": [self.field] } } return query
class AggManager: """ Manage Searcher aggregations and plotting preparations """ def __init__(self, request): ds = Datasets().activate_dataset(request.session) self.dataset = ds.get_index() self.mapping = ds.get_mapping() self.es_m = ES_Manager(self.dataset, self.mapping) # PREPARE AGGREGATION self.es_params = request.POST interval = self.es_params["interval_1"] self.daterange = self._get_daterange(self.es_params) self.ranges, self.date_labels = self._get_date_intervals( self.daterange, interval) self.agg_query = self.prepare_agg_query() # EXECUTE AGGREGATION agg_results = self.aggregate() # PARSE RESPONSES INTO JSON OBJECT self.agg_data = self.parse_responses(agg_results) @staticmethod def _get_daterange(es_params): daterange = { "min": es_params["agg_daterange_from_1"], "max": es_params["agg_daterange_to_1"] } return daterange @staticmethod def _get_date_intervals(daterange, interval): if daterange['min'] and daterange['max']: frmt = "%Y-%m-%d" start_datetime = datetime.strptime(daterange['min'], frmt) end_datetime = datetime.strptime(daterange['max'], frmt) if interval == 'year': rdelta = relativedelta(years=+1) elif interval == 'quarter': rdelta = relativedelta(months=+3) elif interval == 'month': rdelta = relativedelta(months=+1) elif interval == 'week': rdelta = relativedelta(weeks=+1) elif interval == 'day': rdelta = relativedelta(days=+1) next_calculated_datetime = start_datetime + rdelta dates = [start_datetime, next_calculated_datetime] labels = [ start_datetime.strftime(frmt), next_calculated_datetime.strftime(frmt) ] while next_calculated_datetime < end_datetime: next_calculated_datetime += rdelta dates.append(next_calculated_datetime) labels.append(next_calculated_datetime.strftime(frmt)) dates.append(end_datetime) labels.append(end_datetime.strftime(frmt)) dates_str = [] for i, date in enumerate(dates[1:]): dates_str.append({ 'from': dates[i].strftime(frmt), 'to': date.strftime(frmt) }) return dates_str, labels else: return [], [] def prepare_agg_query(self): es_params = self.es_params agg_field_1 = es_params["agg_field_1"] agg_field_1 = json.loads(agg_field_1) sort_by_1 = es_params["sort_by_1"] agg_field_2 = es_params["agg_field_2"] agg_field_2 = json.loads(agg_field_2) sort_by_2 = es_params["sort_by_2"] try: agg_size_1 = int(es_params["agg_size_1"]) agg_size_2 = int(es_params["agg_size_2"]) except KeyError: agg_size_1 = 10 agg_size_2 = 10 field_type_to_name = { 'date': 'daterange', 'string': 'string', 'text': 'string', 'keyword': 'string', 'facts': 'fact', 'fact_str_val': 'fact_str_val', 'fact_num_val': 'fact_num_val' } agg_name_1 = field_type_to_name[agg_field_1['type']] agg_name_2 = field_type_to_name[agg_field_2['type']] # If aggregating over text field, use .keyword instead if agg_field_1['type'] == 'text' and sort_by_1 in [ 'terms', 'significant_terms' ]: # NEW PY REQUIREMENT agg_field_1['path'] = '{0}.keyword'.format(agg_field_1['path']) if agg_field_2['type'] == 'text' and sort_by_2 in [ 'terms', 'significant_terms' ]: # NEW PY REQUIREMENT agg_field_2['path'] = '{0}.keyword'.format(agg_field_2['path']) # 1st LEVEL AGGREGATION agg = self.create_agg(agg_name_1, sort_by_1, agg_field_1["path"], agg_size_1) if agg_name_1 == 'fact' and es_params[ "agg_field_2_selected"] == 'false': agg[agg_name_1]["aggs"][agg_name_1]['aggs']['fact_str_val'] = \ self.create_agg('fact_str_val', sort_by_1, agg_field_1['path'], agg_size_1)['fact_str_val']['aggs']['fact_str_val'] # 2nd LEVEL AGGREGATION if es_params["agg_field_2_selected"] == 'true': agg_2 = self.create_agg(agg_name_2, sort_by_2, agg_field_2["path"], agg_size_2) if agg_name_1 == 'fact' and agg_name_2 == 'fact_str_val': agg[agg_name_1]['aggs'][agg_name_1]['aggs'] = agg_2[ agg_name_2]['aggs'] agg[agg_name_1]['aggs'][agg_name_1]['aggs']['documents'] = { "reverse_nested": {} } elif 'fact' in agg_name_1 and agg_name_2 == 'string': agg[agg_name_1]['aggs'][agg_name_1]['aggs']['documents'][ 'aggs'] = agg_2 else: if agg_name_2 == 'fact': agg[agg_name_1]["aggregations"] = agg_2 agg[agg_name_1]["aggregations"][agg_name_2]['aggs'][ agg_name_2]['aggs'] = self.create_agg( 'fact_str_val', sort_by_2, agg_field_2['path'], agg_size_2)['fact_str_val']['aggs'] else: agg[agg_name_1]["aggregations"] = agg_2 return agg def create_agg(self, agg_name, sort_by, path, size): if agg_name == "daterange": return { agg_name: { "date_range": { "field": path, "format": date_format, "ranges": self.ranges } } } elif agg_name == 'fact': return { agg_name: { "nested": { "path": "texta_facts" }, "aggs": { agg_name: { sort_by: { "field": "texta_facts.fact", "size": size }, "aggs": { "documents": { "reverse_nested": {} } } } } } } elif agg_name == 'fact_str_val': return { agg_name: { "nested": { "path": "texta_facts" }, "aggs": { agg_name: { sort_by: { "field": "texta_facts.str_val", "size": size, 'order': { 'documents.doc_count': 'desc' } }, "aggs": { "documents": { "reverse_nested": {} } } } } } } elif agg_name == 'fact_num_val': return { agg_name: { "nested": { "path": "texta_facts" }, "aggs": { agg_name: { sort_by: { "field": "texta_facts.num_val", "size": size, 'order': { 'documents.doc_count': 'desc' } }, "aggs": { "documents": { "reverse_nested": {} } } } } } } else: return {agg_name: {sort_by: {"field": path, "size": size}}} def aggregate(self): responses = [] out = {} # EXECUTE SAVED SEARCHES for item in self.es_params: if 'saved_search' in item: s = Search.objects.get(pk=self.es_params[item]) name = s.description saved_query = json.loads(s.query) self.es_m.load_combined_query(saved_query) self.es_m.set_query_parameter("aggs", self.agg_query) response = self.es_m.search() responses.append({ "id": "search_" + str(s.pk), "label": name, "response": response }) # EXECUTE THE LIVE QUERY if "ignore_active_search" not in self.es_params: self.es_m.build(self.es_params) self.es_m.set_query_parameter("aggs", self.agg_query) self.es_m.set_query_parameter("size", 0) response = self.es_m.search() #raise Exception(self.es_m.combined_query['main']['aggs']) responses.append({ "id": "query", "label": "Current Search", "response": response }) out["responses"] = responses # EXECUTE EMPTY TIMELINE QUERY IF RELATIVE FREQUENCY SELECTED if json.loads(self.es_params["agg_field_1"] )["type"] == "date" and self.es_params[ "freq_norm_1"] == "relative_frequency": empty_params = {} self.es_m.build(empty_params) self.es_m.set_query_parameter("aggs", self.agg_query) response = self.es_m.search() out["empty_timeline_response"] = response return out def parse_responses(self, agg_results): """ Parses ES responses into JSON structure and normalises daterange frequencies if necessary """ total_freqs = {} agg_data = [] if "empty_timeline_response" in agg_results: for bucket in agg_results["empty_timeline_response"][ "aggregations"]["daterange"]["buckets"]: total_freqs[bucket["from_as_string"]] = bucket["doc_count"] for i, response in enumerate(agg_results["responses"]): aggs = response["response"]["aggregations"] output_type = None response_out = [] for agg_name, agg_results in aggs.items(): output_type = agg_name if agg_name == 'daterange': response_out.extend( self._parse_daterange_buckets( agg_results['buckets'], total_freqs, self.es_params['freq_norm_1'])) elif agg_name == 'string': response_out.extend( self._parse_string_buckets(agg_results['buckets'])) elif agg_name == 'fact': response_out.extend( self._parse_fact_buckets( agg_results['fact']['buckets'])) elif agg_name == 'fact_str_val' or agg_name == 'fact_num_val': response_out.extend( self._parse_fact_buckets( agg_results[agg_name]['buckets'])) agg_data.append({ "data": response_out, "type": output_type, "label": response["label"] }) return agg_data def _parse_daterange_buckets(self, buckets, total_freqs, freq_norm_1): results = [] for bucket in buckets: new = {"children": []} new["key"] = bucket["from_as_string"] # Normalises frequencies if freq_norm_1 == "relative_frequency": try: new["val"] = str( round( float(bucket["doc_count"]) / float(total_freqs[bucket["from_as_string"]]), 5)) except ZeroDivisionError: new["val"] = 0 else: new["val"] = bucket["doc_count"] if "string" in bucket: for bucket_2 in bucket["string"]["buckets"]: child = {} child["key"] = bucket_2["key"] child["val"] = bucket_2["doc_count"] new["children"].append(child) elif 'fact' in bucket: for inner_bucket in bucket['fact']['fact']['buckets']: child = { 'key': inner_bucket['key'], 'val': inner_bucket['doc_count'] } grandchildren = [] for super_inner_bucket in inner_bucket['fact_str_val'][ 'buckets']: grandchildren.append({ 'key': super_inner_bucket['key'], 'val': super_inner_bucket['documents']['doc_count'] }) child['children'] = grandchildren new['children'].append(child) elif 'fact_str_val' in bucket: for inner_bucket in bucket['fact_str_val']['fact_str_val'][ 'buckets']: new['children'].append({ 'key': inner_bucket['key'], 'val': inner_bucket['documents']['doc_count'] }) results.append(new) return results def _parse_string_buckets(self, buckets): results = [] for bucket in buckets: new = {"children": []} new["key"] = bucket["key"] new["val"] = bucket["doc_count"] if "string" in bucket: for bucket_2 in bucket["string"]["buckets"]: child = {} child["key"] = bucket_2["key"] child["val"] = bucket_2["doc_count"] new["children"].append(child) elif 'fact' in bucket: for inner_bucket in bucket['fact']['fact']['buckets']: child = { 'key': inner_bucket['key'], 'val': inner_bucket['doc_count'] } grandchildren = [] for super_inner_bucket in inner_bucket['fact_str_val'][ 'buckets']: grandchildren.append({ 'key': super_inner_bucket['key'], 'val': super_inner_bucket['documents']['doc_count'] }) child['children'] = grandchildren new['children'].append(child) elif 'fact_str_val' in bucket: for inner_bucket in bucket['fact_str_val']['fact_str_val'][ 'buckets']: new['children'].append({ 'key': inner_bucket['key'], 'val': inner_bucket['documents']['doc_count'] }) results.append(new) return results def _parse_fact_buckets(self, buckets): results = [] for bucket in buckets: new = {"children": []} new["key"] = bucket["key"] new["val"] = bucket["documents"]["doc_count"] if 'fact_str_val' in bucket: for inner_bucket in bucket['fact_str_val']['buckets']: child = {} child['key'] = inner_bucket['key'] child['val'] = inner_bucket['documents']['doc_count'] new['children'].append(child) elif 'documents' in bucket and 'string' in bucket['documents']: for inner_bucket in bucket['documents']['string']['buckets']: child = {} child['key'] = inner_bucket['key'] child['val'] = inner_bucket['doc_count'] new['children'].append(child) results.append(new) return results def _parse_fact_val_results(self, buckets): pass def output_to_searcher(self): count_dict = defaultdict(defaultdict) children_dict = defaultdict(dict) i = 0 data_out = [] for agg in self.agg_data: if agg["type"] == "daterange": i += 1 for row in agg["data"]: count_dict[row["key"]][i] = row["val"] if row["children"]: children_dict[row["key"]][i] = { "data": row["children"], "label": agg["label"] } else: data_out.append(agg) combined_daterange_data = [] labels = [a["label"] for a in self.agg_data] for row in sorted(count_dict.items(), key=lambda l: l[0]): new_row = dict(row[1]) new_row["date"] = row[0] combined_daterange_data.append(new_row) daterange_data = { "type": "daterange", "data": combined_daterange_data, "ykeys": list(range(1, i + 1)), "labels": labels, "children": dict(children_dict) } if daterange_data["data"]: data_out.append(daterange_data) return data_out
def facts_agg(es_params, request): logger = LogManager(__name__, 'FACTS AGGREGATION') distinct_values = [] query_results = [] lexicon = [] aggregation_data = es_params['aggregate_over'] aggregation_data = json.loads(aggregation_data) original_aggregation_field = aggregation_data['path'] aggregation_field = 'texta_link.facts' try: aggregation_size = 50 aggregations = {"strings": {es_params['sort_by']: {"field": aggregation_field, 'size': 0}}, "distinct_values": {"cardinality": {"field": aggregation_field}}} # Define selected mapping ds = Datasets().activate_dataset(request.session) dataset = ds.get_index() mapping = ds.get_mapping() date_range = ds.get_date_range() es_m = ES_Manager(dataset, mapping, date_range) for item in es_params: if 'saved_search' in item: s = Search.objects.get(pk=es_params[item]) name = s.description saved_query = json.loads(s.query) es_m.load_combined_query(saved_query) es_m.set_query_parameter('aggs', aggregations) response = es_m.search() # Filter response bucket_filter = '{0}.'.format(original_aggregation_field.lower()) final_bucket = [] for b in response['aggregations']['strings']['buckets']: if bucket_filter in b['key']: fact_name = b['key'].split('.')[-1] b['key'] = fact_name final_bucket.append(b) final_bucket = final_bucket[:aggregation_size] response['aggregations']['distinct_values']['value'] = len(final_bucket) response['aggregations']['strings']['buckets'] = final_bucket normalised_counts,labels = normalise_agg(response, es_m, es_params, 'strings') lexicon = list(set(lexicon+labels)) query_results.append({'name':name,'data':normalised_counts,'labels':labels}) distinct_values.append({'name':name,'data':response['aggregations']['distinct_values']['value']}) es_m.build(es_params) # FIXME # this is confusing for the user if not es_m.is_combined_query_empty(): es_m.set_query_parameter('aggs', aggregations) response = es_m.search() # Filter response bucket_filter = '{0}.'.format(original_aggregation_field.lower()) final_bucket = [] for b in response['aggregations']['strings']['buckets']: if bucket_filter in b['key']: fact_name = b['key'].split('.')[-1] b['key'] = fact_name final_bucket.append(b) final_bucket = final_bucket[:aggregation_size] response['aggregations']['distinct_values']['value'] = len(final_bucket) response['aggregations']['strings']['buckets'] = final_bucket normalised_counts,labels = normalise_agg(response, es_m, es_params, 'strings') lexicon = list(set(lexicon+labels)) query_results.append({'name':'Query','data':normalised_counts,'labels':labels}) distinct_values.append({'name':'Query','data':response['aggregations']['distinct_values']['value']}) data = [a+zero_list(len(query_results)) for a in map(list, zip(*[lexicon]))] data = [['Word']+[query_result['name'] for query_result in query_results]]+data for i,word in enumerate(lexicon): for j,query_result in enumerate(query_results): for k,label in enumerate(query_result['labels']): if word == label: data[i+1][j+1] = query_result['data'][k] logger.set_context('user_name', request.user.username) logger.info('facts_aggregation_queried') except Exception as e: print('-- Exception[{0}] {1}'.format(__name__, e)) logger.set_context('user_name', request.user.username) logger.exception('facts_aggregation_query_failed') table_height = len(data)*15 table_height = table_height if table_height > 500 else 500 return {'data':[data[0]]+sorted(data[1:], key=lambda x: sum(x[1:]), reverse=True),'height':table_height,'type':'bar','distinct_values':json.dumps(distinct_values)}