Пример #1
0
def step(phase, epoch, opt, dataloader, model, criterion, optimizer=None):
    # Choose the phase(Evaluate phase-Normally without Dropout and BatchNorm)
    if phase == 'train':
        model.train()
    else:
        model.eval()
    # Load default values
    Loss, Err, Acc = AverageMeter(), AverageMeter(), AverageMeter()
    Acc_tot = AverageMeter()
    seqlen = set_sequence_length(opt.MinSeqLenIndex, opt.MaxSeqLenIndex, epoch)
    # Show iteration using Bar
    nIters = len(dataloader)
    bar = Bar(f'{opt.expID}', max=nIters)
    # Loop in dataloader
    for i, gt in enumerate(dataloader):
        ## Wraps tensors and records the operations applied to it
        input, label = gt['input'], gt['label']
        gtpts, center, scale = gt['gtpts'], gt['center'], gt['scale']
        input_var = input[:, 0, ].float().cuda(device=opt.device,
                                               non_blocking=True)
        label_var = label.float().cuda(device=opt.device, non_blocking=True)
        Loss.reset()
        Err.reset()
        Acc.reset()
        ### if it is 3D, may need the nOutput to get the different target, not just only the heatmap
        ## Forwad propagation
        output = model(input_var)
        ## Get model outputs and calculate loss
        loss = criterion(output, label_var)
        ## Backward + Optimize only if in training phase
        if phase == 'train':
            ## Zero the parameter gradients
            optimizer.zero_grad()
            loss.mean().backward()
            optimizer.step()
        Loss.update(loss.sum())
        ## Compute the accuracy
        # acc = Accuracy(opt, output.data.cpu().numpy(), labels_var.data.cpu().numpy())
        ref = get_ref(opt.dataset, scale)
        for j in range(opt.preSeqLen):
            if j <= seqlen:
                pred_hm = get_preds(output[:, j, ].float())
                pred_pts = original_coordinate(pred_hm, center[:, ], scale,
                                               opt.outputRes)
                err, ne = error(pred_pts, gtpts[:, j, ], ref)
                acc, na = accuracy(pred_pts, gtpts[:, j, ], ref)
                # assert ne == na, "ne must be the same as na"
                Err.update(err)
                Acc.update(acc)
                Acc_tot.update(acc)

        Bar.suffix = f'{phase}[{epoch}][{i}/{nIters}]|Total:{bar.elapsed_td}' \
            f'|ETA:{bar.eta_td}|Loss:{Loss.val:.6f}|Err:{Err.avg:.6f}|Acc:{Acc.avg:.6f}'
        bar.next()

    bar.finish()
    return Loss.val, Acc_tot.avg
Пример #2
0
def step(args, split, epoch, loader, model, optimizer = None, M = None, f = None, tag = None):
  losses, mpjpe, mpjpe_r = AverageMeter(), AverageMeter(), AverageMeter()
  viewLosses, shapeLosses, supLosses = AverageMeter(), AverageMeter(), AverageMeter()
  
  if split == 'train':
    model.train()
  else:
    model.eval()
  bar = Bar('{}'.format(ref.category), max=len(loader))
  
  nViews = loader.dataset.nViews
  for i, (input, target, meta) in enumerate(loader):
    input_var = torch.autograd.Variable(input)
    target_var = torch.autograd.Variable(target)
    output = model(input_var)
    loss = ShapeConsistencyCriterion(nViews, supWeight = 1, unSupWeight = args.shapeWeight, M = M)(output, target_var, torch.autograd.Variable(meta))

    if split == 'test':
      for j in range(input.numpy().shape[0]):
        img = (input.numpy()[j] * 255).transpose(1, 2, 0).astype(np.uint8)
        cv2.imwrite('{}/img_{}/{}.png'.format(args.save_path, tag, i * input.numpy().shape[0] + j), img)
        gt = target.cpu().numpy()[j]
        pred = (output.data).cpu().numpy()[j]
        vis = meta.cpu().numpy()[j][5:]
        for t in range(ref.J):
          f.write('{} {} {} '.format(pred[t * 3], pred[t * 3 + 1], pred[t * 3 + 2]))
        f.write('\n')
        for t in range(ref.J):
          f.write('{} {} {} '.format(gt[t, 0], gt[t, 1], gt[t, 2]))
        f.write('\n')
        if args.saveVis:
          for t in range(ref.J):
            f.write('{} 0 0 '.format(vis[t]))
          f.write('\n')

    mpjpe_this = accuracy(output.data, target, meta)
    mpjpe_r_this = accuracy_dis(output.data, target, meta)
    shapeLoss = shapeConsistency(output.data, meta, nViews, M, split = split)

    losses.update(loss.data[0], input.size(0))
    shapeLosses.update(shapeLoss, input.size(0))
    mpjpe.update(mpjpe_this, input.size(0))
    mpjpe_r.update(mpjpe_r_this, input.size(0))
    
    if split == 'train':
      optimizer.zero_grad()
      loss.backward()
      optimizer.step()
    
    Bar.suffix = '{split:10}: [{0:2}][{1:3}/{2:3}] | Total: {total:} | ETA: {eta:} | Loss {loss.avg:.6f} | shapeLoss {shapeLoss.avg:.6f} | AE {mpjpe.avg:.6f} | ShapeDis {mpjpe_r.avg:.6f}'.format(epoch, i, len(loader), total=bar.elapsed_td, eta=bar.eta_td, loss=losses, mpjpe=mpjpe, split = split, shapeLoss = shapeLosses, mpjpe_r = mpjpe_r)
    bar.next()
      
  bar.finish()
  return mpjpe.avg, losses.avg, shapeLosses.avg
Пример #3
0
def train(train_loader, m, criterion, optimizer, writer):
    lossLogger = DataLogger()
    accLogger = DataLogger()
    m.train()

    train_loader_desc = tqdm(train_loader)

    for i, (inps, labels, setMask, img_info) in enumerate(train_loader_desc):
        if device != "cpu":
            inps = inps.cuda().requires_grad_()
            labels = labels.cuda()
            setMask = setMask.cuda()
        else:
            inps = inps.requires_grad_()
        out = m(inps)

        loss = criterion(out.mul(setMask), labels)

        acc = accuracy(out.data.mul(setMask), labels.data,
                       train_loader.dataset)

        accLogger.update(acc[0], inps.size(0))
        lossLogger.update(loss.item(), inps.size(0))

        optimizer.zero_grad()

        if mix_precision:
            with amp.scale_loss(loss, optimizer) as scaled_loss:
                scaled_loss.backward()
        else:
            loss.backward()

        if config.sparse:
            for mod in m.modules():
                if isinstance(mod, nn.BatchNorm2d):
                    mod.weight.grad.data.add_(config.sparse_s *
                                              torch.sign(mod.weight.data))

        optimizer.step()
        opt.trainIters += 1
        # Tensorboard
        writer.add_scalar('Train/Loss', lossLogger.avg, opt.trainIters)
        writer.add_scalar('Train/Acc', accLogger.avg, opt.trainIters)

        # TQDM
        train_loader_desc.set_description(
            'loss: {loss:.8f} | acc: {acc:.2f}'.format(loss=lossLogger.avg,
                                                       acc=accLogger.avg *
                                                       100))

    train_loader_desc.close()

    return lossLogger.avg, accLogger.avg
Пример #4
0
def train(train_dataloader, model, criterion, optimizer, epoch):
    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    top1 = AverageMeter()
    top5 = AverageMeter()

    # switch to train mode
    model.train()

    end = time.time()
    for i, data in enumerate(train_dataloader):

        # measure data loading time
        data_time.update(time.time() - end)

        # get the inputs; data is a list of [inputs, labels]
        inputs, targets = data
        inputs = inputs.to(device)
        targets = targets.to(device)

        # compute output
        output = model(inputs)
        loss = criterion(output, targets)

        # measure accuracy and record loss
        prec1, prec5 = accuracy(output, targets, topk=(1, 5))
        losses.update(loss.item(), inputs.size(0))
        top1.update(prec1, inputs.size(0))
        top5.update(prec5, inputs.size(0))

        # compute gradients in a backward pass
        optimizer.zero_grad()
        loss.backward()

        # Call step of optimizer to update model params
        optimizer.step()

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        if i % 5 == 0:
            print(
                f"Epoch [{epoch + 1}] [{i}/{len(train_dataloader)}]\t"
                f"Time {data_time.val:.3f} ({data_time.avg:.3f})\t"
                f"Loss {loss.item():.4f}\t"
                f"Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t"
                f"Prec@5 {top5.val:.3f} ({top5.avg:.3f})",
                end="\r")
    torch.save(model.state_dict(),
               f"./checkpoints/{opt.datasets}_epoch_{epoch + 1}.pth")
Пример #5
0
def train(train_loader, m, criterion, optimizer, writer):

    # Logger
    lossLogger = DataLogger()
    accLogger = DataLogger()

    m.train()

    train_loader_desc = tqdm(train_loader)

    for i, (inps, labels, setMask, imgset) in enumerate(train_loader_desc):
        # 自动求导autograd函数功能
        inps = inps.cuda().requires_grad_()
        labels = labels.cuda()
        setMask = setMask.cuda()
        out = m(inps)

        # 计算loss
        loss = criterion(out.mul(setMask), labels)

        # 计算准确率
        acc = accuracy(out.data.mul(setMask), labels.data, train_loader.dataset)
        #
        accLogger.update(acc[0], inps.size(0))
        lossLogger.update(loss.item(), inps.size(0))

        # 加算梯度
        optimizer.zero_grad()
        # 反响传播
        loss.backward()
        optimizer.step()

        opt.trainIters +=1
        # 将数据写道tensorborx
        writer.add_scalar(
            'Train/Loss', lossLogger.avg, opt.trainIters
        )
        writer.add_scalar(
            'Train/Acc', lossLogger.avg, opt.trainIters
        )

        # TQDM
        train_loader_desc.set_description(
            'loss: {loss:.8f} | acc: {acc:.2f}'.format(
                loss=lossLogger.avg,
                acc=accLogger.avg * 100
            )
        )

    train_loader_desc.close()

    return lossLogger.avg, accLogger.avg
def train(train_loader, m, criterion, optimizer, writer):
    lossLogger = DataLogger()
    accLogger = DataLogger()
    m.train()

    # train_loader_desc = tqdm(train_loader)

    total = len(train_loader)
    total_desc = tqdm(range(total))
    train_loader = train_loader.__iter__()
    for ii in total_desc:
        try:
            inps, labels, setMask, imgset = train_loader.next()
        except BaseException as e:
            print('Error:', ii, e)
            continue

        inps = inps.cuda().requires_grad_()
        labels = labels.cuda()
        # setMask = setMask.cuda()
        out = m(inps)

        loss = criterion(out, labels)

        acc = accuracy(out.data, labels.data, train_loader.dataset)

        accLogger.update(acc[0], inps.size(0))
        lossLogger.update(loss.item(), inps.size(0))

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        opt.trainIters += 1
        # Tensorboard
        writer.add_scalar(
            'Train/Loss', lossLogger.avg, opt.trainIters)
        writer.add_scalar(
            'Train/Acc', accLogger.avg, opt.trainIters)

        # TQDM
        total_desc.set_description(
            'loss: {loss:.8f} | acc: {acc:.2f}'.format(
                loss=lossLogger.avg,
                acc=accLogger.avg * 100)
        )

    total_desc.close()

    return lossLogger.avg, accLogger.avg
Пример #7
0
def valid(val_loader, m, criterion, optimizer, writer):
    draw_kp = False
    lossLogger = DataLogger()
    accLogger = DataLogger()
    m.eval()

    val_loader_desc = tqdm(val_loader)

    for i, (inps, labels, setMask, img_info) in enumerate(val_loader_desc):
        if device != "cpu":
            inps = inps.cuda()
            labels = labels.cuda()
            setMask = setMask.cuda()

        with torch.no_grad():
            out = m(inps)

            loss = criterion(out.mul(setMask), labels)

            flip_out = m(flip(inps))
            flip_out = flip(shuffleLR(flip_out, val_loader.dataset))

            out = (flip_out + out) / 2

        acc = accuracy(out.mul(setMask), labels, val_loader.dataset)

        if not draw_kp:
            draw_kp = True
            kps_img = draw_kps(out)
            # writer.add

        lossLogger.update(loss.item(), inps.size(0))
        accLogger.update(acc[0], inps.size(0))

        opt.valIters += 1

        # Tensorboard
        writer.add_scalar('Valid/Loss', lossLogger.avg, opt.valIters)
        writer.add_scalar('Valid/Acc', accLogger.avg, opt.valIters)

        val_loader_desc.set_description(
            'loss: {loss:.8f} | acc: {acc:.2f}'.format(loss=lossLogger.avg,
                                                       acc=accLogger.avg *
                                                       100))

    val_loader_desc.close()

    return lossLogger.avg, accLogger.avg
Пример #8
0
def metrics(actual_output, pred_output):

    # variables to return
    acc = 0
    acc_dict = {'avg': 0, 'score': 0, 'zero': 0}
    prec = 0
    reca = 0

    for i, j in zip(actual_output, pred_output):
        temp = accuracy(i, j)
        acc = acc + temp[0]
        acc_dict[temp[1]] += 1
        prec = prec + precision(i, j)
        reca = reca + recall(i, j)

    return acc, prec, reca, acc_dict
def valid(val_loader, m, criterion, optimizer, writer):
    lossLogger = DataLogger()
    accLogger = DataLogger()
    m.eval()

    # val_loader_desc = tqdm(val_loader)

    for i, (inps, labels, setMask, imgset) in enumerate(val_loader):
        inps = inps.cuda()
        labels = labels.cuda()
        setMask = setMask.cuda()

        with torch.no_grad():
            out = m(inps)

            loss = criterion(out.mul(setMask), labels)

            flip_out = m(flip_v(inps, cuda=True))
            flip_out = flip_v(shuffleLR_v(flip_out,
                                          val_loader.dataset,
                                          cuda=True),
                              cuda=True)

            out = (flip_out + out) / 2

        acc = accuracy(out.mul(setMask), labels, val_loader.dataset)

        lossLogger.update(loss.item(), inps.size(0))
        accLogger.update(acc[0], inps.size(0))

        opt.valIters += 1

        # Tensorboard
        writer.add_scalar('Valid/Loss', lossLogger.avg, opt.valIters)
        writer.add_scalar('Valid/Acc', accLogger.avg, opt.valIters)

        # val_loader_desc.set_description(
        #     'loss: {loss:.8f} | acc: {acc:.2f}'.format(
        #         loss=lossLogger.avg,
        #         acc=accLogger.avg * 100)
        # )
    #     val_loader_desc.set_postfix(
    #         loss='%.2e' % lossLogger.avg, acc='%.2f%%' % (accLogger.avg * 100))

    # val_loader_desc.close()

    return lossLogger.avg, accLogger.avg
def train(train_loader, m, criterion, optimizer, writer):
    lossLogger = DataLogger()
    accLogger = DataLogger()
    f = open("acc_loss.csv", "w+")
    f.write('epoch,acc,loss,eval_acc\n')
    f.close()
    m.train()

    train_loader_desc = tqdm(train_loader)

    for i, (inps, labels, setMask, imgset) in enumerate(train_loader_desc):
        inps = inps.cuda().requires_grad_()
        labels = labels.cuda()
        setMask = setMask.cuda()
        out = m(inps)
        # embed()
        loss = criterion(out.mul(setMask), labels)

        acc = accuracy(out.data.mul(setMask), labels.data,
                       train_loader.dataset)

        accLogger.update(acc[0], inps.size(0))
        lossLogger.update(loss.item(), inps.size(0))

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        opt.trainIters += 1
        # Tensorboard
        writer.add_scalar('Train/Loss', lossLogger.avg, opt.trainIters)
        writer.add_scalar('Train/Acc', accLogger.avg, opt.trainIters)
        # writer.export_scalars_to_json("../log/all_scalars.json")
        # TQDM
        # train_loader_desc.set_description(
        #     'loss: {loss:.5f} | acc: {acc:.2f}'.format(
        #         loss=lossLogger.avg,
        #         acc=accLogger.avg)
        # )

    train_loader_desc.close()

    return lossLogger.avg, accLogger.avg
Пример #11
0
    def batch_inference(self, images, targets=None, backward=True):
        if self.use_cuda:
            images = images.cuda()
            if targets is not None:
                targets = targets.cuda()
        if (not self.backbone.training and not self.head.training) or targets is None:
            features = self.backbone(images)
            return features
        features = self.backbone(images)
        outputs = self.head(features, targets.long())
        total_loss = 0

        losses = self.loss_forward(self.criterions, features, outputs, targets)
        accuracy_top_1, accuracy_top_5 = accuracy(outputs, targets, (1, 5))
        total_loss = torch.stack(losses).mul(self.loss_weights).sum()

        if backward:
            self.optimizer.zero_grad()
            total_loss.backward()
            apply_weight_decay(self.backbone)
            apply_weight_decay(self.head)
            self.optimizer.step()

        losses_value = []
        for index, criterion_name in enumerate(self.criterions.keys()):
            losses_value.append(losses[index].item())
        total_loss_value = total_loss.item()
        accuracy_top_1_value = accuracy_top_1.item()
        accuracy_top_5_value = accuracy_top_5.item()

        for index, criterion_name in enumerate(self.criterions.keys()):
            self.loss_meters[index].update(losses_value[index], targets.size(0))
        self.total_losses_meter.update(total_loss_value, targets.size(0))
        self.accuracy_top_1.update(accuracy_top_1_value, targets.size(0))
        self.accuracy_top_5.update(accuracy_top_5_value, targets.size(0))
        return outputs
def train(train_loader, m, criterion, optimizer, writer):
    lossLogger = DataLogger()
    accLogger = DataLogger()
    m.train()

    # train_loader_desc = tqdm(train_loader)

    for i, (inps, labels, setMask, imgset) in enumerate(train_loader):
        inps = inps.cuda().requires_grad_()  #[32,17,80,64]
        labels = labels.cuda()  #[32,17,80,64]
        setMask = setMask.cuda()  #[32,17,80,64]
        out = m(inps)  #[32,17,80,64]

        loss = criterion(out.mul(setMask), labels)

        acc = accuracy(out.data.mul(setMask), labels.data,
                       train_loader.dataset)

        accLogger.update(acc[0], inps.size(0))
        lossLogger.update(loss.item(), inps.size(0))

        # train_loader_desc.set_postfix(
        #     loss='%.2e' % lossLogger.avg, acc='%.2f%%' % (accLogger.avg * 100))

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        opt.trainIters += 1
        # Tensorboard
        writer.add_scalar('Train/Loss', lossLogger.avg, opt.trainIters)
        writer.add_scalar('Train/Acc', accLogger.avg, opt.trainIters)

    # train_loader_desc.close()

    return lossLogger.avg, accLogger.avg
Пример #13
0
def train(model, device, train_loader, sm_loader, criterion, optimizer, epoch,
          args, writer):
    print(
        " ->->->->->->->->->-> One epoch with Adversarial training (TRADES) <-<-<-<-<-<-<-<-<-<-"
    )

    batch_time = AverageMeter("Time", ":6.3f")
    data_time = AverageMeter("Data", ":6.3f")
    losses = AverageMeter("Loss", ":.4f")
    top1 = AverageMeter("Acc_1", ":6.2f")
    top5 = AverageMeter("Acc_5", ":6.2f")
    progress = ProgressMeter(
        len(train_loader),
        [batch_time, data_time, losses, top1, top5],
        prefix="Epoch: [{}]".format(epoch),
    )

    model.train()
    end = time.time()

    dataloader = train_loader if sm_loader is None else zip(
        train_loader, sm_loader)

    for i, data in enumerate(dataloader):
        if sm_loader:
            images, target = (
                torch.cat([d[0] for d in data], 0).to(device),
                torch.cat([d[1] for d in data], 0).to(device),
            )
        else:
            images, target = data[0].to(device), data[1].to(device)

        # basic properties of training data
        if i == 0:
            print(
                images.shape,
                target.shape,
                f"Batch_size from args: {args.batch_size}",
                "lr: {:.5f}".format(optimizer.param_groups[0]["lr"]),
            )
            print(
                f"Training images range: {[torch.min(images), torch.max(images)]}"
            )

        output = model(images)

        # calculate robust loss
        loss = pgd_loss(
            model=model,
            x_natural=images,
            y=target,
            device=device,
            optimizer=optimizer,
            step_size=args.step_size,
            epsilon=args.epsilon,
            perturb_steps=args.num_steps,
            beta=args.beta,
            clip_min=args.clip_min,
            clip_max=args.clip_max,
            distance=args.distance,
        )

        # measure accuracy and record loss
        acc1, acc5 = accuracy(output, target, topk=(1, 5))
        losses.update(loss.item(), images.size(0))
        top1.update(acc1[0], images.size(0))
        top5.update(acc5[0], images.size(0))

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        if i % args.print_freq == 0:
            progress.display(i)
            progress.write_to_tensorboard(writer, "train",
                                          epoch * len(train_loader) + i)

        # write a sample of training images to tensorboard (helpful for debugging)
        if i == 0:
            writer.add_image(
                "training-images",
                torchvision.utils.make_grid(images[0:len(images) // 4]),
            )
Пример #14
0
def train(model, device, train_loader, sm_loader, criterion, optimizer, epoch,
          args, writer):
    epsilon = set_epsilon(args, epoch)
    k = args.mixtraink
    alpha = 0.8
    iw = set_interval_weight(args, epoch)

    print(" ->->->->->->->->->-> One epoch with MixTrain{} (SYM {:.3f})"
          " <-<-<-<-<-<-<-<-<-<-".format(k, epsilon))

    batch_time = AverageMeter("Time", ":6.3f")
    data_time = AverageMeter("Data", ":6.3f")
    losses = AverageMeter("Loss", ":.4f")
    sym_losses = AverageMeter("Sym_Loss", ":.4f")
    top1 = AverageMeter("Acc_1", ":6.2f")
    sym1 = AverageMeter("Sym1", ":6.2f")
    progress = ProgressMeter(
        len(train_loader),
        [batch_time, data_time, losses, sym_losses, top1, sym1],
        prefix="Epoch: [{}]".format(epoch),
    )

    model.train()
    end = time.time()

    dataloader = train_loader if sm_loader is None else zip(
        train_loader, sm_loader)

    for i, data in enumerate(dataloader):
        if sm_loader:
            images, target = (
                torch.cat([d[0] for d in data], 0).to(device),
                torch.cat([d[1] for d in data], 0).to(device),
            )
        else:
            images, target = data[0].to(device), data[1].to(device)

        # basic properties of training data
        if i == 0:
            print(
                images.shape,
                target.shape,
                f"Batch_size from args: {args.batch_size}",
                "lr: {:.5f}".format(optimizer.param_groups[0]["lr"]),
            )
            print(
                f"Training images range: {[torch.min(images), torch.max(images)]}"
            )

        output = model(images)
        ce = nn.CrossEntropyLoss()(output, target)

        if (np.random.uniform() <= alpha):
            r = np.random.randint(low=0, high=images.shape[0], size=k)
            rce, rerr = sym_interval_analyze(
                model,
                epsilon,
                images[r],
                target[r],
                use_cuda=torch.cuda.is_available(),
                parallel=False)

            #print("sym:", rce.item(), ce.item())
            loss = iw * rce + ce
            sym_losses.update(rce.item(), k)
            sym1.update((1 - rerr) * 100., images.size(0))
        else:
            loss = ce

        # measure accuracy and record loss
        acc1, acc5 = accuracy(output, target, topk=(1, 5))
        top1.update(acc1[0], images.size(0))
        losses.update(ce.item(), images.size(0))

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        if i % args.print_freq == 0:
            progress.display(i)
            progress.write_to_tensorboard(writer, "train",
                                          epoch * len(train_loader) + i)

        # write a sample of training images to tensorboard (helpful for debugging)
        if i == 0:
            writer.add_image(
                "training-images",
                torchvision.utils.make_grid(images[0:len(images) // 4]),
            )
Пример #15
0
def evaluate(val_loader, model, criterion, test=None):
    '''
    模型评估
    :param val_loader:
    :param model:
    :param criterion:
    :param test:
    :return:
    '''

    global best_acc

    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    top1 = AverageMeter()

    predict_all = np.array([], dtype=int)
    labels_all = np.array([], dtype=int)

    #################
    # val the model
    #################
    model.eval()
    end = time.time()

    # 训练每批数据,然后进行模型的训练
    ## 定义bar 变量
    bar = Bar('Processing', max=len(val_loader))
    for batch_index, (inputs, targets) in enumerate(val_loader):
        data_time.update(time.time() - end)
        # move tensors to GPU if cuda is_available
        inputs, targets = inputs.to(device), targets.to(device)
        # 模型的预测
        outputs = model(inputs)
        # 计算loss
        loss = criterion(outputs, targets)

        # 计算acc和变量更新
        prec1, _ = accuracy(outputs.data, targets.data, topk=(1, 1))
        losses.update(loss.item(), inputs.size(0))
        top1.update(prec1.item(), inputs.size(0))
        batch_time.update(time.time() - end)
        end = time.time()

        # 评估混淆矩阵的数据
        targets = targets.data.cpu().numpy()  # 真实数据的y数值
        predic = torch.max(outputs.data, 1)[1].cpu().numpy()  # 预测数据y数值
        labels_all = np.append(labels_all, targets)  # 数据赋值
        predict_all = np.append(predict_all, predic)

        ## 把主要的参数打包放进bar中
        # plot progress
        bar.suffix = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | top1: {top1: .4f}'.format(
            batch=batch_index + 1,
            size=len(val_loader),
            data=data_time.val,
            bt=batch_time.val,
            total=bar.elapsed_td,
            eta=bar.eta_td,
            loss=losses.avg,
            top1=top1.avg)
        bar.next()
    bar.finish()

    if test:
        return (losses.avg, top1.avg, predict_all, labels_all)
    else:
        return (losses.avg, top1.avg)
Пример #16
0
def train(train_loader, model, criterion, optimizer):
    '''
    模型训练
    :param train_loader:
    :param model:
    :param criterion:
    :param optimizer:
    :return:
    '''
    # 定义保存更新变量
    data_time = AverageMeter()
    batch_time = AverageMeter()
    losses = AverageMeter()
    top1 = AverageMeter()
    end = time.time()

    #################
    # train the model
    #################
    model.train()

    # 训练每批数据,然后进行模型的训练
    ## 定义bar 变量
    bar = Bar('Processing', max=len(train_loader))
    for batch_index, (inputs, targets) in enumerate(train_loader):
        data_time.update(time.time() - end)
        # move tensors to GPU if cuda is_available
        inputs, targets = inputs.to(device), targets.to(device)
        # 在进行反向传播之前,我们使用zero_grad方法清空梯度
        optimizer.zero_grad()
        # 模型的预测
        outputs = model(inputs)
        # 计算loss
        loss = criterion(outputs, targets)
        # backward pass:
        loss.backward()
        # perform as single optimization step (parameter update)
        optimizer.step()

        # 计算acc和变量更新
        prec1, _ = accuracy(outputs.data, targets.data, topk=(1, 1))
        losses.update(loss.item(), inputs.size(0))
        top1.update(prec1.item(), inputs.size(0))
        batch_time.update(time.time() - end)
        end = time.time()

        # plot progress
        ## 把主要的参数打包放进bar中
        # plot progress
        bar.suffix = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | top1: {top1: .4f}'.format(
            batch=batch_index + 1,
            size=len(train_loader),
            data=data_time.val,
            bt=batch_time.val,
            total=bar.elapsed_td,
            eta=bar.eta_td,
            loss=losses.avg,
            top1=top1.avg)
        bar.next()
    bar.finish()
    return (losses.avg, top1.avg)
Пример #17
0
def train(model, device, train_loader, sm_loader, criterion, optimizer, epoch,
          args, writer):
    print(
        " ->->->->->->->->->-> One epoch with Natural training <-<-<-<-<-<-<-<-<-<-"
    )

    batch_time = AverageMeter("Time", ":6.3f")
    data_time = AverageMeter("Data", ":6.3f")
    losses = AverageMeter("Loss", ":.4f")
    top1 = AverageMeter("Acc_1", ":6.2f")
    top5 = AverageMeter("Acc_5", ":6.2f")
    progress = ProgressMeter(
        len(train_loader),
        [batch_time, data_time, losses, top1, top5],
        prefix="Epoch: [{}]".format(epoch),
    )

    model.train()
    end = time.time()

    dataloader = train_loader if sm_loader is None else zip(
        train_loader, sm_loader)

    for i, data in enumerate(dataloader):
        if sm_loader:
            images, target = (
                torch.cat([d[0] for d in data], 0).to(device),
                torch.cat([d[1] for d in data], 0).to(device),
            )
        else:
            images, target = data[0].to(device), data[1].to(device)

        # basic properties of training
        if i == 0:
            print(
                images.shape,
                target.shape,
                f"Batch_size from args: {args.batch_size}",
                "lr: {:.5f}".format(optimizer.param_groups[0]["lr"]),
            )
            print("Pixel range for training images : [{}, {}]".format(
                torch.min(images).data.cpu().numpy(),
                torch.max(images).data.cpu().numpy(),
            ))

        output = model(images)
        loss = criterion(output, target)

        # measure accuracy and record loss
        acc1, acc5 = accuracy(output, target, topk=(1, 5))
        losses.update(loss.item(), images.size(0))
        top1.update(acc1[0], images.size(0))
        top5.update(acc5[0], images.size(0))

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        if i % args.print_freq == 0:
            progress.display(i)
            progress.write_to_tensorboard(writer, "train",
                                          epoch * len(train_loader) + i)

        # write a sample of training images to tensorboard (helpful for debugging)
        if i == 0:
            writer.add_image(
                "training-images",
                torchvision.utils.make_grid(images[0:len(images) // 4]),
            )
Пример #18
0
def step(args,
         split,
         epoch,
         loader,
         model,
         optimizer=None,
         M=None,
         f=None,
         tag=None):
    losses, mpjpe, mpjpe_r = AverageMeter(), AverageMeter(), AverageMeter()
    viewLosses, shapeLosses, supLosses = AverageMeter(), AverageMeter(
    ), AverageMeter()

    if split == 'train':
        model.train()
    else:
        model.eval()
    bar = Bar('{}'.format(ref.category), max=len(loader))

    nViews = loader.dataset.nViews
    for i, (input, target, meta) in enumerate(loader):
        input_var = torch.autograd.Variable(input)
        target_var = torch.autograd.Variable(target)
        output = model(input_var)
        loss = ShapeConsistencyCriterion(nViews,
                                         supWeight=1,
                                         unSupWeight=args.shapeWeight,
                                         M=M)(output, target_var,
                                              torch.autograd.Variable(meta))

        if split == 'test':
            for j in range(input.numpy().shape[0]):
                img = (input.numpy()[j] * 255).transpose(1, 2,
                                                         0).astype(np.uint8)
                cv2.imwrite(
                    '{}/img_{}/{}.png'.format(args.save_path, tag,
                                              i * input.numpy().shape[0] + j),
                    img)
                gt = target.cpu().numpy()[j]
                pred = (output.data).cpu().numpy()[j]
                vis = meta.cpu().numpy()[j][5:]
                for t in range(ref.J):
                    f.write('{} {} {} '.format(pred[t * 3], pred[t * 3 + 1],
                                               pred[t * 3 + 2]))
                f.write('\n')
                for t in range(ref.J):
                    f.write('{} {} {} '.format(gt[t, 0], gt[t, 1], gt[t, 2]))
                f.write('\n')
                if args.saveVis:
                    for t in range(ref.J):
                        f.write('{} 0 0 '.format(vis[t]))
                    f.write('\n')

        mpjpe_this = accuracy(output.data, target, meta)
        mpjpe_r_this = accuracy_dis(output.data, target, meta)
        shapeLoss = shapeConsistency(output.data, meta, nViews, M, split=split)

        losses.update(loss.data[0], input.size(0))
        shapeLosses.update(shapeLoss, input.size(0))
        mpjpe.update(mpjpe_this, input.size(0))
        mpjpe_r.update(mpjpe_r_this, input.size(0))

        if split == 'train':
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

        Bar.suffix = '{split:10}: [{0:2}][{1:3}/{2:3}] | Total: {total:} | ETA: {eta:} | Loss {loss.avg:.6f} | shapeLoss {shapeLoss.avg:.6f} | AE {mpjpe.avg:.6f} | ShapeDis {mpjpe_r.avg:.6f}'.format(
            epoch,
            i,
            len(loader),
            total=bar.elapsed_td,
            eta=bar.eta_td,
            loss=losses,
            mpjpe=mpjpe,
            split=split,
            shapeLoss=shapeLosses,
            mpjpe_r=mpjpe_r)
        bar.next()

    bar.finish()
    return mpjpe.avg, losses.avg, shapeLosses.avg
Пример #19
0
def main():
    # Parse the options from parameters
    opts = Opts().parse()
    ## For PyTorch 0.4.1, cuda(device)
    opts.device = torch.device(f'cuda:{opts.gpu[0]}')
    print(opts.expID, opts.task, os.path.dirname(os.path.realpath(__file__)))
    # Load the trained model test
    if opts.loadModel != 'none':
        model_path = os.path.join(opts.root_dir, opts.loadModel)
        model = torch.load(model_path).cuda(device=opts.device)
        model.eval()
    else:
        print('ERROR: No model is loaded!')
        return
    # Read the input image, pass input to gpu
    if opts.img == 'None':
        val_dataset = PENN_CROP(opts, 'val')
        val_loader = tud.DataLoader(val_dataset,
                                    batch_size=1,
                                    shuffle=False,
                                    num_workers=int(opts.num_workers))
        opts.nJoints = val_dataset.nJoints
        opts.skeleton = val_dataset.skeleton
        for i, gt in enumerate(val_loader):
            # Test Visualizer, Input and get_preds
            if i == 0:
                input, label = gt['input'], gt['label']
                gtpts, center, scale, proj = gt['gtpts'], gt['center'], gt[
                    'scale'], gt['proj']
                input_var = input[:, 0, ].float().cuda(device=opts.device,
                                                       non_blocking=True)
                # output = label
                output = model(input_var)
                # Test Loss, Err and Acc(PCK)
                Loss, Err, Acc = AverageMeter(), AverageMeter(), AverageMeter()
                ref = get_ref(opts.dataset, scale)
                for j in range(opts.preSeqLen):
                    pred = get_preds(output[:, j, ].cpu().float())
                    pred = original_coordinate(pred, center[:, ], scale,
                                               opts.outputRes)
                    err, ne = error(pred, gtpts[:, j, ], ref)
                    acc, na = accuracy(pred, gtpts[:, j, ], ref)
                    # assert ne == na, "ne must be the same as na"
                    Err.update(err)
                    Acc.update(acc)
                    print(j, f"{Err.val:.6f}", Acc.val)
                print('all', f"{Err.avg:.6f}", Acc.avg)
                # Visualizer Object
                ## Initialize
                v = Visualizer(opts.nJoints, opts.skeleton, opts.outputRes)
                # ## Add input image
                # v.add_img(input[0,0,].transpose(2, 0).numpy().astype(np.uint8))
                # ## Get the predicted joints
                # predJoints = get_preds(output[:, 0, ])
                # # ## Add joints and skeleton to the figure
                # v.add_2d_joints_skeleton(predJoints, (0, 0, 255))
                # Transform heatmap to show
                hm_img = output[0, 0, ].cpu().detach().numpy()
                v.add_hm(hm_img)
                ## Show image
                v.show_img(pause=True)
                break
    else:
        print('NOT ready for the raw input outside the dataset')
        img = cv2.imread(opts.img)
        input = torch.from_numpy(img.tramspose(2, 0, 1)).float() / 256.
        input = input.view(1, input.size(0), input.size(1), input.size(2))
        input_var = torch.autograd.variable(input).float().cuda(
            device=opts.device)
        output = model(input_var)
        predJoints = get_preds(output[-2].data.cpu().numpy())[0] * 4
Пример #20
0
def train(model, device, train_loader, sm_loader, criterion, optimizer, epoch,
          args, writer):
    print(
        " ->->->->->->->->->-> One epoch with Natural training <-<-<-<-<-<-<-<-<-<-"
    )

    batch_time = AverageMeter("Time", ":6.3f")
    data_time = AverageMeter("Data", ":6.3f")
    losses = AverageMeter("Loss", ":.4f")
    top1 = AverageMeter("Acc_1", ":6.2f")
    top5 = AverageMeter("Acc_5", ":6.2f")
    progress = ProgressMeter(
        len(train_loader),
        [batch_time, data_time, losses, top1, top5],
        prefix="Epoch: [{}]".format(epoch),
    )

    model.train()
    end = time.time()

    dataloader = train_loader if sm_loader is None else zip(
        train_loader, sm_loader)

    for i, data in enumerate(dataloader):
        if sm_loader:
            images, target = (
                torch.cat([d[0] for d in data], 0).to(device),
                torch.cat([d[1] for d in data], 0).to(device),
            )
        else:
            images, target = data[0].to(device), data[1].to(device)

        # basic properties of training
        if i == 0:
            print(
                images.shape,
                target.shape,
                f"Batch_size from args: {args.batch_size}",
                "lr: {:.5f}".format(optimizer.param_groups[0]["lr"]),
            )
            print("Pixel range for training images : [{}, {}]".format(
                torch.min(images).data.cpu().numpy(),
                torch.max(images).data.cpu().numpy(),
            ))

        # stability-loss
        if args.dataset == "imagenet":
            std = (torch.tensor(
                [0.229, 0.224,
                 0.225]).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)).to(device)
            noise = (torch.randn_like(images) /
                     std).to(device) * args.noise_std
            output = model(images + noise)
            loss = nn.CrossEntropyLoss()(output, target)
        else:
            output = model(images)
            loss_natural = nn.CrossEntropyLoss()(output, target)
            loss_robust = (1.0 / len(images)) * nn.KLDivLoss(
                size_average=False)(
                    F.log_softmax(
                        model(images + torch.randn_like(images).to(device) *
                              args.noise_std),
                        dim=1,
                    ),
                    F.softmax(output, dim=1),
                )
            loss = loss_natural + args.beta * loss_robust

        # measure accuracy and record loss
        acc1, acc5 = accuracy(output, target, topk=(1, 5))
        losses.update(loss.item(), images.size(0))
        top1.update(acc1[0], images.size(0))
        top5.update(acc5[0], images.size(0))

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        if i % args.print_freq == 0:
            progress.display(i)
            progress.write_to_tensorboard(writer, "train",
                                          epoch * len(train_loader) + i)

        # write a sample of training images to tensorboard (helpful for debugging)
        if i == 0:
            writer.add_image(
                "training-images",
                torchvision.utils.make_grid(images[0:len(images) // 4]),
            )
Пример #21
0
def step(split, epoch, opt, data_loader, model, optimizer=None):
  if split == 'train':
    model.train()
  else:
    model.eval()
  
  crit = torch.nn.MSELoss()
  crit_3d = FusionLoss(opt.device, opt.weight_3d, opt.weight_var)

  acc_idxs = data_loader.dataset.acc_idxs
  edges = data_loader.dataset.edges
  edges_3d = data_loader.dataset.edges_3d
  shuffle_ref = data_loader.dataset.shuffle_ref
  mean = data_loader.dataset.mean
  std = data_loader.dataset.std
  convert_eval_format = data_loader.dataset.convert_eval_format

  Loss, Loss3D = AverageMeter(), AverageMeter()
  Acc, MPJPE = AverageMeter(), AverageMeter()
  data_time, batch_time = AverageMeter(), AverageMeter()
  preds = []
  time_str = ''

  nIters = len(data_loader)
  bar = Bar('{}'.format(opt.exp_id), max=nIters)
  
  end = time.time()
  for i, batch in enumerate(data_loader):
    data_time.update(time.time() - end)
    for k in batch:
      if k != 'meta':
        batch[k] = batch[k].cuda(device=opt.device, non_blocking=True)
    gt_2d = batch['meta']['pts_crop'].cuda(
      device=opt.device, non_blocking=True).float() / opt.output_h
    output = model(batch['input'])

    loss = crit(output[-1]['hm'], batch['target'])
    loss_3d = crit_3d(
      output[-1]['depth'], batch['reg_mask'], batch['reg_ind'], 
      batch['reg_target'],gt_2d)
    for k in range(opt.num_stacks - 1):
      loss += crit(output[k], batch['target'])
      loss_3d = crit_3d(
        output[-1]['depth'], batch['reg_mask'], batch['reg_ind'], 
        batch['reg_target'], gt_2d)
    loss += loss_3d

    if split == 'train':
      optimizer.zero_grad()
      loss.backward()
      optimizer.step()
    else:
      input_ = batch['input'].cpu().numpy().copy()
      input_[0] = flip(input_[0]).copy()[np.newaxis, ...]
      input_flip_var = torch.from_numpy(input_).cuda(
        device=opt.device, non_blocking=True)
      output_flip_ = model(input_flip_var)
      output_flip = shuffle_lr(
        flip(output_flip_[-1]['hm'].detach().cpu().numpy()[0]), shuffle_ref)
      output_flip = output_flip.reshape(
        1, opt.num_output, opt.output_h, opt.output_w)
      output_depth_flip = shuffle_lr(
        flip(output_flip_[-1]['depth'].detach().cpu().numpy()[0]), shuffle_ref)
      output_depth_flip = output_depth_flip.reshape(
        1, opt.num_output, opt.output_h, opt.output_w)
      output_flip = torch.from_numpy(output_flip).cuda(
        device=opt.device, non_blocking=True)
      output_depth_flip = torch.from_numpy(output_depth_flip).cuda(
        device=opt.device, non_blocking=True)
      output[-1]['hm'] = (output[-1]['hm'] + output_flip) / 2
      output[-1]['depth'] = (output[-1]['depth'] + output_depth_flip) / 2
      # pred = get_preds(output[-1]['hm'].detach().cpu().numpy())
      # preds.append(convert_eval_format(pred, conf, meta)[0])
    
    Loss.update(loss.item(), batch['input'].size(0))
    Loss3D.update(loss_3d.item(), batch['input'].size(0))
    Acc.update(accuracy(output[-1]['hm'].detach().cpu().numpy(), 
                        batch['target'].detach().cpu().numpy(), acc_idxs))
    mpeje_batch, mpjpe_cnt = mpjpe(output[-1]['hm'].detach().cpu().numpy(),
                                   output[-1]['depth'].detach().cpu().numpy(),
                                   batch['meta']['gt_3d'].detach().numpy(),
                                   convert_func=convert_eval_format)
    MPJPE.update(mpeje_batch, mpjpe_cnt)
   
    batch_time.update(time.time() - end)
    end = time.time()
    if not opt.hide_data_time:
      time_str = ' |Data {dt.avg:.3f}s({dt.val:.3f}s)' \
                 ' |Net {bt.avg:.3f}s'.format(dt=data_time, bt=batch_time)
      
    Bar.suffix = '{split}: [{0}][{1}/{2}] |Total {total:} |ETA {eta:} '\
                 '|Loss {loss.avg:.5f} |Loss3D {loss_3d.avg:.5f}'\
                 '|Acc {Acc.avg:.4f} |MPJPE {MPJPE.avg:.2f}'\
                 '{time_str}'.format(epoch, i, nIters, total=bar.elapsed_td, 
                                     eta=bar.eta_td, loss=Loss, Acc=Acc, 
                                     split=split, time_str=time_str,
                                     MPJPE=MPJPE, loss_3d=Loss3D)
    if opt.print_iter > 0:
      if i % opt.print_iter == 0:
        print('{}| {}'.format(opt.exp_id, Bar.suffix))
    else:
      bar.next()
    if opt.debug >= 2:
      gt = get_preds(batch['target'].cpu().numpy()) * 4
      pred = get_preds(output[-1]['hm'].detach().cpu().numpy()) * 4
      debugger = Debugger(ipynb=opt.print_iter > 0, edges=edges)
      img = (
        batch['input'][0].cpu().numpy().transpose(1, 2, 0) * std + mean) * 256
      img = img.astype(np.uint8).copy()
      debugger.add_img(img)
      debugger.add_mask(
        cv2.resize(batch['target'][0].cpu().numpy().max(axis=0), 
                   (opt.input_w, opt.input_h)), img, 'target')
      debugger.add_mask(
        cv2.resize(output[-1]['hm'][0].detach().cpu().numpy().max(axis=0), 
                   (opt.input_w, opt.input_h)), img, 'pred')
      debugger.add_point_2d(gt[0], (0, 0, 255))
      debugger.add_point_2d(pred[0], (255, 0, 0))
      debugger.add_point_3d(
        batch['meta']['gt_3d'].detach().numpy()[0], 'r', edges=edges_3d)
      pred_3d = get_preds_3d(output[-1]['hm'].detach().cpu().numpy(), 
                             output[-1]['depth'].detach().cpu().numpy())
      debugger.add_point_3d(convert_eval_format(pred_3d[0]), 'b',edges=edges_3d)
      debugger.show_all_imgs(pause=False)
      debugger.show_3d()

  bar.finish()
  return {'loss': Loss.avg, 
          'acc': Acc.avg, 
          'mpjpe': MPJPE.avg,
          'time': bar.elapsed_td.total_seconds() / 60.}, preds
Пример #22
0
def step(split, epoch, opt, data_loader, model, optimizer=None):
    if split == 'train':
        model.train()
    else:
        model.eval()

    crit = torch.nn.MSELoss()

    acc_idxs = data_loader.dataset.acc_idxs
    edges = data_loader.dataset.edges
    shuffle_ref = data_loader.dataset.shuffle_ref
    mean = data_loader.dataset.mean
    std = data_loader.dataset.std
    convert_eval_format = data_loader.dataset.convert_eval_format

    Loss, Acc = AverageMeter(), AverageMeter()
    data_time, batch_time = AverageMeter(), AverageMeter()
    preds = []

    nIters = len(data_loader)
    bar = Bar('{}'.format(opt.exp_id), max=nIters)

    end = time.time()
    for i, batch in enumerate(data_loader):
        data_time.update(time.time() - end)
        input, target, meta = batch['input'], batch['target'], batch['meta']
        input_var = input.cuda(device=opt.device, non_blocking=True)
        target_var = target.cuda(device=opt.device, non_blocking=True)

        output = model(input_var)

        loss = crit(output[-1]['hm'], target_var)
        for k in range(opt.num_stacks - 1):
            loss += crit(output[k], target_var)

        if split == 'train':
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
        else:
            input_ = input.cpu().numpy().copy()
            input_[0] = flip(input_[0]).copy()[np.newaxis, ...]
            input_flip_var = torch.from_numpy(input_).cuda(
                device=opt.device, non_blocking=True)
            output_flip = model(input_flip_var)
            output_flip = shuffle_lr(
                flip(output_flip[-1]['hm'].detach().cpu().numpy()[0]), shuffle_ref)
            output_flip = output_flip.reshape(
                1, opt.num_output, opt.output_h, opt.output_w)
            # output_ = (output[-1].detach().cpu().numpy() + output_flip) / 2
            output_flip = torch.from_numpy(output_flip).cuda(
                device=opt.device, non_blocking=True)
            output[-1]['hm'] = (output[-1]['hm'] + output_flip) / 2
            pred, conf = get_preds(
                output[-1]['hm'].detach().cpu().numpy(), True)
            preds.append(convert_eval_format(pred, conf, meta)[0])

        Loss.update(loss.detach().item(), input.size(0))
        Acc.update(accuracy(output[-1]['hm'].detach().cpu().numpy(),
                            target_var.detach().cpu().numpy(), acc_idxs))

        batch_time.update(time.time() - end)
        end = time.time()
        if not opt.hide_data_time:
            time_str = ' |Data {dt.avg:.3f}s({dt.val:.3f}s)' \
                       ' |Net {bt.avg:.3f}s'.format(dt=data_time,
                                                    bt=batch_time)
        else:
            time_str = ''
        Bar.suffix = '{split}: [{0}][{1}/{2}] |Total {total:} |ETA {eta:}' \
                     '|Loss {loss.avg:.5f} |Acc {Acc.avg:.4f}'\
                     '{time_str}'.format(epoch, i, nIters, total=bar.elapsed_td,
                                         eta=bar.eta_td, loss=Loss, Acc=Acc,
                                         split=split, time_str=time_str)
        if opt.print_iter > 0:
            if i % opt.print_iter == 0:
                print('{}| {}'.format(opt.exp_id, Bar.suffix))
        else:
            bar.next()
        if opt.debug >= 2:
            gt, amb_idx = get_preds(target.cpu().numpy())
            gt *= 4
            pred, amb_idx = get_preds(output[-1]['hm'].detach().cpu().numpy())
            pred *= 4
            debugger = Debugger(ipynb=opt.print_iter > 0, edges=edges)
            img = (input[0].numpy().transpose(1, 2, 0) * std + mean) * 256
            img = img.astype(np.uint8).copy()
            debugger.add_img(img)
            debugger.add_mask(
                cv2.resize(target[0].numpy().max(axis=0),
                           (opt.input_w, opt.input_h)), img, 'target')
            debugger.add_mask(
                cv2.resize(output[-1]['hm'][0].detach().cpu().numpy().max(axis=0),
                           (opt.input_w, opt.input_h)), img, 'pred')
            debugger.add_point_2d(pred[0], (255, 0, 0))
            debugger.add_point_2d(gt[0], (0, 0, 255))
            debugger.show_all_imgs(pause=True)

    bar.finish()
    return {'loss': Loss.avg,
            'acc': Acc.avg,
            'time': bar.elapsed_td.total_seconds() / 60.}, preds
Пример #23
0
def train(
    model,
    device,
    train_loader,
    sm_loader,
    criterion,
    optimizer,
    epoch,
    args,
    writer=None,
):

    assert (
        not args.normalize
    ), "Explicit normalization is done in the training loop, Dataset should have [0, 1] dynamic range."

    global_noise_data = torch.zeros(
        [args.batch_size, 3, args.image_dim, args.image_dim]).to(device)

    mean = torch.Tensor(np.array(args.mean)[:, np.newaxis, np.newaxis])
    mean = mean.expand(3, args.image_dim, args.image_dim).to(device)
    std = torch.Tensor(np.array(args.std)[:, np.newaxis, np.newaxis])
    std = std.expand(3, args.image_dim, args.image_dim).to(device)

    batch_time = AverageMeter("Time", ":6.3f")
    data_time = AverageMeter("Data", ":6.3f")
    losses = AverageMeter("Loss", ":.4f")
    top1 = AverageMeter("Acc_1", ":6.2f")
    top5 = AverageMeter("Acc_5", ":6.2f")
    progress = ProgressMeter(
        len(train_loader),
        [batch_time, data_time, losses, top1, top5],
        prefix="Epoch: [{}]".format(epoch),
    )

    # switch to train mode
    model.train()
    for i, (input, target) in enumerate(train_loader):
        end = time.time()
        input = input.to(device, non_blocking=True)
        target = target.to(device, non_blocking=True)
        data_time.update(time.time() - end)

        for _ in range(args.n_repeats):
            # Ascend on the global noise
            noise_batch = Variable(global_noise_data[0:input.size(0)],
                                   requires_grad=True).to(device)
            in1 = input + noise_batch
            in1.clamp_(0, 1.0)
            in1.sub_(mean).div_(std)
            output = model(in1)
            loss = criterion(output, target)

            prec1, prec5 = accuracy(output, target, topk=(1, 5))
            losses.update(loss.item(), input.size(0))
            top1.update(prec1[0], input.size(0))
            top5.update(prec5[0], input.size(0))

            # compute gradient and do SGD step
            optimizer.zero_grad()
            loss.backward()

            # Update the noise for the next iteration
            pert = fgsm(noise_batch.grad, args.epsilon)
            global_noise_data[0:input.size(0)] += pert.data
            global_noise_data.clamp_(-args.epsilon, args.epsilon)

            optimizer.step()

            # measure elapsed time
            batch_time.update(time.time() - end)
            end = time.time()

            if i % args.print_freq == 0:
                progress.display(i)
                progress.write_to_tensorboard(writer, "train",
                                              epoch * len(train_loader) + i)

        if i == 0:
            print(
                in1.shape,
                target.shape,
                f"Batch_size from args: {args.batch_size}",
                "lr: {:.5f}".format(optimizer.param_groups[0]["lr"]),
            )
            print(f"Training images range: {[torch.min(in1), torch.max(in1)]}")

        # write a sample of training images to tensorboard (helpful for debugging)
        if i == 0:
            writer.add_image(
                "training-images",
                torchvision.utils.make_grid(input[0:len(input) // 4]),
            )
Пример #24
0
def train():
    try:
        os.makedirs(opt.checkpoints_dir)
    except OSError:
        pass
    if torch.cuda.device_count() > 1:
        model = torch.nn.parallel.DataParallel(
            AlexNet(num_classes=opt.num_classes))
    else:
        model = AlexNet(num_classes=opt.num_classes)
    if os.path.exists(MODEL_PATH):
        model.load_state_dict(
            torch.load(MODEL_PATH, map_location=lambda storage, loc: storage))
    model.to(device)
    ################################################
    # Set loss function and Adam optimizer
    ################################################
    criterion = torch.nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=opt.lr)

    for epoch in range(opt.epochs):
        # train for one epoch
        print(f"\nBegin Training Epoch {epoch + 1}")
        # Calculate and return the top-k accuracy of the model
        # so that we can track the learning process.
        losses = AverageMeter()
        top1 = AverageMeter()
        top5 = AverageMeter()

        for i, data in enumerate(train_dataloader):
            # get the inputs; data is a list of [inputs, labels]
            inputs, targets = data
            inputs = inputs.to(device)
            targets = targets.to(device)

            # compute output
            output = model(inputs)
            loss = criterion(output, targets)

            # measure accuracy and record loss
            prec1, prec5 = accuracy(output, targets, topk=(1, 2))
            losses.update(loss.item(), inputs.size(0))
            top1.update(prec1, inputs.size(0))
            top5.update(prec5, inputs.size(0))

            # compute gradients in a backward pass
            optimizer.zero_grad()
            loss.backward()

            # Call step of optimizer to update model params
            optimizer.step()

            print(
                f"Epoch [{epoch + 1}] [{i + 1}/{len(train_dataloader)}]\t"
                f"Loss {loss.item():.4f}\t"
                f"Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t"
                f"Prec@5 {top5.val:.3f} ({top5.avg:.3f})",
                end="\r")

        # save model file
        torch.save(model.state_dict(), MODEL_PATH)
Пример #25
0
def train():
    try:
        os.makedirs(opt.checkpoints_dir)
    except OSError:
        pass

    CNN.to(device)
    CNN.train()
    torchsummary.summary(CNN, (1, 28, 28))

    ################################################
    # Set loss function and Adam optimier
    ################################################
    criterion = torch.nn.CrossEntropyLoss()
    optimizer = optim.Adam(CNN.parameters(), lr=opt.lr)

    for epoch in range(opt.epochs):
        # train for one epoch
        print(f"\nBegin Training Epoch {epoch + 1}")
        # Calculate and return the top-k accuracy of the model
        # so that we can track the learning process.
        batch_time = AverageMeter()
        losses = AverageMeter()
        top1 = AverageMeter()
        top5 = AverageMeter()

        end = time.time()
        for i, data in enumerate(train_dataloader):
            # get the inputs; data is a list of [inputs, labels]
            inputs, targets = data
            inputs = inputs.to(device)
            targets = targets.to(device)

            # compute output
            output = CNN(inputs)
            loss = criterion(output, targets)

            # measure accuracy and record loss
            prec1, prec5 = accuracy(output, targets, topk=(1, 5))
            losses.update(loss.item(), inputs.size(0))
            top1.update(prec1, inputs.size(0))
            top5.update(prec5, inputs.size(0))

            # compute gradients in a backward pass
            optimizer.zero_grad()
            loss.backward()

            # Call step of optimizer to update model params
            optimizer.step()

            # measure elapsed time
            batch_time.update(time.time() - end)
            end = time.time()

            if i % 15 == 0:
                print(
                    f"Epoch [{epoch + 1}] [{i}/{len(train_dataloader)}]\t"
                    f"Loss {loss.item():.4f}\t"
                    f"Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t"
                    f"Prec@5 {top5.val:.3f} ({top5.avg:.3f})",
                    end="\r")

        # save model file
        torch.save(CNN.state_dict(), MODEL_PATH)
Пример #26
0
    top5 = AverageMeter()

    net.train()
    for i, data in enumerate(trainloader, 0):
        # get the inputs; data is a list of [inputs, labels]
        inputs, labels = data[0].to(device), data[1].to(device)

        # zero the parameter gradients
        optimizer.zero_grad()

        # forward + backward + optimize
        outputs = net(inputs)
        loss = criterion(outputs, labels)

        # measure accuracy and record loss
        prec1, prec5 = accuracy(outputs, labels, topk=(1, 5))
        losses.update(loss.item(), inputs.size(0))
        top1.update(prec1, inputs.size(0))
        top5.update(prec5, inputs.size(0))

        loss.backward()
        optimizer.step()

        # print statistics
        if i % 5 == 0:
            print(f"Epoch [{epoch + 1}] [{i}/{len(trainloader)}]\t"
                  f"Loss {loss.item():.4f}\t"
                  f"Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t"
                  f"Prec@5 {top5.val:.3f} ({top5.avg:.3f})")

net.eval()
Пример #27
0
def train(
    model, device, train_loader, sm_loader, criterion, optimizer, epoch, args, writer
):
    num_class = 10

    sa = np.zeros((num_class, num_class - 1), dtype = np.int32)
    for i in range(sa.shape[0]):
        for j in range(sa.shape[1]):
            if j < i:
                sa[i][j] = j
            else:
                sa[i][j] = j + 1
    sa = torch.LongTensor(sa) 
    batch_size = args.batch_size*2

    schedule_start = 0
    num_steps_per_epoch = len(train_loader)
    eps_scheduler = EpsilonScheduler("linear",
                args.schedule_start,
                ((args.schedule_start + args.schedule_length) - 1) *\
                num_steps_per_epoch, args.starting_epsilon,
                args.epsilon,
                num_steps_per_epoch)

    end_eps = eps_scheduler.get_eps(epoch+1, 0)
    start_eps = eps_scheduler.get_eps(epoch, 0)


    print(
        " ->->->->->->->->->-> One epoch with CROWN-IBP ({:.6f}-{:.6f})"
        " <-<-<-<-<-<-<-<-<-<-".format(start_eps, end_eps)
    )

    batch_time = AverageMeter("Time", ":6.3f")
    data_time = AverageMeter("Data", ":6.3f")
    losses = AverageMeter("Loss", ":.4f")
    ibp_losses = AverageMeter("IBP_Loss", ":.4f")
    top1 = AverageMeter("Acc_1", ":6.2f")
    ibp_acc1 = AverageMeter("IBP1", ":6.2f")
    progress = ProgressMeter(
        len(train_loader),
        [batch_time, data_time, losses, ibp_losses, top1, ibp_acc1],
        prefix="Epoch: [{}]".format(epoch),
    )

    model = BoundSequential.convert(model,\
                    {'same-slope': False, 'zero-lb': False,\
                    'one-lb': False}).to(device)

    model.train()
    end = time.time()

    dataloader = train_loader if sm_loader is None else zip(train_loader, sm_loader)

    for i, data in enumerate(dataloader):
        if sm_loader:
            images, target = (
                torch.cat([d[0] for d in data], 0).to(device),
                torch.cat([d[1] for d in data], 0).to(device),
            )
        else:
            images, target = data[0].to(device), data[1].to(device)

        # basic properties of training data
        if i == 0:
            print(
                images.shape,
                target.shape,
                f"Batch_size from args: {args.batch_size}",
                "lr: {:.5f}".format(optimizer.param_groups[0]["lr"]),
            )
            print(f"Training images range: {[torch.min(images), torch.max(images)]}")

        output = model(images, method_opt="forward")
        ce = nn.CrossEntropyLoss()(output, target)

        eps = eps_scheduler.get_eps(epoch, i) 
        # generate specifications
        c = torch.eye(num_class).type_as(images)[target].unsqueeze(1) -\
                torch.eye(num_class).type_as(images).unsqueeze(0) 
        # remove specifications to self
        I = (~(target.unsqueeze(1) ==\
            torch.arange(num_class).to(device).type_as(target).unsqueeze(0)))
        c = (c[I].view(images.size(0),num_class-1,num_class)).to(device)
        # scatter matrix to avoid compute margin to self
        sa_labels = sa[target].to(device)
        # storing computed lower bounds after scatter
        lb_s = torch.zeros(images.size(0), num_class).to(device)
        ub_s = torch.zeros(images.size(0), num_class).to(device)

        data_ub = torch.min(images + eps, images.max()).to(device)
        data_lb = torch.max(images - eps, images.min()).to(device)

        ub, ilb, relu_activity, unstable, dead, alive =\
                model(norm=np.inf, x_U=data_ub, x_L=data_lb,\
                eps=eps, C=c, method_opt="interval_range")

        crown_final_beta = 0.
        beta = (args.epsilon - eps * (1.0 - crown_final_beta)) / args.epsilon

        if beta < 1e-5:
            # print("pure naive")
            lb = ilb
        else:
            # print("crown-ibp")
            # get the CROWN bound using interval bounds 
            _, _, clb, bias = model(norm=np.inf, x_U=data_ub,\
                        x_L=data_lb, eps=eps, C=c,\
                        method_opt="backward_range")
            # how much better is crown-ibp better than ibp?
            # diff = (clb - ilb).sum().item()
            lb = clb * beta + ilb * (1 - beta)

        lb = lb_s.scatter(1, sa_labels, lb)
        robust_ce = criterion(-lb, target)

        #print(ce, robust_ce)
        racc = accuracy(-lb, target, topk=(1,))

        loss = robust_ce

        # measure accuracy and record loss
        acc1, acc5 = accuracy(output, target, topk=(1, 5))
        top1.update(acc1[0].item(), images.size(0))
        losses.update(ce.item(), images.size(0))
        ibp_losses.update(robust_ce.item(), images.size(0))
        ibp_acc1.update(racc[0].item(), images.size(0))
        
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        if i % args.print_freq == 0:
            progress.display(i)
            progress.write_to_tensorboard(
                writer, "train", epoch * len(train_loader) + i
            )

        # write a sample of training images to tensorboard (helpful for debugging)
        if i == 0:
            writer.add_image(
                "training-images",
                torchvision.utils.make_grid(images[0 : len(images) // 4]),
            )