Пример #1
0
    def play_video():
        try:
            nonlocal frame_buffer, running, video_fps, is_webcam, num_frames, frames_displayed, vid_done

            video_frame_times = MovingAverage(100)
            frame_time_stabilizer = frame_time_target
            last_time = None
            stabilizer_step = 0.0005
            progress_bar = ProgressBar(30, num_frames)

            while running:
                frame_time_start = time.time()

                if not frame_buffer.empty():
                    next_time = time.time()
                    if last_time is not None:
                        video_frame_times.add(next_time - last_time)
                        video_fps = 1 / video_frame_times.get_avg()
                    if out_path is None:
                        cv2.imshow(path, frame_buffer.get())
                    else:
                        out.write(frame_buffer.get())
                    frames_displayed += 1
                    last_time = next_time

                    if out_path is not None:
                        if video_frame_times.get_avg() == 0:
                            fps = 0
                        else:
                            fps = 1 / video_frame_times.get_avg()
                        progress = frames_displayed / num_frames * 100
                        progress_bar.set_val(frames_displayed)

                        print('\rProcessing Frames  %s %6d / %6d (%5.2f%%)    %5.2f fps        '
                            % (repr(progress_bar), frames_displayed, num_frames, progress, fps), end='')

                
                # This is split because you don't want savevideo to require cv2 display functionality (see #197)
                if out_path is None and cv2.waitKey(1) == 27:
                    # Press Escape to close
                    running = False
                if not (frames_displayed < num_frames):
                    running = False

                if not vid_done:
                    buffer_size = frame_buffer.qsize()
                    if buffer_size < args.video_multiframe:
                        frame_time_stabilizer += stabilizer_step
                    elif buffer_size > args.video_multiframe:
                        frame_time_stabilizer -= stabilizer_step
                        if frame_time_stabilizer < 0:
                            frame_time_stabilizer = 0

                    new_target = frame_time_stabilizer if is_webcam else max(frame_time_stabilizer, frame_time_target)
                else:
                    new_target = frame_time_target

                next_frame_target = max(2 * new_target - video_frame_times.get_avg(), 0)
                target_time = frame_time_start + next_frame_target - 0.001 # Let's just subtract a millisecond to be safe
                
                if out_path is None or args.emulate_playback:
                    # This gives more accurate timing than if sleeping the whole amount at once
                    while time.time() < target_time:
                        time.sleep(0.001)
                else:
                    # Let's not starve the main thread, now
                    time.sleep(0.001)
        except:
            # See issue #197 for why this is necessary
            import traceback
            traceback.print_exc()
Пример #2
0
def evalvideo(net: Yolact, path: str):
    # If the path is a digit, parse it as a webcam index
    if path.isdigit():
        vid = cv2.VideoCapture(int(path))
    else:
        vid = cv2.VideoCapture(path)

    if not vid.isOpened():
        print('Could not open video "%s"' % path)
        exit(-1)

    net = CustomDataParallel(net).cuda()
    transform = torch.nn.DataParallel(FastBaseTransform()).cuda()
    frame_times = MovingAverage()
    fps = 0
    # The 0.8 is to account for the overhead of time.sleep
    frame_time_target = 0.8 / vid.get(cv2.CAP_PROP_FPS)

    def cleanup_and_exit():
        print()
        pool.terminate()
        vid.release()
        cv2.destroyAllWindows()
        exit()

    def get_next_frame(vid):
        return [vid.read()[1] for _ in range(args.video_multiframe)]

    def transform_frame(frames):
        with torch.no_grad():
            frames = [
                torch.from_numpy(frame).cuda().float() for frame in frames
            ]
            return frames, transform(torch.stack(frames, 0))

    def eval_network(inp):
        with torch.no_grad():
            frames, imgs = inp
            return frames, net(imgs)

    def prep_frame(inp):
        with torch.no_grad():
            frame, preds = inp
            return prep_display(preds,
                                frame,
                                None,
                                None,
                                undo_transform=False,
                                class_color=True)

    extract_frame = lambda x, i: (x[0][i] if x[1][i] is None else x[0][i].to(x[
        1][i]['box'].device), [x[1][i]])

    # Prime the network on the first frame because I do some thread unsafe things otherwise
    print('Initializing model... ', end='')
    eval_network(transform_frame(get_next_frame(vid)))
    print('Done.')

    # For each frame the sequence of functions it needs to go through to be processed (in reversed order)
    sequence = [prep_frame, eval_network, transform_frame]
    pool = ThreadPool(processes=len(sequence) + args.video_multiframe)

    active_frames = []

    print()
    while vid.isOpened():
        start_time = time.time()

        # Start loading the next frames from the disk
        next_frames = pool.apply_async(get_next_frame, args=(vid, ))

        # For each frame in our active processing queue, dispatch a job
        # for that frame using the current function in the sequence
        for frame in active_frames:
            frame['value'] = pool.apply_async(sequence[frame['idx']],
                                              args=(frame['value'], ))

        # For each frame whose job was the last in the sequence (i.e. for all final outputs)
        for frame in active_frames:
            if frame['idx'] == 0:
                # Wait here so that the frame has time to process and so that the video plays at the proper speed
                time.sleep(frame_time_target)

                cv2.imshow(path, frame['value'].get())
                if cv2.waitKey(1) == 27:  # Press Escape to close
                    cleanup_and_exit()

        # Remove the finished frames from the processing queue
        active_frames = [x for x in active_frames if x['idx'] > 0]

        # Finish evaluating every frame in the processing queue and advanced their position in the sequence
        for frame in list(reversed(active_frames)):
            frame['value'] = frame['value'].get()
            frame['idx'] -= 1

            if frame['idx'] == 0:
                # Split this up into individual threads for prep_frame since it doesn't support batch size
                active_frames += [{
                    'value': extract_frame(frame['value'], i),
                    'idx': 0
                } for i in range(1, args.video_multiframe)]
                frame['value'] = extract_frame(frame['value'], 0)

        # Finish loading in the next frames and add them to the processing queue
        active_frames.append({
            'value': next_frames.get(),
            'idx': len(sequence) - 1
        })

        # Compute FPS
        frame_times.add(time.time() - start_time)
        fps = args.video_multiframe / frame_times.get_avg()

        print('\rAvg FPS: %.2f     ' % fps, end='')

    cleanup_and_exit()
Пример #3
0
def evalvideo(net:Yolact, path:str, out_path:str=None):
    # If the path is a digit, parse it as a webcam index
    is_webcam = path.isdigit()
    
    # If the input image size is constant, this make things faster (hence why we can use it in a video setting).
    cudnn.benchmark = True
    
    if is_webcam:
        vid = cv2.VideoCapture(int(path))
    else:
        vid = cv2.VideoCapture(path)
    
    if not vid.isOpened():
        print('Could not open video "%s"' % path)
        exit(-1)

    target_fps   = round(vid.get(cv2.CAP_PROP_FPS))
    frame_width  = round(vid.get(cv2.CAP_PROP_FRAME_WIDTH))
    frame_height = round(vid.get(cv2.CAP_PROP_FRAME_HEIGHT))
    
    if is_webcam:
        num_frames = float('inf')
    else:
        num_frames = round(vid.get(cv2.CAP_PROP_FRAME_COUNT))

    net = CustomDataParallel(net).cuda()
    transform = torch.nn.DataParallel(FastBaseTransform()).cuda()
    frame_times = MovingAverage(100)
    fps = 0
    frame_time_target = 1 / target_fps
    running = True
    fps_str = ''
    vid_done = False
    frames_displayed = 0

    if out_path is not None:
        out = cv2.VideoWriter(out_path, cv2.VideoWriter_fourcc(*"mp4v"), target_fps, (frame_width, frame_height))

    def cleanup_and_exit():
        print()
        pool.terminate()
        vid.release()
        if out_path is not None:
            out.release()
        cv2.destroyAllWindows()
        exit()

    def get_next_frame(vid):
        frames = []
        for idx in range(args.video_multiframe):
            frame = vid.read()[1]
            if frame is None:
                return frames
            frames.append(frame)
        return frames

    def transform_frame(frames):
        with torch.no_grad():
            frames = [torch.from_numpy(frame).cuda().float() for frame in frames]
            return frames, transform(torch.stack(frames, 0))

    def eval_network(inp):
        with torch.no_grad():
            frames, imgs = inp
            num_extra = 0
            while imgs.size(0) < args.video_multiframe:
                imgs = torch.cat([imgs, imgs[0].unsqueeze(0)], dim=0)
                num_extra += 1
            out = net(imgs)
            if num_extra > 0:
                out = out[:-num_extra]
            return frames, out

    def prep_frame(inp, fps_str):
        with torch.no_grad():
            frame, preds = inp
            return prep_display(preds, frame, None, None, undo_transform=False, class_color=True, fps_str=fps_str)

    frame_buffer = Queue()
    video_fps = 0

    # All this timing code to make sure that 
    def play_video():
        try:
            nonlocal frame_buffer, running, video_fps, is_webcam, num_frames, frames_displayed, vid_done

            video_frame_times = MovingAverage(100)
            frame_time_stabilizer = frame_time_target
            last_time = None
            stabilizer_step = 0.0005
            progress_bar = ProgressBar(30, num_frames)

            while running:
                frame_time_start = time.time()

                if not frame_buffer.empty():
                    next_time = time.time()
                    if last_time is not None:
                        video_frame_times.add(next_time - last_time)
                        video_fps = 1 / video_frame_times.get_avg()
                    if out_path is None:
                        cv2.imshow(path, frame_buffer.get())
                    else:
                        out.write(frame_buffer.get())
                    frames_displayed += 1
                    last_time = next_time

                    if out_path is not None:
                        if video_frame_times.get_avg() == 0:
                            fps = 0
                        else:
                            fps = 1 / video_frame_times.get_avg()
                        progress = frames_displayed / num_frames * 100
                        progress_bar.set_val(frames_displayed)

                        print('\rProcessing Frames  %s %6d / %6d (%5.2f%%)    %5.2f fps        '
                            % (repr(progress_bar), frames_displayed, num_frames, progress, fps), end='')

                
                # This is split because you don't want savevideo to require cv2 display functionality (see #197)
                if out_path is None and cv2.waitKey(1) == 27:
                    # Press Escape to close
                    running = False
                if not (frames_displayed < num_frames):
                    running = False

                if not vid_done:
                    buffer_size = frame_buffer.qsize()
                    if buffer_size < args.video_multiframe:
                        frame_time_stabilizer += stabilizer_step
                    elif buffer_size > args.video_multiframe:
                        frame_time_stabilizer -= stabilizer_step
                        if frame_time_stabilizer < 0:
                            frame_time_stabilizer = 0

                    new_target = frame_time_stabilizer if is_webcam else max(frame_time_stabilizer, frame_time_target)
                else:
                    new_target = frame_time_target

                next_frame_target = max(2 * new_target - video_frame_times.get_avg(), 0)
                target_time = frame_time_start + next_frame_target - 0.001 # Let's just subtract a millisecond to be safe
                
                if out_path is None or args.emulate_playback:
                    # This gives more accurate timing than if sleeping the whole amount at once
                    while time.time() < target_time:
                        time.sleep(0.001)
                else:
                    # Let's not starve the main thread, now
                    time.sleep(0.001)
        except:
            # See issue #197 for why this is necessary
            import traceback
            traceback.print_exc()


    extract_frame = lambda x, i: (x[0][i] if x[1][i]['detection'] is None else x[0][i].to(x[1][i]['detection']['box'].device), [x[1][i]])

    # Prime the network on the first frame because I do some thread unsafe things otherwise
    print('Initializing model... ', end='')
    first_batch = eval_network(transform_frame(get_next_frame(vid)))
    print('Done.')

    # For each frame the sequence of functions it needs to go through to be processed (in reversed order)
    sequence = [prep_frame, eval_network, transform_frame]
    pool = ThreadPool(processes=len(sequence) + args.video_multiframe + 2)
    pool.apply_async(play_video)
    active_frames = [{'value': extract_frame(first_batch, i), 'idx': 0} for i in range(len(first_batch[0]))]

    print()
    if out_path is None: print('Press Escape to close.')
    try:
        while vid.isOpened() and running:
            # Hard limit on frames in buffer so we don't run out of memory >.>
            while frame_buffer.qsize() > 100:
                time.sleep(0.001)

            start_time = time.time()

            # Start loading the next frames from the disk
            if not vid_done:
                next_frames = pool.apply_async(get_next_frame, args=(vid,))
            else:
                next_frames = None
            
            if not (vid_done and len(active_frames) == 0):
                # For each frame in our active processing queue, dispatch a job
                # for that frame using the current function in the sequence
                for frame in active_frames:
                    _args =  [frame['value']]
                    if frame['idx'] == 0:
                        _args.append(fps_str)
                    frame['value'] = pool.apply_async(sequence[frame['idx']], args=_args)
                
                # For each frame whose job was the last in the sequence (i.e. for all final outputs)
                for frame in active_frames:
                    if frame['idx'] == 0:
                        frame_buffer.put(frame['value'].get())

                # Remove the finished frames from the processing queue
                active_frames = [x for x in active_frames if x['idx'] > 0]

                # Finish evaluating every frame in the processing queue and advanced their position in the sequence
                for frame in list(reversed(active_frames)):
                    frame['value'] = frame['value'].get()
                    frame['idx'] -= 1

                    if frame['idx'] == 0:
                        # Split this up into individual threads for prep_frame since it doesn't support batch size
                        active_frames += [{'value': extract_frame(frame['value'], i), 'idx': 0} for i in range(1, len(frame['value'][0]))]
                        frame['value'] = extract_frame(frame['value'], 0)
                
                # Finish loading in the next frames and add them to the processing queue
                if next_frames is not None:
                    frames = next_frames.get()
                    if len(frames) == 0:
                        vid_done = True
                    else:
                        active_frames.append({'value': frames, 'idx': len(sequence)-1})

                # Compute FPS
                frame_times.add(time.time() - start_time)
                fps = args.video_multiframe / frame_times.get_avg()
            else:
                fps = 0
            
            fps_str = 'Processing FPS: %.2f | Video Playback FPS: %.2f | Frames in Buffer: %d' % (fps, video_fps, frame_buffer.qsize())
            if not args.display_fps:
                print('\r' + fps_str + '    ', end='')

    except KeyboardInterrupt:
        print('\nStopping...')
    
    cleanup_and_exit()
Пример #4
0
def evalvideo(net: Yolact, path: str):
    # If the path is a digit, parse it as a webcam index
    is_webcam = path.isdigit()

    if is_webcam:
        vid = cv2.VideoCapture(int(path))
    else:
        vid = cv2.VideoCapture(path)

    if not vid.isOpened():
        print('Could not open video "%s"' % path)
        exit(-1)

    net = CustomDataParallel(net).cuda()
    transform = torch.nn.DataParallel(FastBaseTransform()).cuda()
    frame_times = MovingAverage(100)
    fps = 0
    # The 0.8 is to account for the overhead of time.sleep
    frame_time_target = 1 / vid.get(cv2.CAP_PROP_FPS)
    running = True

    def cleanup_and_exit():
        print()
        pool.terminate()
        vid.release()
        cv2.destroyAllWindows()
        exit()

    def get_next_frame(vid):
        return [vid.read()[1] for _ in range(args.video_multiframe)]

    def transform_frame(frames):
        with torch.no_grad():
            frames = [
                torch.from_numpy(frame).cuda().float() for frame in frames
            ]
            return frames, transform(torch.stack(frames, 0))

    def eval_network(inp):
        with torch.no_grad():
            frames, imgs = inp
            return frames, net(imgs)

    def prep_frame(inp):
        with torch.no_grad():
            frame, preds = inp
            return prep_display(preds,
                                frame,
                                None,
                                None,
                                undo_transform=False,
                                class_color=True)

    frame_buffer = Queue()
    video_fps = 0

    # All this timing code to make sure that
    def play_video():
        nonlocal frame_buffer, running, video_fps, is_webcam

        video_frame_times = MovingAverage(100)
        frame_time_stabilizer = frame_time_target
        last_time = None
        stabilizer_step = 0.0005

        while running:
            frame_time_start = time.time()

            if not frame_buffer.empty():
                next_time = time.time()
                if last_time is not None:
                    video_frame_times.add(next_time - last_time)
                    video_fps = 1 / video_frame_times.get_avg()
                cv2.imshow(path, frame_buffer.get())
                last_time = next_time

            if cv2.waitKey(1) == 27:  # Press Escape to close
                running = False

            buffer_size = frame_buffer.qsize()
            if buffer_size < args.video_multiframe:
                frame_time_stabilizer += stabilizer_step
            elif buffer_size > args.video_multiframe:
                frame_time_stabilizer -= stabilizer_step
                if frame_time_stabilizer < 0:
                    frame_time_stabilizer = 0

            new_target = frame_time_stabilizer if is_webcam else max(
                frame_time_stabilizer, frame_time_target)

            next_frame_target = max(
                2 * new_target - video_frame_times.get_avg(), 0)
            target_time = frame_time_start + next_frame_target - 0.001  # Let's just subtract a millisecond to be safe
            # This gives more accurate timing than if sleeping the whole amount at once
            while time.time() < target_time:
                time.sleep(0.001)

    extract_frame = lambda x, i: (x[0][i] if x[1][i] is None else x[0][i].to(x[
        1][i]['box'].device), [x[1][i]])

    # Prime the network on the first frame because I do some thread unsafe things otherwise
    print('Initializing model... ', end='')
    eval_network(transform_frame(get_next_frame(vid)))
    print('Done.')

    # For each frame the sequence of functions it needs to go through to be processed (in reversed order)
    sequence = [prep_frame, eval_network, transform_frame]
    pool = ThreadPool(processes=len(sequence) + args.video_multiframe + 2)
    pool.apply_async(play_video)

    active_frames = []

    print()
    while vid.isOpened() and running:
        start_time = time.time()

        # Start loading the next frames from the disk
        next_frames = pool.apply_async(get_next_frame, args=(vid, ))

        # For each frame in our active processing queue, dispatch a job
        # for that frame using the current function in the sequence
        for frame in active_frames:
            frame['value'] = pool.apply_async(sequence[frame['idx']],
                                              args=(frame['value'], ))

        # For each frame whose job was the last in the sequence (i.e. for all final outputs)
        for frame in active_frames:
            if frame['idx'] == 0:
                frame_buffer.put(frame['value'].get())

        # Remove the finished frames from the processing queue
        active_frames = [x for x in active_frames if x['idx'] > 0]

        # Finish evaluating every frame in the processing queue and advanced their position in the sequence
        for frame in list(reversed(active_frames)):
            frame['value'] = frame['value'].get()
            frame['idx'] -= 1

            if frame['idx'] == 0:
                # Split this up into individual threads for prep_frame since it doesn't support batch size
                active_frames += [{
                    'value': extract_frame(frame['value'], i),
                    'idx': 0
                } for i in range(1, args.video_multiframe)]
                frame['value'] = extract_frame(frame['value'], 0)

        # Finish loading in the next frames and add them to the processing queue
        active_frames.append({
            'value': next_frames.get(),
            'idx': len(sequence) - 1
        })

        # Compute FPS
        frame_times.add(time.time() - start_time)
        fps = args.video_multiframe / frame_times.get_avg()

        print(
            '\rProcessing FPS: %.2f | Video Playback FPS: %.2f | Frames in Buffer: %d    '
            % (fps, video_fps, frame_buffer.qsize()),
            end='')

    cleanup_and_exit()
Пример #5
0
    # GPU
    net = net.cuda()
    torch.set_default_tensor_type('torch.cuda.FloatTensor')

    x = torch.zeros((1, 3, cfg.max_size, cfg.max_size))
    y = net(x)

    for p in net.prediction_layers:
        print(p.last_conv_size)

    print()
    for k, a in y.items():
        print(k + ': ', a.size(), torch.sum(a))
    exit()

    net(x)
    # timer.disable('pass2')
    avg = MovingAverage()
    try:
        while True:
            timer.reset()
            with timer.env('everything else'):
                net(x)
            avg.add(timer.total_time())
            print('\033[2J')  # Moves console cursor to 0,0
            timer.print_stats()
            print('Avg fps: %.2f\tAvg ms: %.2f         ' %
                  (1 / avg.get_avg(), avg.get_avg() * 1000))
    except KeyboardInterrupt:
        pass
Пример #6
0
def evalvideo(net:Yolact, path:str):
    # If the path is a digit, parse it as a webcam index
    is_webcam = path.isdigit()
    
    if is_webcam:
        vid = cv2.VideoCapture(int(path))
    else:
        vid = cv2.VideoCapture(path)
    
    if not vid.isOpened():
        print('Could not open video "%s"' % path)
        exit(-1)
    
    vid.set(cv2.CAP_PROP_FRAME_HEIGHT, args.video_res[1])
    vid.set(cv2.CAP_PROP_FRAME_WIDTH, args.video_res[0])
    vid.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc('H', '2', '6', '4'))
    W = vid.get(cv2.CAP_PROP_FRAME_WIDTH)
    H = vid.get(cv2.CAP_PROP_FRAME_HEIGHT)
    print('capture video size: w{} h{}'.format(W, H))

    net = CustomDataParallel(net).cuda()
    transform = torch.nn.DataParallel(FastBaseTransform()).cuda()
    frame_times = MovingAverage(100)
    fps = 0
    # The 0.8 is to account for the overhead of time.sleep
    frame_time_target = 1 / vid.get(cv2.CAP_PROP_FPS)
    running = True
    slide_num =0
    bg_imgs = []
    mask_alpha = args.mask_alpha
    bgvid = None

    if args.mask_bg_path is not None:
        if Path(args.mask_bg_path).suffix == '.pdf':
            pdfimages = pdf2image.convert_from_path(args.mask_bg_path)
            for pdfimage in pdfimages:
                cvimage = np.asarray(pdfimage)
                cvimage = cv2.cvtColor(cvimage, cv2.COLOR_RGB2BGR)
                bg_img = cv2.resize(cvimage, (int(W), int(H)))
                bg_img_gpu = torch.from_numpy(
                    bg_img / 255.0
                    ).cuda().float()
                bg_imgs.append(bg_img_gpu)
        elif Path(args.mask_bg_path).suffix == '.mp4':
            bg_imgs = []
            bgvid = cv2.VideoCapture(args.mask_bg_path)
            BG_W = bgvid.get(cv2.CAP_PROP_FRAME_WIDTH)
            BG_H = bgvid.get(cv2.CAP_PROP_FRAME_HEIGHT)
            print('background capture video size: w{} h{}'.format(BG_W, BG_H))
        else:
            bg_img = cv2.resize(cv2.imread(args.mask_bg_path), (int(W), int(H)))
            bg_img_gpu = torch.from_numpy(
                bg_img / 255.0
                ).cuda().float()
            bg_imgs.append(bg_img_gpu)
            

    def cleanup_and_exit():
        print()
        pool.terminate()
        vid.release()
        cv2.destroyAllWindows()
        exit()

    def get_next_frame(vid):
        return [vid.read()[1] for _ in range(args.video_multiframe)]

    def rescale(frame):
        if args.rescale < 1.0:
            h, w = frame.shape[:2]
            new_img = np.zeros((h, w, 3), np.uint8)
            rescale_frame = cv2.resize(frame, dsize=(int(w * args.rescale), int(h * args.rescale)))
            new_img[h - int(h * args.rescale):h, 0:int(w * args.rescale)] = rescale_frame
            return new_img
        else:
            return frame

    def transform_frame(frames):
        with torch.no_grad():
            frames = [
                torch.from_numpy( rescale(frame) ).cuda().float()
                for frame in frames]
            return frames, transform(torch.stack(frames, 0))

    def eval_network(inp):
        with torch.no_grad():
            frames, imgs = inp
            return frames, net(imgs)

    def prep_frame(inp):
        nonlocal slide_num, bg_imgs, mask_alpha, bgvid
        with torch.no_grad():
            frame, preds = inp
            return prep_display(preds, frame, None, None, undo_transform=False, class_color=True, 
                                mask_alpha=mask_alpha, bg_imgs=bg_imgs, slide_num=slide_num, bgvid=bgvid)

    frame_buffer = Queue()
    video_fps = 0

    # All this timing code to make sure that 
    def play_video():
        nonlocal frame_buffer, running, video_fps, is_webcam, slide_num

        video_frame_times = MovingAverage(100)
        frame_time_stabilizer = frame_time_target
        last_time = None
        stabilizer_step = 0.0005

        while running:
            frame_time_start = time.time()

            if not frame_buffer.empty():
                next_time = time.time()
                if last_time is not None:
                    video_frame_times.add(next_time - last_time)
                    video_fps = 1 / video_frame_times.get_avg()
                cv2.imshow(path, frame_buffer.get())
                last_time = next_time

            key_press = cv2.waitKey(1) & 0xff
            if key_press == 27: # Press Escape to close
                running = False
            elif key_press == ord('n'):
                if slide_num < len(bg_imgs) - 1:
                    slide_num = slide_num + 1
            elif key_press == ord('b'):
                if 0 < slide_num:
                    slide_num = slide_num - 1

            buffer_size = frame_buffer.qsize()
            if buffer_size < args.video_multiframe:
                frame_time_stabilizer += stabilizer_step
            elif buffer_size > args.video_multiframe:
                frame_time_stabilizer -= stabilizer_step
                if frame_time_stabilizer < 0:
                    frame_time_stabilizer = 0

            new_target = frame_time_stabilizer if is_webcam else max(frame_time_stabilizer, frame_time_target)

            next_frame_target = max(2 * new_target - video_frame_times.get_avg(), 0)
            target_time = frame_time_start + next_frame_target - 0.001 # Let's just subtract a millisecond to be safe
            # This gives more accurate timing than if sleeping the whole amount at once
            while time.time() < target_time:
                time.sleep(0.001)


    extract_frame = lambda x, i: (x[0][i] if x[1][i] is None else x[0][i].to(x[1][i]['box'].device), [x[1][i]])

    # Prime the network on the first frame because I do some thread unsafe things otherwise
    print('Initializing model... ', end='')
    eval_network(transform_frame(get_next_frame(vid)))
    print('Done.')

    # For each frame the sequence of functions it needs to go through to be processed (in reversed order)
    sequence = [prep_frame, eval_network, transform_frame]
    pool = ThreadPool(processes=len(sequence) + args.video_multiframe + 2)
    pool.apply_async(play_video)

    active_frames = []

    print()
    while vid.isOpened() and running:
        start_time = time.time()

        # Start loading the next frames from the disk
        next_frames = pool.apply_async(get_next_frame, args=(vid,))
        
        # For each frame in our active processing queue, dispatch a job
        # for that frame using the current function in the sequence
        for frame in active_frames:
            frame['value'] = pool.apply_async(sequence[frame['idx']], args=(frame['value'],))
        
        # For each frame whose job was the last in the sequence (i.e. for all final outputs)
        for frame in active_frames:
            if frame['idx'] == 0:
                frame_buffer.put(frame['value'].get())

        # Remove the finished frames from the processing queue
        active_frames = [x for x in active_frames if x['idx'] > 0]

        # Finish evaluating every frame in the processing queue and advanced their position in the sequence
        for frame in list(reversed(active_frames)):
            frame['value'] = frame['value'].get()
            frame['idx'] -= 1

            if frame['idx'] == 0:
                # Split this up into individual threads for prep_frame since it doesn't support batch size
                active_frames += [{'value': extract_frame(frame['value'], i), 'idx': 0} for i in range(1, args.video_multiframe)]
                frame['value'] = extract_frame(frame['value'], 0)

        
        # Finish loading in the next frames and add them to the processing queue
        active_frames.append({'value': next_frames.get(), 'idx': len(sequence)-1})
        
        # Compute FPS
        frame_times.add(time.time() - start_time)
        fps = args.video_multiframe / frame_times.get_avg()

        print('\rProcessing FPS: %.2f | Video Playback FPS: %.2f | Frames in Buffer: %d    ' % (fps, video_fps, frame_buffer.qsize()), end='')
    
    cleanup_and_exit()
Пример #7
0
def train():
    if not os.path.exists(args.save_folder):
        os.mkdir(args.save_folder)

    dataset = COCODetection(image_path=cfg.dataset.train_images,
                            info_file=cfg.dataset.train_info,
                            transform=SSDAugmentation(MEANS))

    if args.validation_epoch > 0:
        setup_eval()
        val_dataset = COCODetection(image_path=cfg.dataset.valid_images,
                                    info_file=cfg.dataset.valid_info,
                                    transform=BaseTransform(MEANS))

    # Parallel wraps the underlying module, but when saving and loading we don't want that
    yolact_net = Yolact()
    net = yolact_net
    net.train()

    # I don't use the timer during training (I use a different timing method).
    # Apparently there's a race condition with multiple GPUs.
    timer.disable_all()

    # Both of these can set args.resume to None, so do them before the check    
    if args.resume == 'interrupt':
        args.resume = SavePath.get_interrupt(args.save_folder)
    elif args.resume == 'latest':
        args.resume = SavePath.get_latest(args.save_folder, cfg.name)

    if args.resume is not None:
        print('Resuming training, loading {}...'.format(args.resume))
        yolact_net.load_weights(args.resume)

        if args.start_iter == -1:
            args.start_iter = SavePath.from_str(args.resume).iteration
    else:
        print('Initializing weights...')
        yolact_net.init_weights(backbone_path=args.save_folder + cfg.backbone.path)

    optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=args.momentum,
                          weight_decay=args.decay)
    criterion = MultiBoxLoss(num_classes=cfg.num_classes,
                             pos_threshold=cfg.positive_iou_threshold,
                             neg_threshold=cfg.negative_iou_threshold,
                             negpos_ratio=3)

    if args.cuda:
        cudnn.benchmark = True
        net = nn.DataParallel(net).cuda()
        criterion = nn.DataParallel(criterion).cuda()
        # net = net.cuda()
        # criterion = criterion.cuda()
        # criterion = criterion.cuda()

    # loss counters
    loc_loss = 0
    conf_loss = 0
    iteration = max(args.start_iter, 0)
    last_time = time.time()

    epoch_size = len(dataset) // args.batch_size
    num_epochs = math.ceil(cfg.max_iter / epoch_size)

    # Which learning rate adjustment step are we on? lr' = lr * gamma ^ step_index
    step_index = 0

    data_loader = data.DataLoader(dataset, args.batch_size,
                                  num_workers=args.num_workers,
                                  shuffle=True, collate_fn=detection_collate,
                                  pin_memory=True)

    save_path = lambda epoch, iteration: SavePath(cfg.name, epoch, iteration).get_path(root=args.save_folder)
    time_avg = MovingAverage()

    global loss_types  # Forms the print order
    loss_avgs = {k: MovingAverage(100) for k in loss_types}

    print('Begin training!')
    print()
    # try-except so you can use ctrl+c to save early and stop training
    try:
        for epoch in range(num_epochs):
            # Resume from start_iter
            if (epoch + 1) * epoch_size < iteration:
                continue

            for datum in data_loader:
                # Stop if we've reached an epoch if we're resuming from start_iter
                if iteration == (epoch + 1) * epoch_size:
                    break

                # Stop at the configured number of iterations even if mid-epoch
                if iteration == cfg.max_iter:
                    break

                # Change a config setting if we've reached the specified iteration
                changed = False
                for change in cfg.delayed_settings:
                    if iteration >= change[0]:
                        changed = True
                        cfg.replace(change[1])

                        # Reset the loss averages because things might have changed
                        for avg in loss_avgs:
                            avg.reset()

                # If a config setting was changed, remove it from the list so we don't keep checking
                if changed:
                    cfg.delayed_settings = [x for x in cfg.delayed_settings if x[0] > iteration]

                # Warm up by linearly interpolating the learning rate from some smaller value
                if cfg.lr_warmup_until > 0 and iteration <= cfg.lr_warmup_until:
                    set_lr(optimizer,
                           (args.lr - cfg.lr_warmup_init) * (iteration / cfg.lr_warmup_until) + cfg.lr_warmup_init)

                # Adjust the learning rate at the given iterations, but also if we resume from past that iteration
                while step_index < len(cfg.lr_steps) and iteration >= cfg.lr_steps[step_index]:
                    step_index += 1
                    set_lr(optimizer, args.lr * (args.gamma ** step_index))

                # Load training data
                # Note, for training on multiple gpus this will use the custom replicate and gather I wrote up there
                images, targets, masks, num_crowds = prepare_data(datum)

                # Forward Pass
                out = net(images)

                # Compute Loss
                optimizer.zero_grad()

                wrapper = ScatterWrapper(targets, masks, num_crowds)
                losses = criterion(out, wrapper, wrapper.make_mask())

                losses = {k: v.mean() for k, v in losses.items()}  # Mean here because Dataparallel

               #  original
                loss = sum([losses[k] for k in losses])
                # loss = sum([losses[k] for k in losses]) + losses['S'] * 10  # Huan

                # Backprop
                loss.backward()  # Do this to free up vram even if loss is not finite
                if torch.isfinite(loss).item():
                    optimizer.step()

                # Add the loss to the moving average for bookkeeping
                for k in losses:
                    loss_avgs[k].add(losses[k].item())

                cur_time = time.time()
                elapsed = cur_time - last_time
                last_time = cur_time

                # Exclude graph setup from the timing information
                if iteration != args.start_iter:
                    time_avg.add(elapsed)

                if iteration % 100 == 0:
                    eta_str = \
                    str(datetime.timedelta(seconds=(cfg.max_iter - iteration) * time_avg.get_avg())).split('.')[0]

                    total = sum([loss_avgs[k].get_avg() for k in losses])
                    loss_labels = sum([[k, loss_avgs[k].get_avg()] for k in loss_types if k in losses], [])

                    print(('[%3d] %7d ||' + (' %s: %.3f |' * len(losses)) + ' T: %.3f || ETA: %s || timer: %.3f')
                          % tuple([epoch, iteration] + loss_labels + [total, eta_str, elapsed]), flush=True)

                iteration += 1

                if iteration % args.save_interval == 0 and iteration != args.start_iter:
                    if args.keep_latest:
                        latest = SavePath.get_latest(args.save_folder, cfg.name)

                    print('Saving state, iter:', iteration)
                    yolact_net.save_weights(save_path(epoch, iteration))

                    if args.keep_latest and latest is not None:
                        if args.keep_latest_interval <= 0 or iteration % args.keep_latest_interval != args.save_interval:
                            print('Deleting old save...')
                            os.remove(latest)

            # This is done per epoch
            if args.validation_epoch > 0:
                if epoch % args.validation_epoch == 0 and epoch > 0:
                    compute_validation_map(yolact_net, val_dataset)
    except KeyboardInterrupt:
        print('Stopping early. Saving network...')

        # Delete previous copy of the interrupted network so we don't spam the weights folder
        SavePath.remove_interrupt(args.save_folder)



        yolact_net.save_weights(save_path(epoch, repr(iteration) + '_interrupt'))
        exit()

    yolact_net.save_weights(save_path(epoch, iteration))
Пример #8
0
            if torch.isfinite(loss).item():
                optimizer.step()

            for k in losses:
                loss_avgs[k].add(losses[k].item(
                ))  # Add the loss to the moving average for bookkeeping

            grad_end = time.time()
            if not (i == 0 and epoch == start_epoch):
                iter_time = grad_end - temp
                batch_time.add(iter_time)
            temp = grad_end

            if iter % 10 == 0:
                cur_lr = optimizer.param_groups[0]['lr']
                seconds = (cfg.max_iter - iter) * batch_time.get_avg()
                eta_str = str(
                    datetime.timedelta(seconds=seconds)).split('.')[0]
                total = sum([loss_avgs[k].get_avg() for k in losses])
                loss_labels = sum([[k, loss_avgs[k].get_avg()]
                                   for k in loss_types if k in losses], [])

                t_forward = forward_end - forward_start
                t_data = iter_time - (grad_end - forward_start)
                time_str = ' T: %.3f | lr: %.5f | t_data: %.3f | t_forward: %.3f | t_total: %.3f | ETA: %s'
                print(
                    ('[%3d] %7d |' +
                     (' %s: %.3f |' * len(losses)) + time_str) %
                    tuple(
                        [epoch, iter] + loss_labels +
                        [total, cur_lr, t_data, t_forward, iter_time, eta_str]
Пример #9
0
            if cuda:
                frame_origin = frame_origin.cuda()
            img_h, img_w = frame_origin.shape[0], frame_origin.shape[1]
            frame_trans = FastBaseTransform()(frame_origin.unsqueeze(0))
            net_outs = net(frame_trans)
            nms_outs = NMS(net_outs, args.traditional_nms)
            results = after_nms(nms_outs, img_h, img_w, crop_masks=not args.no_crop, visual_thre=args.visual_thre)

            if cuda:
                torch.cuda.synchronize()
            temp = time_here
            time_here = time.time()

            if i > 0:
                frame_times.add(time_here - temp)
                fps = 1 / frame_times.get_avg()

            frame_numpy = draw_img(results, frame_origin, args, fps=fps)

            if args.real_time:
                cv2.imshow('Detection', frame_numpy)
                cv2.waitKey(1)
            else:
                video_writer.write(frame_numpy)

            progress = (i + 1) / num_frames * 100
            progress_bar.set_val(i + 1)
            print(f'\rDetecting: {repr(progress_bar)} {i + 1} / {num_frames} ({progress:.2f}%) {fps:.2f} fps', end='')

        if not args.real_time:
            print(f'\n\nDone, saved in: results/videos/{name}')
Пример #10
0
def evalvideo(net:Yolact, path:str):
    # If the path is a digit, parse it as a webcam index
    is_webcam = path.isdigit()
    frame_count = 0
    
    # first frame variables
    drawing = True
    start_pt = None
    end_pt = None
    coords_provided = False
#    if args.start_x != 0 and args.start_y !=0 and args.end_x != 0 and args.end_y != 0:
#      start_pt = [args.start_x, args.start_y]
#      end_pt = [args.end_x, args.end_y]
#      coords_provided = True
    full_frame = None

    if is_webcam:
        vid = cv2.VideoCapture(int(path))
    else:
        vid = cv2.VideoCapture(path)

    if not vid.isOpened():
        print('Could not open video "%s"' % path)
        exit(-1)

    net = CustomDataParallel(net).cuda()
    transform = torch.nn.DataParallel(FastBaseTransform()).cuda()
    frame_times = MovingAverage(100)
    print("frame_times:", frame_times)
    fps = 0
    # The 0.8 is to account for the overhead of time.sleep
    frame_time_target = 1 / vid.get(cv2.CAP_PROP_FPS)
    print("vid.get(cv2.CAP_PROP_FPS):", vid.get(cv2.CAP_PROP_FPS))
    print("frame_time_target:", frame_time_target)
    running = True
    current_pred = None
    pred = None
    def cleanup_and_exit():
        print()
        pool.terminate()
        vid.release()
        cv2.destroyAllWindows()
        exit()

    def get_next_frame(vid, first_frame=False):

        if first_frame:
            nonlocal drawing, start_pt, end_pt, full_frame
            # load video here
            ret, frame = vid.read()
            # Adding Function Attached To Mouse Callback
            def draw(event,x,y,flags,params):
                nonlocal start_pt,end_pt,drawing
                # Left Mouse Button Down Pressed
                if(event==1):
                    print("event 1 fired")
                    if start_pt is None:
                        start_pt = [x,y]
                    else:
                        end_pt = [x,y]
                        cv2.destroyAllWindows()
                        drawing = False
                    print(x,y)
            # Making Window For The Image
            if not coords_provided:
              cv2.namedWindow("Window")
              # Adding Mouse CallBack Event
              cv2.setMouseCallback("Window",draw)
              cv2.imshow("Window",frame)
              cv2.waitKey(0)
              print(start_pt,end_pt)

        nonlocal frame_count
        frame_count += args.video_multiframe
        print('now processing', frame_count)
        frames = []
        for _ in range(args.video_multiframe):
            ret, temp =  vid.read()
            if ret == True:
                full_frame = temp.copy()
                frame = full_frame[start_pt[1]:end_pt[1], start_pt[0]:end_pt[0]].copy()
                frames.append(frame)
        return frames

    def transform_frame(frames):
        with torch.no_grad():
            frames = [torch.from_numpy(frame).cuda().float() for frame in frames]
            return frames, transform(torch.stack(frames, 0))

    def eval_network(inp):
        nonlocal current_pred
        nonlocal pred
        with torch.no_grad():
            frames, imgs = inp
            if frame_count % 10 == 0 or frame_count == 1:
                pred = net(imgs)
            current_pred = make_copy(pred)
            return frames, current_pred

    def prep_frame(inp):
        with torch.no_grad():
            frame, preds = inp
            processed = prep_display(preds, frame, None, None, undo_transform=False, class_color=True)
            full_frame[start_pt[1]:end_pt[1], start_pt[0]:end_pt[0]] = processed
            return full_frame
            

    frame_buffer = Queue()
    video_fps = 0

    # All this timing code to make sure that
    def play_video():
        nonlocal frame_buffer, running, video_fps, is_webcam

        video_frame_times = MovingAverage(100)
        print("video_frame_times:",video_frame_times)
        frame_time_stabilizer = frame_time_target
        last_time = None
        stabilizer_step = 0.0005

        while running:
            frame_time_start = time.time()

            if not frame_buffer.empty():
                next_time = time.time()
                if last_time is not None:
                    video_frame_times.add(next_time - last_time)
                    video_fps = 1 / video_frame_times.get_avg()
                cv2.imshow(path, frame_buffer.get())
                last_time = next_time

            if cv2.waitKey(1) == 27: # Press Escape to close
                running = False

            buffer_size = frame_buffer.qsize()
            if buffer_size < args.video_multiframe:
                frame_time_stabilizer += stabilizer_step
            elif buffer_size > args.video_multiframe:
                frame_time_stabilizer -= stabilizer_step
                if frame_time_stabilizer < 0:
                    frame_time_stabilizer = 0

            new_target = frame_time_stabilizer if is_webcam else max(frame_time_stabilizer, frame_time_target)

            next_frame_target = max(2 * new_target - video_frame_times.get_avg(), 0)
            target_time = frame_time_start + next_frame_target - 0.001 # Let's just subtract a millisecond to be safe
            # This gives more accurate timing than if sleeping the whole amount at once
            while time.time() < target_time:
                time.sleep(0.001)


    extract_frame = lambda x, i: (x[0][i] if x[1][i] is None else x[0][i].to(x[1][i]['box'].device), [x[1][i]])

    # Prime the network on the first frame because I do some thread unsafe things otherwise
    print('Initializing model... ', end='')
    eval_network(transform_frame(get_next_frame(vid, True)))
    print('Done.')

    # For each frame the sequence of functions it needs to go through to be processed (in reversed order)
    sequence = [prep_frame, eval_network, transform_frame]
    pool = ThreadPool(processes=len(sequence) + args.video_multiframe + 2)
    pool.apply_async(play_video)

    active_frames = []

    print()
    while vid.isOpened() and running:
        start_time = time.time()

        # Start loading the next frames from the disk
        next_frames = pool.apply_async(get_next_frame, args=(vid,))
        # print(next_frames.get())

        # For each frame in our active processing queue, dispatch a job
        # for that frame using the current function in the sequence
        for frame in active_frames:
            frame['value'] = pool.apply_async(sequence[frame['idx']], args=(frame['value'],))

        # For each frame whose job was the last in the sequence (i.e. for all final outputs)
        for frame in active_frames:
            if frame['idx'] == 0:
                frame_buffer.put(frame['value'].get())

        # Remove the finished frames from the processing queue
        active_frames = [x for x in active_frames if x['idx'] > 0]

        # Finish evaluating every frame in the processing queue and advanced their position in the sequence
        for frame in list(reversed(active_frames)):
            frame['value'] = frame['value'].get()
            frame['idx'] -= 1

            if frame['idx'] == 0:
                # Split this up into individual threads for prep_frame since it doesn't support batch size
                active_frames += [{'value': extract_frame(frame['value'], i), 'idx': 0} for i in range(1, args.video_multiframe)]
                frame['value'] = extract_frame(frame['value'], 0)


        # Finish loading in the next frames and add them to the processing queue
        
        #if len(next_frames.get())>0:
        active_frames.append({'value': next_frames.get(), 'idx': len(sequence)-1})

        # Compute FPS
        frame_times.add(time.time() - start_time)
        fps = args.video_multiframe / frame_times.get_avg()

        print('\rProcessing FPS: %.2f | Video Playback FPS: %.2f | Frames in Buffer: %d    ' % (fps, video_fps, frame_buffer.qsize()), end='')

    cleanup_and_exit()
Пример #11
0
def savevideo(net:Yolact, in_path:str, out_path:str):

    vid = cv2.VideoCapture(in_path)

    target_fps   = round(vid.get(cv2.CAP_PROP_FPS))
    frame_width  = round(vid.get(cv2.CAP_PROP_FRAME_WIDTH))
    frame_height = round(vid.get(cv2.CAP_PROP_FRAME_HEIGHT))
    num_frames   = round(vid.get(cv2.CAP_PROP_FRAME_COUNT))
    print("target_fps:{} frame_width:{} frame_height:{} num_frames:{}".format(target_fps, frame_width, frame_height, num_frames))

    out = cv2.VideoWriter(out_path, cv2.VideoWriter_fourcc(*"mp4v"), target_fps, (frame_width, frame_height))
    frame_freq = 10
    transform = FastBaseTransform()
    frame_times = MovingAverage()
    progress_bar = ProgressBar(30, num_frames)
    preds = None
    drawing = True
    start_pt = None
    end_pt = None

    # load video here
    ret, frame = vid.read()

    # Adding Function Attached To Mouse Callback
    def draw(event,x,y,flags,params):
        nonlocal start_pt,end_pt,drawing
        # Left Mouse Button Down Pressed
        if(event==1):
            print("event 1 fired")
            if start_pt is None:
                start_pt = [x,y]
            else:
                end_pt = [x,y]
                cv2.destroyAllWindows()
                drawing = False
            print(x,y)

    # Making Window For The Image
    cv2.namedWindow("Window")

    # Adding Mouse CallBack Event
    cv2.setMouseCallback("Window",draw)

    cv2.imshow("Window",frame)
    cv2.waitKey(0)
    print(start_pt,end_pt)

    try:
        for i in range(num_frames):
            timer.reset()
            with timer.env('Video'):
              # process only 10th frame
              # care to be taken that the first frame is read always
              ret, full_frame = vid.read()
              if ret == True:
                 frame = full_frame[start_pt[1]:end_pt[1], start_pt[0]:end_pt[0]].copy()
                 # print("Full_frame Shape:", full_frame.shape, "frame shape:", frame.shape)
                 frame = torch.from_numpy(frame).cuda().float()
                 # need to adjust for multi frame
                 if i%frame_freq == 0:
                   batch = transform(frame.unsqueeze(0))
                   preds = net(batch)
                 current_preds = make_copy(preds)
                 processed= prep_display(current_preds, frame, None, None, undo_transform=False, class_color=True)
                 full_frame[start_pt[1]:end_pt[1], start_pt[0]:end_pt[0]] = processed
                 # print("Full_frame Shape:", full_frame.shape, "frame shape:", processed.shape)
                 out.write(full_frame)
            if i > 1:
                frame_times.add(timer.total_time())
                fps = 1 / frame_times.get_avg()
                progress = (i+1) / num_frames * 100
                progress_bar.set_val(i+1)

                print('\rProcessing Frames  %s %6d / %6d (%5.2f%%)    %5.2f fps        '
                    % (repr(progress_bar), i+1, num_frames, progress, fps), end='')
    except KeyboardInterrupt:
        print('Stopping early.')

    vid.release()
    out.release()
    print()
Пример #12
0
def train(args, cfg, option, DataSet):

    if args.exp_name is not None:
        args.save_folder = os.path.join(args.save_folder, args.exp_name)
        args.log_folder = os.path.join(args.log_folder, args.exp_name)

    if not os.path.exists(args.save_folder):
        os.makedirs(args.save_folder, exist_ok=True)
    if not os.path.exists(args.log_folder):
        os.makedirs(args.log_folder, exist_ok=True)

    if True:
        dataset = DataSet(image_path=cfg.dataset.train_images,
                          mask_out_ch=cfg.gt_inst_ch,
                          info_file=cfg.dataset.train_info,
                          option=cfg.dataset,
                          transform=SSDAugmentation(cfg, MEANS),
                          running_mode='train')
    else:
        dataset = DataSet(image_path=cfg.dataset.valid_images,
                          mask_out_ch=cfg.gt_inst_ch,
                          info_file=cfg.dataset.valid_info,
                          option=cfg.dataset,
                          transform=SSDAugmentation(cfg, MEANS),
                          running_mode='train')

    # Parallel wraps the underlying module, but when saving and loading we don't want that
    dvis_net = DVIS(cfg)
    net = dvis_net

    net.train()
    if args.log:
        log = Log(cfg.name,
                  args.log_folder,
                  dict(args._get_kwargs()),
                  overwrite=(args.resume is None),
                  log_gpu_stats=args.log_gpu)

    # I don't use the timer during training (I use a different timing method).
    # Apparently there's a race condition with multiple GPUs, so disable it just to be safe.
    timer.disable_all()

    # Both of these can set args.resume to None, so do them before the check
    if args.resume == 'interrupt':
        args.resume = SavePath.get_interrupt(args.save_folder)
    elif args.resume == 'latest':
        args.resume = SavePath.get_latest(args.save_folder, cfg.name)

    if args.resume is not None:
        print('Resuming training, loading {}...'.format(args.resume))
        dvis_net.load_weights(args.resume,
                              load_firstLayer=option['model_1stLayer_en'],
                              load_lastLayer=option['model_lastLayer_en'])

        if args.start_iter == -1:
            args.start_iter = SavePath.from_str(args.resume).iteration
    else:
        print('Initializing weights...')
        dvis_net.init_weights(backbone_path=args.save_folder +
                              cfg.backbone.path)

    #optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=args.momentum,
    #                      weight_decay=args.decay)
    optimizer = optim.SGD([{
        'params': net.backbone.parameters(),
        'lr': args.lr * option['bkb_lr_alpha']
    }, {
        'params': net.fpn.parameters(),
        'lr': args.lr * option['fpn_lr_alpha']
    }, {
        'params': net.proto_net.parameters(),
        'lr': args.lr * option['proto_net_lr_alpha']
    }],
                          lr=args.lr,
                          momentum=args.momentum,
                          weight_decay=args.decay)
    criterion = LossEvaluate(option, class_weights=cfg.dataset.sem_weights)

    if args.batch_alloc is not None:
        args.batch_alloc = [int(x) for x in args.batch_alloc.split(',')]
        if sum(args.batch_alloc) != args.batch_size:
            print(
                'Error: Batch allocation (%s) does not sum to batch size (%s).'
                % (args.batch_alloc, args.batch_size))
            exit(-1)

    net = NetLoss(net, criterion)
    net = CustomDataParallel(net)
    if args.cuda:
        net = net.cuda()

    # Initialize everything
    if not cfg.freeze_bn:
        dvis_net.freeze_bn()  # Freeze bn so we don't kill our means

    # loss counters
    loc_loss = 0
    conf_loss = 0
    iteration = max(args.start_iter, 0)
    last_time = time.time()

    epoch_size = len(dataset) // args.batch_size
    num_epochs = math.ceil(cfg.max_iter / epoch_size)

    # Which learning rate adjustment step are we on? lr' = lr * gamma ^ step_index
    step_index = 0

    data_loader = data.DataLoader(dataset,
                                  args.batch_size,
                                  num_workers=args.num_workers,
                                  shuffle=False,
                                  collate_fn=detection_collate,
                                  pin_memory=True)
    writer = SummaryWriter(log_dir=args.log_folder)

    save_path = lambda epoch, iteration: SavePath(
        cfg.name, epoch, iteration).get_path(root=args.save_folder)
    time_avg = MovingAverage()

    loss_keys = [
        'binary', 'pi', 'l1', 'regul', 'iou', 'classify', 'eval_prec',
        'eval_rec', 'eval_acc'
    ]
    vis_keys = ['preds', 'gts', 'rgb', 'wghts', 'grad']
    loss_avgs = {k: MovingAverage(100) for k in loss_keys}

    print('Begin training!')
    # try-except so you can use ctrl+c to save early and stop training
    try:
        log_loss = dict()

        for epoch in range(num_epochs):
            # Resume from start_iter
            if (epoch + 1) * epoch_size < iteration:
                continue

            for datum in data_loader:
                # Stop if we've reached an epoch if we're resuming from start_iter
                if iteration == (epoch + 1) * epoch_size:
                    break
                # Stop at the configured number of iterations even if mid-epoch
                if iteration == cfg.max_iter:
                    break

                if iteration < 99:
                    iteration += 1
                    continue

                # Change a config setting if we've reached the specified iteration
                changed = False
                for change in cfg.delayed_settings:
                    if iteration >= change[0]:
                        changed = True
                        cfg.replace(change[1])

                        # Reset the loss averages because things might have changed
                        for avg in loss_avgs:
                            avg.reset()

                # If a config setting was changed, remove it from the list so we don't keep checking
                if changed:
                    cfg.delayed_settings = [
                        x for x in cfg.delayed_settings if x[0] > iteration
                    ]

                # Warm up by linearly interpolating the learning rate from some smaller value
                if cfg.lr_warmup_until > 0 and iteration <= cfg.lr_warmup_until:
                    set_lr(optimizer, (args.lr - cfg.lr_warmup_init) *
                           (iteration / cfg.lr_warmup_until) +
                           cfg.lr_warmup_init)

                # Adjust the learning rate at the given iterations, but also if we resume from past that iteration
                while step_index < len(
                        cfg.lr_steps
                ) and iteration >= cfg.lr_steps[step_index]:
                    step_index += 1
                    set_lr(optimizer, args.lr * (args.gamma**step_index))

                # Zero the grad to get ready to compute gradients
                optimizer.zero_grad()

                # Forward Pass + Compute loss at the same time (see CustomDataParallel and NetLoss0)
                ret = net(datum)

                # Mean here because Dataparallel and do  Backprop
                losses = {k: ret[k].mean() for k in loss_keys if k in ret}
                det_loss_keys = [k for k in loss_keys if k in losses]
                all_loss = sum([losses[k] for k in det_loss_keys])
                for k in det_loss_keys:
                    loss_avgs[k].add(losses[k].item())

                # backward and optimize
                if args.show_gradients == True:
                    ret['preds_0'].retain_grad()
                    all_loss.backward(retain_graph=True)
                    ret['grad'] = ret['preds_0'].grad[:, 0, :, :]
                else:
                    all_loss.backward(
                    )  # Do this to free up vram even if loss is not finite
                if torch.isfinite(all_loss).item():
                    optimizer.step()

                ret['preds'] = torch.nn.ReLU()(ret['preds'])
                vis_imgs = {k: ret[k] for k in vis_keys if k in ret}

                cur_time = time.time()
                elapsed = cur_time - last_time
                last_time = cur_time

                # Exclude graph setup from the timing information
                if iteration != args.start_iter:
                    time_avg.add(elapsed)

                if iteration % 10 == 0:
                    eta_str = str(
                        datetime.timedelta(seconds=(cfg.max_iter - iteration) *
                                           time_avg.get_avg())).split('.')[0]

                    total = sum([
                        loss_avgs[k].get_avg() for k in det_loss_keys
                        if 'eval' not in k
                    ])
                    loss_labels = sum(
                        [[k, loss_avgs[k].get_avg()]
                         for k in loss_keys if k in det_loss_keys], [])

                    print(('[%3d] %7d ||' +
                           (' %s: %.3f |' * len(det_loss_keys)) +
                           ' T: %.3f || ETA: %s || timer: %.3f') %
                          tuple([epoch, iteration] + loss_labels +
                                [total, eta_str, elapsed]),
                          flush=True)

                if args.log:
                    log_step = 50 // args.batch_size
                    for k in det_loss_keys:
                        if k not in log_loss:
                            log_loss[k] = loss_avgs[k].get_avg()
                        else:
                            log_loss[k] += loss_avgs[k].get_avg()

                    if iteration % log_step == log_step - 1:
                        for k in det_loss_keys:
                            writer.add_scalar(k + '_loss',
                                              log_loss[k] / float(log_step),
                                              iteration / log_step)
                            log_loss[k] = 0

                    log_fig_step = 100
                    if iteration % log_fig_step == log_fig_step - 1:
                        if 'davis' in args.dataset:
                            vis_imgs['rgb'] = vis_imgs['rgb'][:, :3, :, :]
                        fig = plot_tfboard_figure(
                            cfg, vis_imgs, show_grad=args.show_gradients)
                        writer.add_figure('prediction _ grad',
                                          fig,
                                          global_step=iteration / log_fig_step)
                iteration += 1

                if iteration % args.save_interval == 0 and iteration != args.start_iter:
                    if args.keep_latest:
                        latest = SavePath.get_latest(args.save_folder,
                                                     cfg.name)

                    print('Saving state, iter:', iteration)
                    dvis_net.save_weights(save_path(epoch, iteration))

                    if args.keep_latest and latest is not None:
                        if args.keep_latest_interval <= 0 or iteration % args.keep_latest_interval != args.save_interval:
                            print('Deleting old save...')
                            os.remove(latest)
                del ret, vis_imgs, losses
                # end of batch run
            # end of epoch

    except KeyboardInterrupt:
        if args.interrupt:
            print('Stopping early. Saving network...')

            # Delete previous copy of the interrupted network so we don't spam the weights folder
            SavePath.remove_interrupt(args.save_folder)

            writer.close()
            dvis_net.save_weights(
                save_path(epoch,
                          repr(iteration) + '_interrupt'))
        exit()

    writer.close()
    dvis_net.save_weights(save_path(epoch, iteration))
Пример #13
0
def train(rank, args):
    if args.num_gpus > 1:
        multi_gpu_rescale(args)
    if rank == 0:
        if not os.path.exists(args.save_folder):
            os.mkdir(args.save_folder)

    # fix the seed for reproducibility
    seed = args.random_seed + rank
    torch.manual_seed(seed)
    np.random.seed(seed)
    random.seed(seed)

    # set up logger
    setup_logger(output=os.path.join(args.log_folder, cfg.name),
                 distributed_rank=rank)
    logger = logging.getLogger("yolact.train")

    w = SummaryHelper(distributed_rank=rank,
                      log_dir=os.path.join(args.log_folder, cfg.name))
    w.add_text("argv", " ".join(sys.argv))
    logger.info("Args: {}".format(" ".join(sys.argv)))
    import git
    with git.Repo(search_parent_directories=True) as repo:
        w.add_text("git_hash", repo.head.object.hexsha)
        logger.info("git hash: {}".format(repo.head.object.hexsha))

    if args.num_gpus > 1:
        try:
            logger.info("Initializing torch.distributed backend...")
            dist.init_process_group(backend='nccl',
                                    init_method=args.dist_url,
                                    world_size=args.num_gpus,
                                    rank=rank)
        except Exception as e:
            logger.error("Process group URL: {}".format(args.dist_url))
            raise e

    misc.barrier()

    if torch.cuda.device_count() > 1:
        logger.info('Multiple GPUs detected! Turning off JIT.')

    collate_fn = detection_collate
    if cfg.dataset.name == 'YouTube VIS':
        dataset = YoutubeVIS(image_path=cfg.dataset.train_images,
                             info_file=cfg.dataset.train_info,
                             configs=cfg.dataset,
                             transform=SSDAugmentationVideo(MEANS))

        if cfg.dataset.joint == 'coco':
            joint_dataset = COCODetection(
                image_path=cfg.joint_dataset.train_images,
                info_file=cfg.joint_dataset.train_info,
                transform=SSDAugmentation(MEANS))
            joint_collate_fn = detection_collate

        if args.validation_epoch > 0:
            setup_eval()
            val_dataset = YoutubeVIS(image_path=cfg.dataset.valid_images,
                                     info_file=cfg.dataset.valid_info,
                                     configs=cfg.dataset,
                                     transform=BaseTransformVideo(MEANS))
        collate_fn = collate_fn_youtube_vis

    elif cfg.dataset.name == 'FlyingChairs':
        dataset = FlyingChairs(image_path=cfg.dataset.trainval_images,
                               info_file=cfg.dataset.trainval_info)

        collate_fn = collate_fn_flying_chairs

    else:
        dataset = COCODetection(image_path=cfg.dataset.train_images,
                                info_file=cfg.dataset.train_info,
                                transform=SSDAugmentation(MEANS))

        if args.validation_epoch > 0:
            setup_eval()
            val_dataset = COCODetection(image_path=cfg.dataset.valid_images,
                                        info_file=cfg.dataset.valid_info,
                                        transform=BaseTransform(MEANS))

    # Set cuda device early to avoid duplicate model in master GPU
    if args.cuda:
        torch.cuda.set_device(rank)

    # Parallel wraps the underlying module, but when saving and loading we don't want that
    yolact_net = Yolact()
    net = yolact_net
    net.train()

    # I don't use the timer during training (I use a different timing method).
    # Apparently there's a race condition with multiple GPUs.

    # use timer for experiments
    timer.disable_all()

    # Both of these can set args.resume to None, so do them before the check
    if args.resume == 'interrupt':
        args.resume = SavePath.get_interrupt(args.save_folder)
    elif args.resume == 'latest':
        args.resume = SavePath.get_latest(args.save_folder, cfg.name)

    if args.resume is not None:
        logger.info('Resuming training, loading {}...'.format(args.resume))
        yolact_net.load_weights(args.resume, args=args)

        if args.start_iter == -1:
            args.start_iter = SavePath.from_str(args.resume).iteration
    else:
        logger.info('Initializing weights...')
        yolact_net.init_weights(backbone_path=args.save_folder +
                                cfg.backbone.path)

    if cfg.flow.train_flow:
        criterion = OpticalFlowLoss()

    else:
        criterion = MultiBoxLoss(num_classes=cfg.num_classes,
                                 pos_threshold=cfg.positive_iou_threshold,
                                 neg_threshold=cfg.negative_iou_threshold,
                                 negpos_ratio=3)

    if args.cuda:
        net.cuda(rank)

        if misc.is_distributed_initialized():
            net = nn.parallel.DistributedDataParallel(
                net,
                device_ids=[rank],
                output_device=rank,
                broadcast_buffers=False,
                find_unused_parameters=True)

    optimizer = optim.SGD(filter(lambda x: x.requires_grad, net.parameters()),
                          lr=args.lr,
                          momentum=args.momentum,
                          weight_decay=args.decay)

    # loss counters
    iteration = max(args.start_iter, 0)
    w.set_step(iteration)
    last_time = time.time()

    epoch_size = len(dataset) // args.batch_size // args.num_gpus
    num_epochs = math.ceil(cfg.max_iter / epoch_size)

    # Which learning rate adjustment step are we on? lr' = lr * gamma ^ step_index
    step_index = 0

    from data.sampler_utils import InfiniteSampler, build_batch_data_sampler

    infinite_sampler = InfiniteSampler(dataset,
                                       seed=args.random_seed,
                                       num_replicas=args.num_gpus,
                                       rank=rank,
                                       shuffle=True)
    train_sampler = build_batch_data_sampler(infinite_sampler,
                                             images_per_batch=args.batch_size)

    data_loader = data.DataLoader(
        dataset,
        num_workers=args.num_workers,
        collate_fn=collate_fn,
        multiprocessing_context="fork" if args.num_workers > 1 else None,
        batch_sampler=train_sampler)
    data_loader_iter = iter(data_loader)

    if cfg.dataset.joint:
        joint_infinite_sampler = InfiniteSampler(joint_dataset,
                                                 seed=args.random_seed,
                                                 num_replicas=args.num_gpus,
                                                 rank=rank,
                                                 shuffle=True)
        joint_train_sampler = build_batch_data_sampler(
            joint_infinite_sampler, images_per_batch=args.batch_size)
        joint_data_loader = data.DataLoader(
            joint_dataset,
            num_workers=args.num_workers,
            collate_fn=joint_collate_fn,
            multiprocessing_context="fork" if args.num_workers > 1 else None,
            batch_sampler=joint_train_sampler)
        joint_data_loader_iter = iter(joint_data_loader)

    save_path = lambda epoch, iteration: SavePath(
        cfg.name, epoch, iteration).get_path(root=args.save_folder)
    time_avg = MovingAverage()
    data_time_avg = MovingAverage(10)

    global loss_types  # Forms the print order
    loss_avgs = {k: MovingAverage(100) for k in loss_types}

    def backward_and_log(prefix,
                         net_outs,
                         targets,
                         masks,
                         num_crowds,
                         extra_loss=None):
        optimizer.zero_grad()

        out = net_outs["pred_outs"]
        losses = criterion(out, targets, masks, num_crowds)

        losses = {k: v.mean()
                  for k, v in losses.items()}  # Mean here because Dataparallel

        if extra_loss is not None:
            assert type(extra_loss) == dict
            losses.update(extra_loss)

        loss = sum([losses[k] for k in losses])

        # Backprop
        loss.backward()  # Do this to free up vram even if loss is not finite
        if torch.isfinite(loss).item():
            optimizer.step()

        # Add the loss to the moving average for bookkeeping
        for k in losses:
            loss_avgs[k].add(losses[k].item())
            w.add_scalar('{prefix}/{key}'.format(prefix=prefix, key=k),
                         losses[k].item())

        return losses

    logger.info('Begin training!')
    # try-except so you can use ctrl+c to save early and stop training
    try:
        for epoch in range(num_epochs):
            # Resume from start_iter
            if (epoch + 1) * epoch_size < iteration:
                continue

            while True:
                data_start_time = time.perf_counter()
                datum = next(data_loader_iter)
                data_end_time = time.perf_counter()
                data_time = data_end_time - data_start_time
                if iteration != args.start_iter:
                    data_time_avg.add(data_time)
                # Stop if we've reached an epoch if we're resuming from start_iter
                if iteration == (epoch + 1) * epoch_size:
                    break

                # Stop at the configured number of iterations even if mid-epoch
                if iteration == cfg.max_iter:
                    break

                # Change a config setting if we've reached the specified iteration
                changed = False
                for change in cfg.delayed_settings:
                    if iteration >= change[0]:
                        changed = True
                        cfg.replace(change[1])

                        # Reset the loss averages because things might have changed
                        for avg in loss_avgs:
                            avg.reset()

                # If a config setting was changed, remove it from the list so we don't keep checking
                if changed:
                    cfg.delayed_settings = [
                        x for x in cfg.delayed_settings if x[0] > iteration
                    ]

                # Warm up by linearly interpolating the learning rate from some smaller value
                if cfg.lr_warmup_until > 0 and iteration <= cfg.lr_warmup_until and cfg.lr_warmup_init < args.lr:
                    set_lr(optimizer, (args.lr - cfg.lr_warmup_init) *
                           (iteration / cfg.lr_warmup_until) +
                           cfg.lr_warmup_init)

                elif cfg.lr_schedule == 'cosine':
                    set_lr(
                        optimizer,
                        args.lr *
                        ((math.cos(math.pi * iteration / cfg.max_iter) + 1.) *
                         .5))

                # Adjust the learning rate at the given iterations, but also if we resume from past that iteration
                while cfg.lr_schedule == 'step' and step_index < len(
                        cfg.lr_steps
                ) and iteration >= cfg.lr_steps[step_index]:
                    step_index += 1
                    set_lr(optimizer, args.lr * (args.gamma**step_index))

                global lr
                w.add_scalar('meta/lr', lr)

                if cfg.dataset.name == "FlyingChairs":
                    imgs_1, imgs_2, flows = prepare_flow_data(datum)
                    net_outs = net(None, extras=(imgs_1, imgs_2))
                    # Compute Loss
                    optimizer.zero_grad()

                    losses = criterion(net_outs, flows)

                    losses = {k: v.mean()
                              for k, v in losses.items()
                              }  # Mean here because Dataparallel
                    loss = sum([losses[k] for k in losses])

                    # Backprop
                    loss.backward(
                    )  # Do this to free up vram even if loss is not finite
                    if torch.isfinite(loss).item():
                        optimizer.step()

                    # Add the loss to the moving average for bookkeeping
                    for k in losses:
                        loss_avgs[k].add(losses[k].item())
                        w.add_scalar('loss/%s' % k, losses[k].item())

                elif cfg.dataset.joint or not cfg.dataset.is_video:
                    if cfg.dataset.joint:
                        joint_datum = next(joint_data_loader_iter)
                        # Load training data
                        # Note, for training on multiple gpus this will use the custom replicate and gather I wrote up there
                        images, targets, masks, num_crowds = prepare_data(
                            joint_datum)
                    else:
                        images, targets, masks, num_crowds = prepare_data(
                            datum)
                    extras = {
                        "backbone": "full",
                        "interrupt": False,
                        "moving_statistics": {
                            "aligned_feats": []
                        }
                    }
                    net_outs = net(images, extras=extras)
                    run_name = "joint" if cfg.dataset.joint else "compute"
                    losses = backward_and_log(run_name, net_outs, targets,
                                              masks, num_crowds)

                # Forward Pass
                if cfg.dataset.is_video:
                    # reference frames
                    references = []
                    moving_statistics = {"aligned_feats": [], "conf_hist": []}
                    for idx, frame in enumerate(datum[:0:-1]):
                        images, annots = frame

                        extras = {
                            "backbone": "full",
                            "interrupt": True,
                            "keep_statistics": True,
                            "moving_statistics": moving_statistics
                        }

                        with torch.no_grad():
                            net_outs = net(images, extras=extras)

                        moving_statistics["feats"] = net_outs["feats"]
                        moving_statistics["lateral"] = net_outs["lateral"]

                        keys_to_save = ("outs_phase_1", "outs_phase_2")
                        for key in set(net_outs.keys()) - set(keys_to_save):
                            del net_outs[key]
                        references.append(net_outs)

                    # key frame with annotation, but not compute full backbone
                    frame = datum[0]
                    images, annots = frame
                    frame = (
                        images,
                        annots,
                    )
                    images, targets, masks, num_crowds = prepare_data(frame)

                    extras = {
                        "backbone": "full",
                        "interrupt": not cfg.flow.base_backward,
                        "moving_statistics": moving_statistics
                    }
                    gt_net_outs = net(images, extras=extras)
                    if cfg.flow.base_backward:
                        losses = backward_and_log("compute", gt_net_outs,
                                                  targets, masks, num_crowds)

                    keys_to_save = ("outs_phase_1", "outs_phase_2")
                    for key in set(gt_net_outs.keys()) - set(keys_to_save):
                        del gt_net_outs[key]

                    # now do the warp
                    if len(references) > 0:
                        reference_frame = references[0]
                        extras = {
                            "backbone": "partial",
                            "moving_statistics": moving_statistics
                        }

                        net_outs = net(images, extras=extras)
                        extra_loss = yolact_net.extra_loss(
                            net_outs, gt_net_outs)

                        losses = backward_and_log("warp",
                                                  net_outs,
                                                  targets,
                                                  masks,
                                                  num_crowds,
                                                  extra_loss=extra_loss)

                cur_time = time.time()
                elapsed = cur_time - last_time
                last_time = cur_time
                w.add_scalar('meta/data_time', data_time)
                w.add_scalar('meta/iter_time', elapsed)

                # Exclude graph setup from the timing information
                if iteration != args.start_iter:
                    time_avg.add(elapsed)

                if iteration % 10 == 0:
                    eta_str = str(
                        datetime.timedelta(seconds=(cfg.max_iter - iteration) *
                                           time_avg.get_avg())).split('.')[0]
                    if torch.cuda.is_available():
                        max_mem_mb = torch.cuda.max_memory_allocated(
                        ) / 1024.0 / 1024.0
                        # torch.cuda.reset_max_memory_allocated()
                    else:
                        max_mem_mb = None

                    logger.info("""\
eta: {eta}  epoch: {epoch}  iter: {iter}  \
{losses}  {loss_total}  \
time: {time}  data_time: {data_time}  lr: {lr}  {memory}\
""".format(eta=eta_str,
                    epoch=epoch,
                    iter=iteration,
                    losses="  ".join([
                    "{}: {:.3f}".format(k, loss_avgs[k].get_avg()) for k in losses
                    ]),
                    loss_total="T: {:.3f}".format(
                    sum([loss_avgs[k].get_avg() for k in losses])),
                    data_time="{:.3f}".format(data_time_avg.get_avg()),
                    time="{:.3f}".format(elapsed),
                    lr="{:.6f}".format(lr),
                    memory="max_mem: {:.0f}M".format(max_mem_mb)))

                if rank == 0 and iteration % 100 == 0:

                    if cfg.flow.train_flow:
                        import flowiz as fz
                        from layers.warp_utils import deform_op
                        tgt_size = (64, 64)
                        flow_size = flows.size()[2:]
                        vis_data = []
                        for pred_flow in net_outs:
                            vis_data.append(pred_flow)

                        deform_gt = deform_op(imgs_2, flows)
                        flows_pred = [
                            F.interpolate(x,
                                          size=flow_size,
                                          mode='bilinear',
                                          align_corners=False)
                            for x in net_outs
                        ]
                        deform_preds = [
                            deform_op(imgs_2, x) for x in flows_pred
                        ]

                        vis_data.append(
                            F.interpolate(flows, size=tgt_size, mode='area'))

                        vis_data = [
                            F.interpolate(flow[:1], size=tgt_size)
                            for flow in vis_data
                        ]
                        vis_data = [
                            fz.convert_from_flow(
                                flow[0].data.cpu().numpy().transpose(
                                    1, 2, 0)).transpose(
                                        2, 0, 1).astype('float32') / 255
                            for flow in vis_data
                        ]

                        def convert_image(image):
                            image = F.interpolate(image,
                                                  size=tgt_size,
                                                  mode='area')
                            image = image[0]
                            image = image.data.cpu().numpy()
                            image = image[::-1]
                            image = image.transpose(1, 2, 0)
                            image = image * np.array(STD) + np.array(MEANS)
                            image = image.transpose(2, 0, 1)
                            image = image / 255
                            image = np.clip(image, -1, 1)
                            image = image[::-1]
                            return image

                        vis_data.append(convert_image(imgs_1))
                        vis_data.append(convert_image(imgs_2))
                        vis_data.append(convert_image(deform_gt))
                        vis_data.extend(
                            [convert_image(x) for x in deform_preds])

                        vis_data_stack = np.stack(vis_data, axis=0)
                        w.add_images("preds_flow", vis_data_stack)

                    elif cfg.flow.warp_mode == "flow":
                        import flowiz as fz
                        tgt_size = (64, 64)
                        vis_data = []
                        for pred_flow, _, _ in net_outs["preds_flow"]:
                            vis_data.append(pred_flow)

                        vis_data = [
                            F.interpolate(flow[:1], size=tgt_size)
                            for flow in vis_data
                        ]
                        vis_data = [
                            fz.convert_from_flow(
                                flow[0].data.cpu().numpy().transpose(
                                    1, 2, 0)).transpose(
                                        2, 0, 1).astype('float32') / 255
                            for flow in vis_data
                        ]
                        input_image = F.interpolate(images,
                                                    size=tgt_size,
                                                    mode='area')
                        input_image = input_image[0]
                        input_image = input_image.data.cpu().numpy()
                        input_image = input_image.transpose(1, 2, 0)
                        input_image = input_image * np.array(
                            STD[::-1]) + np.array(MEANS[::-1])
                        input_image = input_image.transpose(2, 0, 1)
                        input_image = input_image / 255
                        input_image = np.clip(input_image, -1, 1)
                        vis_data.append(input_image)

                        vis_data_stack = np.stack(vis_data, axis=0)
                        w.add_images("preds_flow", vis_data_stack)

                iteration += 1
                w.set_step(iteration)

                if rank == 0 and iteration % args.save_interval == 0 and iteration != args.start_iter:
                    if args.keep_latest:
                        latest = SavePath.get_latest(args.save_folder,
                                                     cfg.name)

                    logger.info('Saving state, iter: {}'.format(iteration))
                    yolact_net.save_weights(save_path(epoch, iteration))

                    if args.keep_latest and latest is not None:
                        if args.keep_latest_interval <= 0 or iteration % args.keep_latest_interval != args.save_interval:
                            logger.info('Deleting old save...')
                            os.remove(latest)

            misc.barrier()

            # This is done per epoch
            if args.validation_epoch > 0:
                if epoch % args.validation_epoch == 0 and epoch > 0:
                    if rank == 0:
                        compute_validation_map(yolact_net, val_dataset)
                    misc.barrier()

    except KeyboardInterrupt:
        misc.barrier()
        if args.interrupt_no_save:
            logger.info('No save on interrupt, just exiting...')
        elif rank == 0:
            print('Stopping early. Saving network...')
            # Delete previous copy of the interrupted network so we don't spam the weights folder
            SavePath.remove_interrupt(args.save_folder)

            yolact_net.save_weights(
                save_path(epoch,
                          repr(iteration) + '_interrupt'))
        return

    if rank == 0:
        yolact_net.save_weights(save_path(epoch, iteration))
Пример #14
0
def evaluate(net,
             dataset,
             max_num=-1,
             during_training=False,
             benchmark=False,
             cocoapi=False,
             traditional_nms=False):
    frame_times = MovingAverage()
    dataset_size = len(dataset) if max_num < 0 else min(max_num, len(dataset))
    dataset_indices = list(range(len(dataset)))
    dataset_indices = dataset_indices[:dataset_size]
    progress_bar = ProgressBar(40, dataset_size)

    if benchmark:
        timer.disable('Data loading')
    else:
        # For each class and iou, stores tuples (score, isPositive)
        # Index ap_data[type][iouIdx][classIdx]
        ap_data = {
            'box': [[APDataObject() for _ in cfg.dataset.class_names]
                    for _ in iou_thresholds],
            'mask': [[APDataObject() for _ in cfg.dataset.class_names]
                     for _ in iou_thresholds]
        }
        make_json = Make_json()

    for i, image_idx in enumerate(dataset_indices):
        timer.reset()

        with timer.env('Data loading'):
            img, gt, gt_masks, h, w, num_crowd = dataset.pull_item(image_idx)

            batch = Variable(img.unsqueeze(0))
            if cuda:
                batch = batch.cuda()

        with timer.env('Network forward'):
            net_outs = net(batch)
            nms_outs = NMS(net_outs, traditional_nms)

        if benchmark:
            prep_benchmark(nms_outs, h, w)
        else:
            prep_metrics(ap_data, nms_outs, gt, gt_masks, h, w, num_crowd,
                         dataset.ids[image_idx], make_json, cocoapi)

        # First couple of images take longer because we're constructing the graph.
        # Since that's technically initialization, don't include those in the FPS calculations.
        fps = 0
        if i > 1 and not during_training:
            frame_times.add(timer.total_time())
            fps = 1 / frame_times.get_avg()

        progress = (i + 1) / dataset_size * 100
        progress_bar.set_val(i + 1)
        print('\rProcessing:  %s  %d / %d (%.2f%%)  %.2f fps  ' %
              (repr(progress_bar), i + 1, dataset_size, progress, fps),
              end='')

    if benchmark:
        print('\n\nStats for the last frame:')
        timer.print_stats()
        avg_seconds = frame_times.get_avg()
        print('Average: %5.2f fps, %5.2f ms' %
              (1 / frame_times.get_avg(), 1000 * avg_seconds))

    else:
        if cocoapi:
            make_json.dump()
            print(f'\nJson files dumped, saved in: {json_path}.')
            return

        table = calc_map(ap_data)
        print(table)
        return table
Пример #15
0
def evaluate(net: Yolact, dataset, train_mode=False):
    net.detect.use_fast_nms = args.fast_nms
    cfg.mask_proto_debug = args.mask_proto_debug

    if args.image is not None:
        if ':' in args.image:
            inp, out = args.image.split(':')
            evalimage(net, inp, out)
        else:
            evalimage(net, args.image)
        return
    elif args.images is not None:
        inp, out = args.images.split(':')
        evalimages(net, inp, out)
        return
    elif args.video is not None:
        if ':' in args.video:
            inp, out = args.video.split(':')
            savevideo(net, inp, out)
        else:
            evalvideo(net, args.video)
        return

    frame_times = MovingAverage()
    dataset_size = len(dataset) if args.max_images < 0 else min(
        args.max_images, len(dataset))
    progress_bar = ProgressBar(30, dataset_size)

    print()

    if not args.display and not args.benchmark:
        # For each class and iou, stores tuples (score, isPositive)
        # Index ap_data[type][iouIdx][classIdx]
        ap_data = {
            'box': [[APDataObject() for _ in cfg.dataset.class_names]
                    for _ in iou_thresholds],
            'mask': [[APDataObject() for _ in cfg.dataset.class_names]
                     for _ in iou_thresholds]
        }
        detections = Detections()
    else:
        timer.disable('Load Data')

    dataset_indices = list(range(len(dataset)))

    if args.shuffle:
        random.shuffle(dataset_indices)
    elif not args.no_sort:
        # Do a deterministic shuffle based on the image ids
        #
        # I do this because on python 3.5 dictionary key order is *random*, while in 3.6 it's
        # the order of insertion. That means on python 3.6, the images come in the order they are in
        # in the annotations file. For some reason, the first images in the annotations file are
        # the hardest. To combat this, I use a hard-coded hash function based on the image ids
        # to shuffle the indices we use. That way, no matter what python version or how pycocotools
        # handles the data, we get the same result every time.
        hashed = [badhash(x) for x in dataset.ids]
        dataset_indices.sort(key=lambda x: hashed[x])

    dataset_indices = dataset_indices[:dataset_size]

    try:
        # Main eval loop
        for it, image_idx in enumerate(dataset_indices):
            timer.reset()

            with timer.env('Load Data'):
                img, gt, gt_masks, h, w, num_crowd = dataset.pull_item(
                    image_idx)

                # Test flag, do not upvote
                if cfg.mask_proto_debug:
                    with open('scripts/info.txt', 'w') as f:
                        f.write(str(dataset.ids[image_idx]))
                    np.save('scripts/gt.npy', gt_masks)

                batch = Variable(img.unsqueeze(0))
                if args.cuda:
                    batch = batch

            with timer.env('Network Extra'):
                preds = net(batch)

            # Perform the meat of the operation here depending on our mode.
            if args.display:
                img_numpy = prep_display(preds, img, h, w)
            elif args.benchmark:
                prep_benchmark(preds, h, w)
            else:
                prep_metrics(ap_data, preds, img, gt, gt_masks, h, w,
                             num_crowd, dataset.ids[image_idx], detections)

            # First couple of images take longer because we're constructing the graph.
            # Since that's technically initialization, don't include those in the FPS calculations.
            if it > 1:
                frame_times.add(timer.total_time())

            if args.display:
                if it > 1:
                    print('Avg FPS: %.4f' % (1 / frame_times.get_avg()))
                plt.imshow(img_numpy)
                plt.title(str(dataset.ids[image_idx]))
                plt.show()
            elif not args.no_bar:
                if it > 1: fps = 1 / frame_times.get_avg()
                else: fps = 0
                progress = (it + 1) / dataset_size * 100
                progress_bar.set_val(it + 1)
                print(
                    '\rProcessing Images  %s %6d / %6d (%5.2f%%)    %5.2f fps        '
                    %
                    (repr(progress_bar), it + 1, dataset_size, progress, fps),
                    end='')

        if not args.display and not args.benchmark:
            print()
            if args.output_coco_json:
                print('Dumping detections...')
                if args.output_web_json:
                    detections.dump_web()
                else:
                    detections.dump()
            else:
                if not train_mode:
                    print('Saving data...')
                    with open(args.ap_data_file, 'wb') as f:
                        pickle.dump(ap_data, f)

                return calc_map(ap_data)
        elif args.benchmark:
            print()
            print()
            print('Stats for the last frame:')
            timer.print_stats()
            avg_seconds = frame_times.get_avg()
            print('Average: %5.2f fps, %5.2f ms' %
                  (1 / frame_times.get_avg(), 1000 * avg_seconds))

    except KeyboardInterrupt:
        print('Stopping...')
Пример #16
0
    # GPU
    net = net.cuda()
    torch.set_default_tensor_type('torch.cuda.FloatTensor')

    x = torch.zeros((1, 3, cfg.max_size, cfg.max_size))
    y = net(x)

    for p in net.prediction_layers:
        print(p.last_conv_size)

    print()
    for k, a in y.items():
        print(k + ': ', a.size(), torch.sum(a))
    exit()
    
    net(x)
    # timer.disable('pass2')
    avg = MovingAverage()
    try:
        while True:
            timer.reset()
            with timer.env('everything else'):
                net(x)
            avg.add(timer.total_time())
            print('\033[2J') # Moves console cursor to 0,0
            timer.print_stats()
            print('Avg fps: %.2f\tAvg ms: %.2f         ' % (1/avg.get_avg(), avg.get_avg()*1000))
    except KeyboardInterrupt:
        pass
Пример #17
0
def train():
    if not os.path.exists(args.save_folder):
        os.mkdir(args.save_folder)

    dataset = COCODetection(image_path=cfg.dataset.train_images,
                            info_file=cfg.dataset.train_info,
                            transform=SSDAugmentation(MEANS))

    if args.validation_epoch > 0:
        setup_eval()
        val_dataset = COCODetection(image_path=cfg.dataset.valid_images,
                                    info_file=cfg.dataset.valid_info,
                                    transform=BaseTransform(MEANS))

    # Parallel wraps the underlying module, but when saving and loading we don't want that
    yolact_net = Yolact()
    net = yolact_net
    net.train()

    if args.log:
        log = Log(cfg.name,
                  args.log_folder,
                  dict(args._get_kwargs()),
                  overwrite=(args.resume is None),
                  log_gpu_stats=args.log_gpu)

    # I don't use the timer during training (I use a different timing method).
    # Apparently there's a race condition with multiple GPUs, so disable it just to be safe.
    timer.disable_all()

    # Both of these can set args.resume to None, so do them before the check
    if args.resume == 'interrupt':
        args.resume = SavePath.get_interrupt(args.save_folder)
    elif args.resume == 'latest':
        args.resume = SavePath.get_latest(args.save_folder, cfg.name)

    if args.resume is not None:
        print('Resuming training, loading {}...'.format(args.resume))
        yolact_net.load_weights(args.resume)

        if args.start_iter == -1:
            args.start_iter = SavePath.from_str(args.resume).iteration
    else:
        print('Initializing weights...')
        yolact_net.init_weights(backbone_path=args.save_folder +
                                cfg.backbone.path)

    optimizer = optim.SGD(net.parameters(),
                          lr=args.lr,
                          momentum=args.momentum,
                          weight_decay=args.decay)
    criterion = MultiBoxLoss(num_classes=cfg.num_classes,
                             pos_threshold=cfg.positive_iou_threshold,
                             neg_threshold=cfg.negative_iou_threshold,
                             negpos_ratio=cfg.ohem_negpos_ratio)

    if args.batch_alloc is not None:
        args.batch_alloc = [int(x) for x in args.batch_alloc.split(',')]
        if sum(args.batch_alloc) != args.batch_size:
            print(
                'Error: Batch allocation (%s) does not sum to batch size (%s).'
                % (args.batch_alloc, args.batch_size))
            exit(-1)

    net = CustomDataParallel(NetLoss(net, criterion))
    if args.cuda:
        net = net.cuda()

    # Initialize everything
    if not cfg.freeze_bn:
        yolact_net.freeze_bn()  # Freeze bn so we don't kill our means
    yolact_net(torch.zeros(1, 3, cfg.max_size, cfg.max_size).cuda())
    if not cfg.freeze_bn: yolact_net.freeze_bn(True)

    # loss counters
    loc_loss = 0
    conf_loss = 0
    iteration = max(args.start_iter, 0)
    last_time = time.time()

    epoch_size = len(dataset) // args.batch_size
    num_epochs = math.ceil(cfg.max_iter / epoch_size)

    # Which learning rate adjustment step are we on? lr' = lr * gamma ^ step_index
    step_index = 0

    data_loader = data.DataLoader(dataset,
                                  args.batch_size,
                                  num_workers=args.num_workers,
                                  shuffle=True,
                                  collate_fn=detection_collate,
                                  pin_memory=True)

    save_path = lambda epoch, iteration: SavePath(
        cfg.name, epoch, iteration).get_path(root=args.save_folder)
    time_avg = MovingAverage()

    global loss_types  # Forms the print order
    loss_avgs = {k: MovingAverage(100) for k in loss_types}

    print('Begin training!')
    print()
    # try-except so you can use ctrl+c to save early and stop training
    try:
        for epoch in range(num_epochs):
            # Resume from start_iter
            if (epoch + 1) * epoch_size < iteration:
                continue

            for datum in data_loader:
                # Stop if we've reached an epoch if we're resuming from start_iter
                if iteration == (epoch + 1) * epoch_size:
                    break

                # Stop at the configured number of iterations even if mid-epoch
                if iteration == cfg.max_iter:
                    break

                # Change a config setting if we've reached the specified iteration
                changed = False
                for change in cfg.delayed_settings:
                    if iteration >= change[0]:
                        changed = True
                        cfg.replace(change[1])

                        # Reset the loss averages because things might have changed
                        for avg in loss_avgs:
                            avg.reset()

                # If a config setting was changed, remove it from the list so we don't keep checking
                if changed:
                    cfg.delayed_settings = [
                        x for x in cfg.delayed_settings if x[0] > iteration
                    ]

                # Warm up by linearly interpolating the learning rate from some smaller value
                if cfg.lr_warmup_until > 0 and iteration <= cfg.lr_warmup_until:
                    set_lr(optimizer, (args.lr - cfg.lr_warmup_init) *
                           (iteration / cfg.lr_warmup_until) +
                           cfg.lr_warmup_init)

                # Adjust the learning rate at the given iterations, but also if we resume from past that iteration
                while step_index < len(
                        cfg.lr_steps
                ) and iteration >= cfg.lr_steps[step_index]:
                    step_index += 1
                    set_lr(optimizer, args.lr * (args.gamma**step_index))

                # Zero the grad to get ready to compute gradients
                optimizer.zero_grad()

                # Forward Pass + Compute loss at the same time (see CustomDataParallel and NetLoss)
                losses = net(datum)

                losses = {k: (v).mean()
                          for k, v in losses.items()
                          }  # Mean here because Dataparallel
                loss = sum([losses[k] for k in losses])

                # no_inf_mean removes some components from the loss, so make sure to backward through all of it
                # all_loss = sum([v.mean() for v in losses.values()])

                # Backprop
                loss.backward(
                )  # Do this to free up vram even if loss is not finite
                if torch.isfinite(loss).item():
                    optimizer.step()

                # Add the loss to the moving average for bookkeeping
                for k in losses:
                    loss_avgs[k].add(losses[k].item())

                cur_time = time.time()
                elapsed = cur_time - last_time
                last_time = cur_time

                # Exclude graph setup from the timing information
                if iteration != args.start_iter:
                    time_avg.add(elapsed)

                if iteration % 10 == 0:
                    eta_str = str(
                        datetime.timedelta(seconds=(cfg.max_iter - iteration) *
                                           time_avg.get_avg())).split('.')[0]

                    total = sum([loss_avgs[k].get_avg() for k in losses])
                    loss_labels = sum([[k, loss_avgs[k].get_avg()]
                                       for k in loss_types if k in losses], [])

                    print(('[%3d] %7d ||' + (' %s: %.3f |' * len(losses)) +
                           ' T: %.3f || ETA: %s || timer: %.3f') %
                          tuple([epoch, iteration] + loss_labels +
                                [total, eta_str, elapsed]),
                          flush=True)

                if args.log:
                    precision = 5
                    loss_info = {
                        k: round(losses[k].item(), precision)
                        for k in losses
                    }
                    loss_info['T'] = round(loss.item(), precision)

                    if args.log_gpu:
                        log.log_gpu_stats = (iteration % 10 == 0
                                             )  # nvidia-smi is sloooow

                    log.log('train',
                            loss=loss_info,
                            epoch=epoch,
                            iter=iteration,
                            lr=round(cur_lr, 10),
                            elapsed=elapsed)

                    log.log_gpu_stats = args.log_gpu

                iteration += 1

                if iteration % args.save_interval == 0 and iteration != args.start_iter:
                    if args.keep_latest:
                        latest = SavePath.get_latest(args.save_folder,
                                                     cfg.name)

                    print('Saving state, iter:', iteration)
                    yolact_net.save_weights(save_path(epoch, iteration))

                    if args.keep_latest and latest is not None:
                        if args.keep_latest_interval <= 0 or iteration % args.keep_latest_interval != args.save_interval:
                            print('Deleting old save...')
                            os.remove(latest)

            # This is done per epoch
            if args.validation_epoch > 0:
                if epoch % args.validation_epoch == 0 and epoch > 0:
                    compute_validation_map(epoch, iteration, yolact_net,
                                           val_dataset,
                                           log if args.log else None)

        # Compute validation mAP after training is finished
        compute_validation_map(epoch, iteration, yolact_net, val_dataset,
                               log if args.log else None)
    except KeyboardInterrupt:
        if args.interrupt:
            print('Stopping early. Saving network...')

            # Delete previous copy of the interrupted network so we don't spam the weights folder
            SavePath.remove_interrupt(args.save_folder)

            yolact_net.save_weights(
                save_path(epoch,
                          repr(iteration) + '_interrupt'))
        exit()

    yolact_net.save_weights(save_path(epoch, iteration))
Пример #18
0
def train():
    if not os.path.exists(args.save_folder):
        os.mkdir(args.save_folder)

    dataset = COCODetection(image_path=cfg.dataset.train_images,
                            info_file=cfg.dataset.train_info,
                            transform=SSDAugmentation(MEANS))

    if args.validation_epoch > 0:
        setup_eval()
        val_dataset = COCODetection(image_path=cfg.dataset.valid_images,
                                    info_file=cfg.dataset.valid_info,
                                    transform=BaseTransform(MEANS))

    # Parallel wraps the underlying module, but when saving and loading we don't want that
    yolact_net = Yolact()
    net = yolact_net
    net.train()
    print('\n--- Generator created! ---')

    # NOTE
    # I maunally set the original image size and seg size as 138
    # might change in the future, for example 550
    if cfg.pred_seg:
        dis_size = 138
        dis_net = Discriminator_Dcgan(i_size=dis_size, s_size=dis_size)
        # set the dis net's initial parameter values
        dis_net.apply(gan_init)
        dis_net.train()
        print('--- Discriminator created! ---\n')

    if args.log:
        log = Log(cfg.name,
                  args.log_folder,
                  dict(args._get_kwargs()),
                  overwrite=(args.resume is None),
                  log_gpu_stats=args.log_gpu)

    # I don't use the timer during training (I use a different timing method).
    # Apparently there's a race condition with multiple GPUs, so disable it just to be safe.
    timer.disable_all()

    # Both of these can set args.resume to None, so do them before the check
    if args.resume == 'interrupt':
        args.resume = SavePath.get_interrupt(args.save_folder)
    elif args.resume == 'latest':
        args.resume = SavePath.get_latest(args.save_folder, cfg.name)

    if args.resume is not None:
        print('Resuming training, loading {}...'.format(args.resume))
        yolact_net.load_weights(args.resume)

        if args.start_iter == -1:
            args.start_iter = SavePath.from_str(args.resume).iteration
    else:
        print('Initializing weights...')
        yolact_net.init_weights(backbone_path=args.save_folder +
                                cfg.backbone.path)

    # optimizer_gen = optim.SGD(net.parameters(), lr=args.lr, momentum=args.momentum,
    #                       weight_decay=args.decay)
    # if cfg.pred_seg:
    #     optimizer_dis = optim.SGD(dis_net.parameters(), lr=cfg.dis_lr, momentum=args.momentum,
    #                         weight_decay=args.decay)
    #     schedule_dis  = ReduceLROnPlateau(optimizer_dis, mode = 'min', patience=6, min_lr=1E-6)

    # NOTE: Using the Ranger Optimizer for the generator
    optimizer_gen = Ranger(net.parameters(),
                           lr=args.lr,
                           weight_decay=args.decay)
    if cfg.pred_seg:
        optimizer_dis = optim.SGD(dis_net.parameters(), lr=cfg.dis_lr)
        schedule_dis = ReduceLROnPlateau(optimizer_dis,
                                         mode='min',
                                         patience=6,
                                         min_lr=1E-6)

    criterion = MultiBoxLoss(num_classes=cfg.num_classes,
                             pos_threshold=cfg.positive_iou_threshold,
                             neg_threshold=cfg.negative_iou_threshold,
                             negpos_ratio=cfg.ohem_negpos_ratio,
                             pred_seg=cfg.pred_seg)

    criterion_dis = nn.BCELoss()

    if args.batch_alloc is not None:
        args.batch_alloc = [int(x) for x in args.batch_alloc.split(',')]
        if sum(args.batch_alloc) != args.batch_size:
            print(
                'Error: Batch allocation (%s) does not sum to batch size (%s).'
                % (args.batch_alloc, args.batch_size))
            exit(-1)

    net = CustomDataParallel(NetLoss(net, criterion, pred_seg=cfg.pred_seg))
    if args.cuda:
        net = net.cuda()
        if cfg.pred_seg:
            dis_net = dis_net.cuda()

    # Initialize everything
    if not cfg.freeze_bn:
        yolact_net.freeze_bn()  # Freeze bn so we don't kill our means
    yolact_net(torch.zeros(1, 3, cfg.max_size, cfg.max_size).cuda())

    if not cfg.freeze_bn: yolact_net.freeze_bn(True)

    # loss counters
    loc_loss = 0
    conf_loss = 0
    iteration = max(args.start_iter, 0)
    last_time = time.time()

    epoch_size = len(dataset) // args.batch_size
    num_epochs = math.ceil(cfg.max_iter / epoch_size)

    # Which learning rate adjustment step are we on? lr' = lr * gamma ^ step_index
    step_index = 0

    data_loader = data.DataLoader(dataset,
                                  args.batch_size,
                                  num_workers=args.num_workers,
                                  shuffle=True,
                                  collate_fn=detection_collate,
                                  pin_memory=True)
    # NOTE
    val_loader = data.DataLoader(val_dataset,
                                 args.batch_size,
                                 num_workers=args.num_workers * 2,
                                 shuffle=True,
                                 collate_fn=detection_collate,
                                 pin_memory=True)

    save_path = lambda epoch, iteration: SavePath(
        cfg.name, epoch, iteration).get_path(root=args.save_folder)
    time_avg = MovingAverage()

    global loss_types  # Forms the print order
    # TODO: global command can modify global variable inside of the function.
    loss_avgs = {k: MovingAverage(100) for k in loss_types}

    print('Begin training!')
    print()
    # try-except so you can use ctrl+c to save early and stop training
    try:
        for epoch in range(num_epochs):
            # Resume from start_iter
            if (epoch + 1) * epoch_size < iteration:
                continue

            for datum in data_loader:
                # Stop if we've reached an epoch if we're resuming from start_iter
                if iteration == (epoch + 1) * epoch_size:
                    break

                # Stop at the configured number of iterations even if mid-epoch
                if iteration == cfg.max_iter:
                    break

                # Change a config setting if we've reached the specified iteration
                changed = False
                for change in cfg.delayed_settings:
                    if iteration >= change[0]:
                        changed = True
                        cfg.replace(change[1])

                        # Reset the loss averages because things might have changed
                        for avg in loss_avgs:
                            avg.reset()

                # If a config setting was changed, remove it from the list so we don't keep checking
                if changed:
                    cfg.delayed_settings = [
                        x for x in cfg.delayed_settings if x[0] > iteration
                    ]

                # Warm up by linearly interpolating the learning rate from some smaller value
                if cfg.lr_warmup_until > 0 and iteration <= cfg.lr_warmup_until:
                    set_lr(optimizer_gen, (args.lr - cfg.lr_warmup_init) *
                           (iteration / cfg.lr_warmup_until) +
                           cfg.lr_warmup_init)

                # Adjust the learning rate at the given iterations, but also if we resume from past that iteration
                while step_index < len(
                        cfg.lr_steps
                ) and iteration >= cfg.lr_steps[step_index]:
                    step_index += 1
                    set_lr(optimizer_gen, args.lr * (args.gamma**step_index))

                # Zero the grad to get ready to compute gradients
                optimizer_gen.zero_grad()
                # NOTE
                if cfg.pred_seg:
                    # ====== GAN Train ======
                    optimizer_dis.zero_grad()
                    dis_net.zero_grad()
                    # train the gen and dis in different iteration count
                    it_alter_period = iteration % (cfg.gen_iter + cfg.dis_iter)
                    if it_alter_period >= cfg.gen_iter:
                        freeze_pretrain(yolact_net, freeze=True)
                        freeze_pretrain(net, freeze=True)
                        freeze_pretrain(dis_net, freeze=False)
                        if it_alter_period == (cfg.gen_iter + 1):
                            print('--- Generator     freeze   ---')
                            print('--- Discriminator training ---')

                        # ----- Discriminator part -----
                        # seg_list  is the prediction mask
                        # can be regarded as generated images from YOLACT
                        # pred_list is the prediction label
                        # seg_list  dim: list of (138,138,instances)
                        # pred_list dim: list of (instances)
                        losses, seg_list, pred_list = net(datum)
                        seg_clas, mask_clas, b, seg_size = seg_mask_clas(
                            seg_list, pred_list, datum)

                        # input image size is [b, 3, 550, 550]
                        # downsample to       [b, 3, seg_h, seg_w]
                        image = interpolate(torch.stack(datum[0]),
                                            size=seg_size,
                                            mode='bilinear',
                                            align_corners=False)

                        # Because in the discriminator training, we do not
                        # want the gradient flow back to the generator part
                        # we detach seg_clas (mask_clas come the data, does not have grad)
                        seg_input = seg_clas.clone().detach()
                        output_pred = dis_net(img=image, seg=seg_input)
                        output_grou = dis_net(img=image, seg=mask_clas)

                        if iteration % (cfg.gen_iter + cfg.dis_iter) == 0:
                            print(
                                f'Probability of fake is fake: {output_pred.mean().item():.2f}'
                            )
                            print(
                                f'Probability of real is real: {output_grou.mean().item():.2f}'
                            )

                        # 0 for Fake/Generated
                        # 1 for True/Ground Truth
                        fake_label = torch.zeros(b)
                        real_label = torch.ones(b)

                        # Advice of practical implementation
                        # from https://arxiv.org/abs/1611.08408
                        # loss_pred = -criterion_dis(output_pred,target=real_label)
                        loss_pred = criterion_dis(output_pred,
                                                  target=fake_label)
                        loss_grou = criterion_dis(output_grou,
                                                  target=real_label)
                        loss_dis = loss_pred + loss_grou

                        # TODO: Grid Search this one
                        lambda_dis = cfg.lambda_dis
                        loss_dis = lambda_dis * loss_dis
                        # Backprop of the discriminator
                        loss_dis.backward()
                        optimizer_dis.step()

                    else:
                        freeze_pretrain(yolact_net, freeze=False)
                        freeze_pretrain(net, freeze=False)
                        freeze_pretrain(dis_net, freeze=True)
                        if it_alter_period == 0:
                            print('--- Generator     training ---')
                            print('--- Discriminator freeze   ---')

                        # ----- Generator part -----
                        net.zero_grad()
                        losses, seg_list, pred_list = net(datum)
                        seg_clas, mask_clas, b, seg_size = seg_mask_clas(
                            seg_list, pred_list, datum)
                        image = interpolate(torch.stack(datum[0]),
                                            size=seg_size,
                                            mode='bilinear',
                                            align_corners=False)
                        # Perform forward pass of all-fake batch through D
                        # NOTE that seg_clas CANNOT detach, in order to flow the
                        # gradient back to the generator
                        output = dis_net(img=image, seg=seg_clas)
                        # Since the log(1-D(G(x))) not provide sufficient gradients
                        # We want log(D(G(x)) instead, this can be achieve by
                        # use the real_label as target.
                        # This step is crucial for the information of discriminator
                        # to go into the generator.
                        # Calculate G's loss based on this output
                        real_label = torch.ones(b)
                        loss_gen = criterion_dis(output, target=real_label)
                        if not it_alter_period >= cfg.gen_iter:
                            # since the dis is already freeze, the gradients will only
                            # record the YOLACT
                            loss_gen.backward()
                            # Do this to free up vram even if loss is not finite
                            losses = {
                                k: (v).mean()
                                for k, v in losses.items()
                            }  # Mean here because Dataparallel
                            loss = sum([losses[k] for k in losses])
                            if torch.isfinite(loss).item():
                                # since the optimizer_gen is for YOLACT only
                                # only the gen will be updated
                                optimizer_gen.step()

                else:
                    # ====== Normal YOLACT Train ======
                    # Forward Pass + Compute loss at the same time (see CustomDataParallel and NetLoss)
                    losses = net(datum)
                    losses = {k: (v).mean()
                              for k, v in losses.items()
                              }  # Mean here because Dataparallel
                    loss = sum([losses[k] for k in losses])
                    # no_inf_mean removes some components from the loss, so make sure to backward through all of it
                    # all_loss = sum([v.mean() for v in losses.values()])

                    # Backprop
                    loss.backward(
                    )  # Do this to free up vram even if loss is not finite
                    if torch.isfinite(loss).item():
                        optimizer_gen.step()

                # Add the loss to the moving average for bookkeeping
                for k in losses:
                    loss_avgs[k].add(losses[k].item())

                cur_time = time.time()
                elapsed = cur_time - last_time
                last_time = cur_time

                # Exclude graph setup from the timing information
                if iteration != args.start_iter:
                    time_avg.add(elapsed)

                if iteration % 10 == 0:
                    eta_str = str(
                        datetime.timedelta(seconds=(cfg.max_iter - iteration) *
                                           time_avg.get_avg())).split('.')[0]

                    total = sum([loss_avgs[k].get_avg() for k in losses])
                    loss_labels = sum([[k, loss_avgs[k].get_avg()]
                                       for k in loss_types if k in losses], [])
                    if cfg.pred_seg and (it_alter_period >= cfg.gen_iter):
                        print(
                            ('[%3d] %7d ||' + (' %s: %.3f |' * len(losses)) +
                             ' T: %.3f || Dis: %.2f || ETA: %s || timer: %.3f')
                            % tuple([epoch, iteration] + loss_labels +
                                    [total, loss_dis, eta_str, elapsed]),
                            flush=True)
                    else:
                        print(('[%3d] %7d ||' + (' %s: %.3f |' * len(losses)) +
                               ' T: %.3f ||  ETA: %s || timer: %.3f') %
                              tuple([epoch, iteration] + loss_labels +
                                    [total, eta_str, elapsed]),
                              flush=True)
                    # Loss Key:
                    #  - B: Box Localization Loss
                    #  - C: Class Confidence Loss
                    #  - M: Mask Loss
                    #  - P: Prototype Loss
                    #  - D: Coefficient Diversity Loss
                    #  - E: Class Existence Loss
                    #  - S: Semantic Segmentation Loss
                    #  - T: Total loss
                    #  -Dis:Discriminator Loss

                if args.log:
                    precision = 5
                    loss_info = {
                        k: round(losses[k].item(), precision)
                        for k in losses
                    }
                    loss_info['T'] = round(loss.item(), precision)

                    if args.log_gpu:
                        log.log_gpu_stats = (iteration % 10 == 0
                                             )  # nvidia-smi is sloooow

                    log.log('train',
                            loss=loss_info,
                            epoch=epoch,
                            iter=iteration,
                            lr=round(cur_lr, 10),
                            elapsed=elapsed)

                    log.log_gpu_stats = args.log_gpu

                iteration += 1

                if iteration % args.save_interval == 0 and iteration != args.start_iter:
                    if args.keep_latest:
                        latest = SavePath.get_latest(args.save_folder,
                                                     cfg.name)

                    print('Saving state, iter:', iteration)
                    yolact_net.save_weights(save_path(epoch, iteration))

                    if args.keep_latest and latest is not None:
                        if args.keep_latest_interval <= 0 or iteration % args.keep_latest_interval != args.save_interval:
                            print('Deleting old save...')
                            os.remove(latest)

            # This is done per epoch
            if args.validation_epoch > 0:
                # NOTE: Validation loss
                # if cfg.pred_seg:
                #     net.eval()
                #     dis_net.eval()
                #     cfg.gan_eval = True
                #     with torch.no_grad():
                #         for datum in tqdm(val_loader, desc='GAN Validation'):
                #             losses, seg_list, pred_list = net(datum)
                #             losses, seg_list, pred_list = net(datum)
                #             # TODO: warp below as a function
                #             seg_list = [v.permute(2,1,0).contiguous() for v in seg_list]
                #             b = len(seg_list) # batch size
                #             _, seg_h, seg_w = seg_list[0].size()

                #             seg_clas    = torch.zeros(b, cfg.num_classes-1, seg_h, seg_w)
                #             mask_clas   = torch.zeros(b, cfg.num_classes-1, seg_h, seg_w)
                #             target_list = [target for target in datum[1][0]]
                #             mask_list   = [interpolate(mask.unsqueeze(0), size = (seg_h,seg_w),mode='bilinear', \
                #                             align_corners=False).squeeze() for mask in datum[1][1]]

                #             for idx in range(b):
                #                 for i, (pred, i_target) in enumerate(zip(pred_list[idx], target_list[idx])):
                #                     seg_clas[idx, pred, ...]                 += seg_list[idx][i,...]
                #                     mask_clas[idx, i_target[-1].long(), ...] += mask_list[idx][i,...]

                #             seg_clas = torch.clamp(seg_clas, 0, 1)
                #             image    = interpolate(torch.stack(datum[0]), size = (seg_h,seg_w),
                #                                         mode='bilinear',align_corners=False)
                #             real_label  = torch.ones(b)
                #             output_pred = dis_net(img = image, seg = seg_clas)
                #             output_grou = dis_net(img = image, seg = mask_clas)
                #             loss_pred   = -criterion_dis(output_pred,target=real_label)
                #             loss_grou   =  criterion_dis(output_grou,target=real_label)
                #             loss_dis    = loss_pred + loss_grou
                #         losses = { k: (v).mean() for k,v in losses.items() }
                #         loss = sum([losses[k] for k in losses])
                #         val_loss = loss - cfg.lambda_dis*loss_dis
                #         schedule_dis.step(loss_dis)
                #         lr = [group['lr'] for group in optimizer_dis.param_groups]
                #         print(f'Discriminator lr: {lr[0]}')
                #     net.train()
                if epoch % args.validation_epoch == 0 and epoch > 0:
                    cfg.gan_eval = False
                    dis_net.eval()
                    compute_validation_map(epoch, iteration, yolact_net,
                                           val_dataset,
                                           log if args.log else None)

        # Compute validation mAP after training is finished
        compute_validation_map(epoch, iteration, yolact_net, val_dataset,
                               log if args.log else None)
    except KeyboardInterrupt:
        if args.interrupt:
            print('Stopping early. Saving network...')

            # Delete previous copy of the interrupted network so we don't spam the weights folder
            SavePath.remove_interrupt(args.save_folder)

            yolact_net.save_weights(
                save_path(epoch,
                          repr(iteration) + '_interrupt'))
        exit()

    yolact_net.save_weights(save_path(epoch, iteration))