Пример #1
0
def process_images(label_file, one_hot=False, num_classes=10):
    if file.getFileName(label_file) == 'train.txt':
        images = numpy.empty((60000, 784))
        labels = numpy.empty(60000)
    if file.getFileName(label_file) == 'test.txt':
        images = numpy.empty((10000, 784))
        labels = numpy.empty(10000)
    lines = readLines(label_file)
    label_record = map(lines)
    file_name_length = len(file.getFileName(label_file))
    image_dir = label_file[:-1 * file_name_length]
    print len(label_record)
    index = 0
    for name in label_record:
        # print label_record[name]
        image = Image.open(image_dir + str(label_record[name]) + '/' + name)
        print "processing %d: " % index + image_dir + str(
            label_record[name]) + '/' + name

        img_ndarray = numpy.asarray(image, dtype='float32')
        images[index] = numpy.ndarray.flatten(img_ndarray)
        labels[index] = numpy.int(label_record[name])

        index = index + 1
    print index
    num_images = index
    rows = 28
    cols = 28
    # print train_images.reshape(num_images, rows, cols, 1)numpy.fromarrays(train_labels,)
    # print numpy.array(train_labels, dtype=numpy.uint8)
    if one_hot:
        return images.reshape(num_images, rows, cols, 1), dense_to_one_hot(
            numpy.array(labels, dtype=numpy.uint8), num_classes)
    return images.reshape(num_images, rows, cols,
                          1), numpy.array(labels, dtype=numpy.uint8)
Пример #2
0
def recordsCreater(label_file, dst_records):
    writer = tf.python_io.TFRecordWriter(dst_records)

    lines = readLines(label_file)
    label_record = map(lines)
    file_name_length = len(file.getFileName(label_file))
    images_dir = label_file[:-1 * file_name_length]
    index = 0
    for name in label_record:
        index = index + 1
        image_file = images_dir + str(label_record[name]) + '/' + name
        img = Image.open(image_file)
        img = img.resize((imageSZ['rows'], imageSZ['cols']))
        bytesImg = img.tobytes()
        example = tf.train.Example(features=tf.train.Features(
            feature={
                "label":
                tf.train.Feature(int64_list=tf.train.Int64List(
                    value=[int(label_record[name])])),
                'bytesImg':
                tf.train.Feature(bytes_list=tf.train.BytesList(
                    value=[bytesImg]))
            }))
        if index % 100 == 0:
            print("processing %d:" % index + images_dir + name)
        writer.write(example.SerializeToString())
    print("done!")
    writer.close()
Пример #3
0
import utils.fileUtil as file
label_file = "./MNIST_data/mnist_train/train.txt"
lenth = file.getFileName(label_file)
print len(lenth)
print label_file[:-1 * len(lenth)]