Пример #1
0
def clean_labels(labels, rad, OPEN=3):
    """default cleaning. Fill holes, remove small and large objects and opening.
    """
    labels = gray_fill_holes(labels)
    labels = clear_border(labels, buffer_size=2)
    labels = remove_small_objects(labels, rad[0]**2 * np.pi, connectivity=4)
    antimask = remove_small_objects(labels, rad[1]**2 * np.pi, connectivity=4)
    labels[antimask > 0] = False
    labels = label(binary_opening(labels, np.ones((int(OPEN), int(OPEN))), iterations=1))
    return labels
Пример #2
0
def agglomeration_seed(labels, img, MINSIZE=50, STEPS=100, FILSIZE=5, RATIO=0):
    """
    MINSIZE: minimum area for a seed object. It can be smaller than actual objects.
    STEPS: Larger it is, more resolution and computation
    FILSIZE: argument for adaptive thresholding. Larger if capturing too much backrgound.
    RATIO: argument for adaptive thresholding. Larger if capturing too much backrgound.
    """
    seed = binary_erosion(labels, np.ones((3, 3)))
    li = []
    img = img.astype(np.float32)

    mask = adaptive_thresh(img, RATIO, FILSIZE)
    mask = binary_opening(mask, np.ones((3, 3)))
    mask = remove_small_objects(mask, MINSIZE)

    foreground = img[mask]
    perclist = [
        np.percentile(foreground, r) for r in np.linspace(0, 100, STEPS)
    ]

    for _r in perclist:
        thresed = remove_small_objects(img > _r, MINSIZE, connectivity=2) > 0
        li.append(thresed.astype(np.uint16))
        if seed is not None:
            li.append((seed > 0).astype(np.uint16))
            for l in li:
                l[seed > 0] = 1
    q = np.sum(np.dstack(li), axis=2)
    p = label(q)

    for ind in reversed(np.unique(q).tolist()):
        c = seeding_separate(label(q >= ind), p)
        w = watershed(q >= ind,
                      markers=c,
                      mask=(q >= ind),
                      watershed_line=True)
        w[mask == 0] = 0
        w = remove_small_objects(w, MINSIZE)
        p = label(w, connectivity=2)
    return p
Пример #3
0
def cytoplasm_levelset(labels, img, niter=20, dt=-0.5, thres=0.5):
    """ Segment cytoplasm from supplied nuclear labels and probability map 
        Expand using level sets method from nuclei to membrane.
        Uses an implementation of Level set method. See: 
        https://wiseodd.github.io/techblog/2016/11/05/levelset-method/
    
    Args:
        labels (numpy.ndarray): nuclear mask labels
        img (numpy.ndarray): probability map 
        niter (int): step size to expand mask, number of iterations to run the levelset algorithm
        dt (float): negative values for porgation, positive values for shrinking 
        thres (float): threshold of probability value to extend the nuclear mask to
    
    Returns:
        cytolabels (numpy.ndarray): cytoplasm mask labels  

    """
    from skimage.morphology import closing, disk, remove_small_holes
    from utils.dlevel_set import dlevel_set
    phi = labels.copy()
    phi[labels == 0] = 1
    phi[labels > 0] = -1

    outlines = img.copy()
    outlines = -outlines
    outlines = outlines - outlines.min()
    outlines = outlines/outlines.max()

    mask = outlines < thres
    phi = dlevel_set(phi, outlines, niter=niter, dt=dt, mask=mask)

    cytolabels = label(remove_small_holes(label(phi < 0)))
    cytolabels = closing(cytolabels, disk(3))

    temp = cytolabels.copy()
    temp[labels == 0] = 0
    cytolabels = convert_labels(temp, labels, cytolabels)
    return cytolabels
Пример #4
0
def watershed_divide(labels, regmax=10, min_size=100):
    """
    divide objects in labels with watershed segmentation.
        regmax:
        min_size: objects smaller than this size will not be divided.
    """
    from utils.subdetect_utils import watershed_labels

    large_labels = remove_small_objects(labels, min_size, connectivity=4)
    labels[large_labels > 0] = 0
    ws_large = label(watershed_labels(large_labels, regmax))
    ws_large += labels.max()
    ws_large[ws_large == labels.max()] = 0
    return labels + ws_large
Пример #5
0
    def _wd(labels0, labels, img0, img1):
        labels1 = -labels.copy()
        rps0 = regionprops(labels0, img0)

        from subdetect_operation import watershed_divide  # DO NOT MOVE IT
        from utils.track_utils import _find_match
        untracked_labels = labels1.copy()
        untracked_labels[untracked_labels < 0] = 0
        wshed_labels = watershed_divide(untracked_labels,
                                        regmax=REGMAX,
                                        min_size=MIN_SIZE)
        wshed_labels = label(wshed_labels)

        store = regionprops(wshed_labels, img1)
        good_cells = _find_match(rps0, store, DISPLACEMENT, MASSTHRES)
        for gc in good_cells:  # needed to reuse _update_labels_neck_cut
            gccrds = gc.coords[0]
            gc.raw_label = labels1[gccrds[0], gccrds[1]]
        labels0, labels = _update_labels_neck_cut(labels0, labels1, good_cells)
        labels0, labels = nn_closer(img0, img1, labels0, -labels, DISPLACEMENT,
                                    MASSTHRES)
        return labels0, labels, good_cells
Пример #6
0
def laplacian_levelset(labels, img, NITER=100, CURVE=3, PROP=-1):
    return label(levelset_lap(img, labels, NITER, CURVE, PROP))