Пример #1
0
def train(hyp, opt, device, tb_writer=None, wandb=None):
    logger.info(f'Hyperparameters {hyp}')
    log_dir = Path(tb_writer.log_dir) if tb_writer else Path(
        opt.logdir) / 'evolve'  # logging directory
    wdir = log_dir / 'weights'  # weights dfirectory
    os.makedirs(wdir, exist_ok=True)
    last = wdir / 'last.pt'
    best = wdir / 'best.pt'
    results_file = str(log_dir / 'results.txt')
    epochs, batch_size, total_batch_size, weights, rank = \
        opt.epochs_init, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank

    # Save run settings
    with open(log_dir / 'hyp.yaml', 'w') as f:
        yaml.dump(hyp, f, sort_keys=False)
    with open(log_dir / 'opt.yaml', 'w') as f:
        yaml.dump(vars(opt), f, sort_keys=False)

    # Configure
    cuda = device.type != 'cpu'
    init_seeds(2 + rank)
    with open(opt.data) as f:
        data_dict = yaml.load(f, Loader=yaml.FullLoader)  # data dict
    with torch_distributed_zero_first(rank):
        check_dataset(data_dict)  # check
    train_path = data_dict['train']
    test_path = data_dict['val']
    nc, names = (1, ['item']) if opt.single_cls else (int(
        data_dict['nc']), data_dict['names'])  # number classes, names
    assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (
        len(names), nc, opt.data)  # check

    # Model
    pretrained = weights.endswith('.pt')
    if pretrained:
        with torch_distributed_zero_first(rank):
            attempt_download(weights)  # download if not found locally
        ckpt = torch.load(weights, map_location=device)  # load checkpoint
        if hyp.get('anchors'):
            ckpt['model'].yaml['anchors'] = round(
                hyp['anchors'])  # force autoanchor
        model = Model(opt.cfg or ckpt['model'].yaml, ch=3,
                      nc=nc).to(device)  # create
        exclude = ['anchor'] if opt.cfg or hyp.get('anchors') else [
        ]  # exclude keys
        state_dict = ckpt['model'].float().state_dict()  # to FP32
        state_dict = intersect_dicts(state_dict,
                                     model.state_dict(),
                                     exclude=exclude)  # intersect
        model.load_state_dict(state_dict, strict=False)  # load
        logger.info(
            'Transferred %g/%g items from %s' %
            (len(state_dict), len(model.state_dict()), weights))  # report
    else:
        model = Model(opt.cfg, ch=3, nc=nc).to(device)  # create

    # Freeze
    freeze = []  # parameter names to freeze (full or partial)
    for k, v in model.named_parameters():
        v.requires_grad = True  # train all layers
        if any(x in k for x in freeze):
            print('freezing %s' % k)
            v.requires_grad = False

    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / total_batch_size),
                     1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= total_batch_size * accumulate / nbs  # scale weight_decay

    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_modules():
        if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
            pg2.append(v.bias)  # biases
        if isinstance(v, nn.BatchNorm2d):
            pg0.append(v.weight)  # no decay
        elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
            pg1.append(v.weight)  # apply decay

    optimizer = optim.SGD(pg0,
                          lr=hyp['lr0'],
                          momentum=hyp['momentum'],
                          nesterov=True)

    optimizer.add_param_group({
        'params': pg1,
        'weight_decay': hyp['weight_decay']
    })  # add pg1 with weight_decay
    optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
    logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' %
                (len(pg2), len(pg1), len(pg0)))
    del pg0, pg1, pg2

    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
    lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - hyp[
        'lrf']) + hyp['lrf']  # cosine
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    # plot_lr_scheduler(optimizer, scheduler, epochs)

    # Logging
    if wandb and wandb.run is None:
        id = ckpt.get('wandb_id') if 'ckpt' in locals() else None
        wandb_run = wandb.init(config=opt,
                               resume="allow",
                               project="YOLOv5",
                               name=os.path.basename(log_dir),
                               id=id)

    # Resume
    start_epoch, best_fitness = 0, 0.0
    if pretrained:
        # Optimizer
        if ckpt['optimizer'] is not None:
            optimizer.load_state_dict(ckpt['optimizer'])
            best_fitness = ckpt['best_fitness']

        # Results
        if ckpt.get('training_results') is not None:
            with open(results_file, 'w') as file:
                file.write(ckpt['training_results'])  # write results.txt

        # Epochs
        start_epoch = ckpt['epoch'] + 1
        if opt.resume:
            assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (
                weights, epochs)
            shutil.copytree(wdir, wdir.parent /
                            f'weights_backup_epoch{start_epoch - 1}'
                            )  # save previous weights
        if epochs < start_epoch:
            logger.info(
                '%s has been trained for %g epochs. Fine-tuning for %g additional epochs.'
                % (weights, ckpt['epoch'], epochs))
            epochs += ckpt['epoch']  # finetune additional epochs

        del ckpt, state_dict

    # Image sizes
    gs = int(max(model.stride))  # grid size (max stride)
    imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size
                         ]  # verify imgsz are gs-multiples

    # Model parameters
    hyp['cls'] *= nc / 80.  # scale coco-tuned hyp['cls'] to current dataset
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # iou loss ratio (obj_loss = 1.0 or iou)

    all_test_dataloader = create_dataloader(
        test_path,
        # '/media/ivan/share/core50_350_1f/test.txt',
        imgsz_test,
        total_batch_size,
        gs,
        hyp=hyp,
        augment=False,
        # cache=opt.cache_images and not opt.notest,
        rect=False,
        rank=-1,
        world_size=opt.world_size,
        workers=opt.workers)[0]

    root = '/media/ivan/share/core50_350_1f/batches/'
    paths = os.listdir(root)
    train_paths = []
    valid_paths = []

    for p in paths:
        if 'train' in p:
            train_paths.append(root + p)
        elif 'val' in p:
            valid_paths.append(root + p)
        else:
            print(p)

    extMem = externalMemory(size=200)
    print(f'external memory file: {extMem.get_memory_file()}')

    train_paths = [
        '/media/ivan/share/demoset/train_4.txt',
        '/media/ivan/share/demoset/train_2.txt'
    ]
    valid_paths = [
        '/media/ivan/share/demoset/valid.txt',
        '/media/ivan/share/demoset/valid.txt'
    ]

    # prepare_params(hyp, opt, device, tb_writer=None, wandb=None)

    for core_batch in range(2):
        print(f'------------CORE50 itertaion №:{core_batch}------------')

        train_on_large_batch(core_batch,
                             train_paths[core_batch],
                             valid_paths[core_batch],
                             model,
                             device,
                             logger,
                             imgsz=imgsz,
                             imgsz_test=imgsz_test,
                             gs=gs,
                             opt=opt,
                             hyp=hyp,
                             nc=nc,
                             log_dir=log_dir,
                             tb_writer=tb_writer,
                             names=names,
                             optimizer=optimizer,
                             extMem=extMem,
                             scheduler=scheduler,
                             lf=lf,
                             best_fitness=best_fitness,
                             wandb_run=wandb_run)

    dist.destroy_process_group() if rank not in [-1, 0] else None
    torch.cuda.empty_cache()
    results, maps, times = test.test(
        opt.data,
        batch_size=total_batch_size,
        imgsz=imgsz_test,
        model=model,
        single_cls=opt.single_cls,
        dataloader=all_test_dataloader,
        save_dir=log_dir / 'images' / str(core_batch),
        # plots=epoch == 0 or final_epoch,  # plot first and last
        log_imgs=opt.log_imgs,
        verbose=True)

    # wandb.log({'per class/AP per class All': maps[0]})
    # tb_writer.add_scalar('per class/AP per class All', maps[0])

    # Log
    tags = [  # train loss
        'test/precision', 'test/recall', 'test/mAP_0.5', 'test/mAP_0.5:0.95',
        'test/giou_loss', 'test/obj_loss', 'test/cls_loss'
    ]  # params
    for x, tag in zip(list(results), tags):
        if tb_writer:
            tb_writer.add_scalar(tag, x, core_batch)  # tensorboard
        if wandb:
            wandb.log({tag: x})  # W&B

    return results
Пример #2
0
def load_checkpoint(type_,
                    weights,
                    device,
                    cfg=None,
                    hyp=None,
                    nc=None,
                    recipe=None,
                    resume=None,
                    rank=-1):
    with torch_distributed_zero_first(rank):
        attempt_download(weights)  # download if not found locally
    ckpt = torch.load(weights[0] if isinstance(weights, list)
                      or isinstance(weights, tuple) else weights,
                      map_location=device)  # load checkpoint
    start_epoch = ckpt['epoch'] + 1 if 'epoch' in ckpt else 0
    pickled = isinstance(ckpt['model'], nn.Module)
    train_type = type_ == 'train'
    ensemble_type = type_ == 'ensemble'

    if pickled and ensemble_type:
        # load ensemble using pickled
        cfg = None
        model = attempt_load(weights, map_location=device)  # load FP32 model
        state_dict = model.state_dict()
    else:
        # load model from config and weights
        cfg = cfg or (ckpt['yaml'] if 'yaml' in ckpt else None) or \
              (ckpt['model'].yaml if pickled else None)
        model = Model(cfg,
                      ch=3,
                      nc=ckpt['nc'] if ('nc' in ckpt and not nc) else nc,
                      anchors=hyp.get('anchors') if hyp else None).to(device)
        model_key = 'ema' if (not train_type and 'ema' in ckpt
                              and ckpt['ema']) else 'model'
        state_dict = ckpt[model_key].float().state_dict(
        ) if pickled else ckpt[model_key]

    # turn gradients for params back on in case they were removed
    for p in model.parameters():
        p.requires_grad = True

    # load sparseml recipe for applying pruning and quantization
    recipe = recipe or (ckpt['recipe'] if 'recipe' in ckpt else None)
    sparseml_wrapper = SparseMLWrapper(model, recipe)
    exclude_anchors = train_type and (cfg or hyp.get('anchors')) and not resume
    loaded = False

    if not train_type:
        # apply the recipe to create the final state of the model when not training
        sparseml_wrapper.apply()
    else:
        # intialize the recipe for training and restore the weights before if no quantized weights
        quantized_state_dict = any(
            [name.endswith('.zero_point') for name in state_dict.keys()])
        if not quantized_state_dict:
            state_dict = load_state_dict(model,
                                         state_dict,
                                         train=True,
                                         exclude_anchors=exclude_anchors)
            loaded = True
        sparseml_wrapper.initialize(start_epoch)

    if not loaded:
        state_dict = load_state_dict(model,
                                     state_dict,
                                     train=train_type,
                                     exclude_anchors=exclude_anchors)

    model.float()
    report = 'Transferred %g/%g items from %s' % (
        len(state_dict), len(model.state_dict()), weights)

    return model, {
        'ckpt': ckpt,
        'state_dict': state_dict,
        'start_epoch': start_epoch,
        'sparseml_wrapper': sparseml_wrapper,
        'report': report,
    }
Пример #3
0
def train(hyp, opt, device, tb_writer=None):
    print(f'Hyperparameters {hyp}')
    log_dir = tb_writer.log_dir if tb_writer else 'runs/evolve'  # run directory
    wdir = str(Path(log_dir) / 'weights') + os.sep  # weights directory
    os.makedirs(wdir, exist_ok=True)
    last = wdir + 'last.pt'
    best = wdir + 'best.pt'
    results_file = log_dir + os.sep + 'results.txt'
    epochs, batch_size, total_batch_size, weights, rank = \
     opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.local_rank

    # Save run settings
    with open(Path(log_dir) / 'hyp.yaml', 'w') as f:
        yaml.dump(hyp, f, sort_keys=False)
    with open(Path(log_dir) / 'opt.yaml', 'w') as f:
        yaml.dump(vars(opt), f, sort_keys=False)

    # Configure
    cuda = device.type != 'cpu'
    init_seeds(2 + rank)
    with open(opt.data) as f:
        data_dict = yaml.load(f, Loader=yaml.FullLoader)  # model dict
    # train_path = data_dict['train']
    train_path = f'{opt.trainset_path}/images/train'
    # test_path = data_dict['val']
    test_path = f'{opt.trainset_path}/images/test'
    nc, names = (1, ['item']) if opt.single_cls else (int(
        data_dict['nc']), data_dict['names'])  # number classes, names
    assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (
        len(names), nc, opt.data)  # check

    # Remove previous results
    if rank in [-1, 0]:
        for f in glob.glob('*_batch*.jpg') + glob.glob(results_file):
            os.remove(f)

    # Create model
    if opt.not_use_SE:
        model = Model(opt.cfg, nc=nc).to(device)
    else:
        model = ModelSE(opt.cfg, nc=nc).to(device)

    print(model)
    exit()

    # Image sizes
    gs = int(max(model.stride))  # grid size (max stride)
    imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size
                         ]  # verify imgsz are gs-multiples

    # Optimizer
    nbs = 64  # nominal batch size
    # default DDP implementation is slow for accumulation according to: https://pytorch.org/docs/stable/notes/ddp.html
    # all-reduce operation is carried out during loss.backward().
    # Thus, there would be redundant all-reduce communications in a accumulation procedure,
    # which means, the result is still right but the training speed gets slower.
    # in https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/LanguageModeling/BERT/run_pretraining.py
    accumulate = max(round(nbs / total_batch_size),
                     1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= total_batch_size * accumulate / nbs  # scale weight_decay

    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_parameters():
        if v.requires_grad:
            if '.bias' in k:
                pg2.append(v)  # biases
            elif '.weight' in k and '.bn' not in k:
                pg1.append(v)  # apply weight decay
            else:
                pg0.append(v)  # all else

    if opt.adam:
        optimizer = optim.Adam(pg0,
                               lr=hyp['lr0'],
                               betas=(hyp['momentum'],
                                      0.999))  # adjust beta1 to momentum
    else:
        optimizer = optim.SGD(pg0,
                              lr=hyp['lr0'],
                              momentum=hyp['momentum'],
                              nesterov=True)

    optimizer.add_param_group({
        'params': pg1,
        'weight_decay': hyp['weight_decay']
    })  # add pg1 with weight_decay
    optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
    print('Optimizer groups: %g .bias, %g conv.weight, %g other' %
          (len(pg2), len(pg1), len(pg0)))
    del pg0, pg1, pg2

    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
    lf = lambda x: ((
        (1 + math.cos(x * math.pi / epochs)) / 2)**1.0) * 0.8 + 0.2  # cosine
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    # plot_lr_scheduler(optimizer, scheduler, epochs)

    # Load Model
    with torch_distributed_zero_first(rank):
        attempt_download(weights)
    start_epoch, best_fitness = 0, 0.0
    if weights.endswith('.pt'):  # pytorch format
        ckpt = torch.load(weights, map_location=device)  # load checkpoint

        # load model
        try:
            exclude = ['anchor']  # exclude keys
            ckpt['model'] = {
                k: v
                for k, v in ckpt['model'].float().state_dict().items()
                if k in model.state_dict() and not any(x in k for x in exclude)
                and model.state_dict()[k].shape == v.shape
            }
            model.load_state_dict(ckpt['model'], strict=False)
            print('Transferred %g/%g items from %s' %
                  (len(ckpt['model']), len(model.state_dict()), weights))
        except KeyError as e:
            s = "%s is not compatible with %s. This may be due to model differences or %s may be out of date. " \
             "Please delete or update %s and try again, or use --weights '' to train from scratch." \
             % (weights, opt.cfg, weights, weights)
            raise KeyError(s) from e

        # load optimizer
        if ckpt['optimizer'] is not None:
            optimizer.load_state_dict(ckpt['optimizer'])
            best_fitness = ckpt['best_fitness']

        # load results
        if ckpt.get('training_results') is not None:
            with open(results_file, 'w') as file:
                file.write(ckpt['training_results'])  # write results.txt

        # epochs
        start_epoch = ckpt['epoch'] + 1
        if epochs < start_epoch:
            print(
                '%s has been trained for %g epochs. Fine-tuning for %g additional epochs.'
                % (weights, ckpt['epoch'], epochs))
            epochs += ckpt['epoch']  # finetune additional epochs

        del ckpt

    # DP mode
    if cuda and rank == -1 and torch.cuda.device_count() > 1:
        # model = torch.nn.DataParallel(model)
        model = torch.nn.DataParallel(model, device_ids=[0, 1])

    # SyncBatchNorm
    if opt.sync_bn and cuda and rank != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        print('Using SyncBatchNorm()')

    # Exponential moving average
    ema = ModelEMA(model) if rank in [-1, 0] else None

    # DDP mode
    if cuda and rank != -1:
        model = DDP(model, device_ids=[rank], output_device=rank)

    # Trainloader
    dataloader, dataset = create_dataloader(train_path,
                                            imgsz,
                                            batch_size,
                                            gs,
                                            opt,
                                            hyp=hyp,
                                            augment=True,
                                            cache=opt.cache_images,
                                            rect=opt.rect,
                                            local_rank=rank,
                                            world_size=opt.world_size)
    mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
    nb = len(dataloader)  # number of batches
    assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (
        mlc, nc, opt.data, nc - 1)

    # Testloaderc
    if rank in [-1, 0]:
        # local_rank is set to -1. Because only the first process is expected to do evaluation.
        testloader = create_dataloader(test_path,
                                       imgsz_test,
                                       total_batch_size,
                                       gs,
                                       opt,
                                       hyp=hyp,
                                       augment=False,
                                       cache=opt.cache_images,
                                       rect=True,
                                       local_rank=-1,
                                       world_size=opt.world_size)[0]

    # Model parameters
    hyp['cls'] *= nc / 80.  # scale coco-tuned hyp['cls'] to current dataset
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # giou loss ratio (obj_loss = 1.0 or giou)
    model.class_weights = labels_to_class_weights(dataset.labels, nc).to(
        device)  # attach class weights
    model.names = names

    # Class frequency
    if rank in [-1, 0]:
        labels = np.concatenate(dataset.labels, 0)
        c = torch.tensor(labels[:, 0])  # classes
        # cf = torch.bincount(c.long(), minlength=nc) + 1.
        # model._initialize_biases(cf.to(device))
        plot_labels(labels, save_dir=log_dir)
        if tb_writer:
            # tb_writer.add_hparams(hyp, {})  # causes duplicate https://github.com/ultralytics/yolov5/pull/384
            tb_writer.add_histogram('classes', c, 0)

        # Check anchors
        if not opt.noautoanchor:
            check_anchors(dataset,
                          model=model,
                          thr=hyp['anchor_t'],
                          imgsz=imgsz)

    # Start training
    t0 = time.time()
    nw = max(3 * nb,
             1e3)  # number of warmup iterations, max(3 epochs, 1k iterations)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    maps = np.zeros(nc)  # mAP per class
    results = (
        0, 0, 0, 0, 0, 0, 0
    )  # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'
    scheduler.last_epoch = start_epoch - 1  # do not move
    scaler = amp.GradScaler(enabled=cuda)
    if rank in [0, -1]:
        print('Image sizes %g train, %g test' % (imgsz, imgsz_test))
        print('Using %g dataloader workers' % dataloader.num_workers)
        print('Starting training for %g epochs...' % epochs)
    # torch.autograd.set_detect_anomaly(True)

    for epoch in range(
            start_epoch, epochs
    ):  # epoch ------------------------------------------------------------------
        model.train()

        # Update image weights (optional)
        if dataset.image_weights:
            # Generate indices
            if rank in [-1, 0]:
                w = model.class_weights.cpu().numpy() * (
                    1 - maps)**2  # class weights
                image_weights = labels_to_image_weights(dataset.labels,
                                                        nc=nc,
                                                        class_weights=w)
                dataset.indices = random.choices(
                    range(dataset.n), weights=image_weights,
                    k=dataset.n)  # rand weighted idx
            # Broadcast if DDP
            if rank != -1:
                indices = torch.zeros([dataset.n], dtype=torch.int)
                if rank == 0:
                    indices[:] = torch.from_tensor(dataset.indices,
                                                   dtype=torch.int)
                dist.broadcast(indices, 0)
                if rank != 0:
                    dataset.indices = indices.cpu().numpy()

        # Update mosaic border
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = torch.zeros(4, device=device)  # mean losses
        if rank != -1:
            dataloader.sampler.set_epoch(epoch)
        pbar = enumerate(dataloader)
        if rank in [-1, 0]:
            print(
                ('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj',
                                       'cls', 'total', 'targets', 'img_size'))
            pbar = tqdm(pbar, total=nb)  # progress bar
        optimizer.zero_grad()
        for i, (
                imgs, targets, paths, _
        ) in pbar:  # batch -------------------------------------------------------------
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device, non_blocking=True).float(
            ) / 255.0  # uint8 to float32, 0-255 to 0.0-1.0

            # Warmup
            if ni <= nw:
                xi = [0, nw]  # x interp
                # model.gr = np.interp(ni, xi, [0.0, 1.0])  # giou loss ratio (obj_loss = 1.0 or giou)
                accumulate = max(
                    1,
                    np.interp(ni, xi, [1, nbs / total_batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x['lr'] = np.interp(
                        ni, xi,
                        [0.1 if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(ni, xi,
                                                  [0.9, hyp['momentum']])

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5,
                                      imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]
                          ]  # new shape (stretched to gs-multiple)
                    imgs = F.interpolate(imgs,
                                         size=ns,
                                         mode='bilinear',
                                         align_corners=False)

            # Autocast
            with amp.autocast(enabled=cuda):
                # Forward
                pred = model(imgs)

                # print([x.shape for x in pred])  # [1, 3, 76, 76, 25] [1, 3, 38, 38, 25] [1, 3, 19, 19, 25])

                # Loss
                loss, loss_items = compute_loss(pred, targets.to(device),
                                                model)  # scaled by batch_size
                if rank != -1:
                    loss *= opt.world_size  # gradient averaged between devices in DDP mode
                # if not torch.isfinite(loss):
                #     print('WARNING: non-finite loss, ending training ', loss_items)
                #     return results

            # Backward
            scaler.scale(loss).backward()

            # Optimize
            if ni % accumulate == 0:
                scaler.step(optimizer)  # optimizer.step
                scaler.update()
                optimizer.zero_grad()
                if ema is not None:
                    ema.update(model)

            # Print
            if rank in [-1, 0]:
                mloss = (mloss * i + loss_items) / (i + 1
                                                    )  # update mean losses
                mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9
                                 if torch.cuda.is_available() else 0)  # (GB)
                s = ('%10s' * 2 +
                     '%10.4g' * 6) % ('%g/%g' % (epoch, epochs - 1), mem,
                                      *mloss, targets.shape[0], imgs.shape[-1])
                pbar.set_description(s)

                # Plot
                if ni < 3:
                    f = str(Path(log_dir) /
                            ('train_batch%g.jpg' % ni))  # filename
                    result = plot_images(images=imgs,
                                         targets=targets,
                                         paths=paths,
                                         fname=f)
                    if tb_writer and result is not None:
                        tb_writer.add_image(f,
                                            result,
                                            dataformats='HWC',
                                            global_step=epoch)
                        # tb_writer.add_graph(model, imgs)  # add model to tensorboard

            # end batch ------------------------------------------------------------------------------------------------

        # Scheduler
        scheduler.step()

        # DDP process 0 or single-GPU
        if rank in [-1, 0]:
            # mAP
            if ema is not None:
                ema.update_attr(
                    model,
                    include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride'])
            final_epoch = epoch + 1 == epochs
            if not opt.notest or final_epoch:  # Calculate mAP
                results, maps, times = test.test(
                    opt.data,
                    batch_size=total_batch_size,
                    imgsz=imgsz_test,
                    save_json=final_epoch
                    and opt.data.endswith(os.sep + 'coco.yaml'),
                    model=ema.ema.module
                    if hasattr(ema.ema, 'module') else ema.ema,
                    single_cls=opt.single_cls,
                    dataloader=testloader,
                    save_dir=log_dir)

            # Write
            with open(results_file, 'a') as f:
                f.write(s + '%10.4g' * 7 % results +
                        '\n')  # P, R, mAP, F1, test_losses=(GIoU, obj, cls)
            if len(opt.name) and opt.bucket:
                os.system('gsutil cp %s gs://%s/results/results%s.txt' %
                          (results_file, opt.bucket, opt.name))

            # Tensorboard
            if tb_writer:
                tags = [
                    'train/giou_loss', 'train/obj_loss', 'train/cls_loss',
                    'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5',
                    'metrics/mAP_0.5:0.95', 'val/giou_loss', 'val/obj_loss',
                    'val/cls_loss'
                ]
                for x, tag in zip(list(mloss[:-1]) + list(results), tags):
                    tb_writer.add_scalar(tag, x, epoch)

            # Update best mAP
            fi = fitness(np.array(results).reshape(
                1, -1))  # fitness_i = weighted combination of [P, R, mAP, F1]
            if fi > best_fitness:
                best_fitness = fi

            # Save model
            save = (not opt.nosave) or (final_epoch and not opt.evolve)
            if save:
                with open(results_file, 'r') as f:  # create checkpoint
                    ckpt = {
                        'epoch':
                        epoch,
                        'best_fitness':
                        best_fitness,
                        'training_results':
                        f.read(),
                        'model':
                        ema.ema.module if hasattr(ema, 'module') else ema.ema,
                        'optimizer':
                        None if final_epoch else optimizer.state_dict()
                    }

                # Save last, best and delete
                torch.save(ckpt, last)
                if best_fitness == fi:
                    torch.save(ckpt, best)
                del ckpt
        # end epoch ----------------------------------------------------------------------------------------------------
    # end training

    if rank in [-1, 0]:
        # Strip optimizers
        n = ('_'
             if len(opt.name) and not opt.name.isnumeric() else '') + opt.name
        fresults, flast, fbest = 'results%s.txt' % n, wdir + 'last%s.pt' % n, wdir + 'best%s.pt' % n
        for f1, f2 in zip([wdir + 'last.pt', wdir + 'best.pt', 'results.txt'],
                          [flast, fbest, fresults]):
            if os.path.exists(f1):
                os.rename(f1, f2)  # rename
                ispt = f2.endswith('.pt')  # is *.pt
                strip_optimizer(f2) if ispt else None  # strip optimizer
                os.system('gsutil cp %s gs://%s/weights' % (
                    f2, opt.bucket)) if opt.bucket and ispt else None  # upload
        # Finish
        if not opt.evolve:
            plot_results(save_dir=log_dir)  # save as results.png
        print('%g epochs completed in %.3f hours.\n' %
              (epoch - start_epoch + 1, (time.time() - t0) / 3600))

    dist.destroy_process_group() if rank not in [-1, 0] else None
    torch.cuda.empty_cache()
    return results
Пример #4
0
def train(
    hyp,  # path/to/hyp.yaml or hyp dictionary
    opt,
    device,
):
    save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, notest, nosave, workers, = \
        opt.save_dir, opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \
        opt.resume, opt.notest, opt.nosave, opt.workers

    # Directories
    save_dir = Path(save_dir)
    wdir = save_dir / 'weights'
    wdir.mkdir(parents=True, exist_ok=True)  # make dir
    last = wdir / 'last.pt'
    best = wdir / 'best.pt'
    results_file = save_dir / 'results.txt'

    # Hyperparameters
    if isinstance(hyp, str):
        with open(hyp) as f:
            hyp = yaml.safe_load(f)  # load hyps dict
    logger.info(
        colorstr('hyperparameters: ') + ', '.join(f'{k}={v}'
                                                  for k, v in hyp.items()))

    # Save run settings
    with open(save_dir / 'hyp.yaml', 'w') as f:
        yaml.safe_dump(hyp, f, sort_keys=False)
    with open(save_dir / 'opt.yaml', 'w') as f:
        yaml.safe_dump(vars(opt), f, sort_keys=False)

    # Configure
    plots = not evolve  # create plots
    cuda = device.type != 'cpu'
    init_seeds(2 + RANK)
    with open(data) as f:
        data_dict = yaml.safe_load(f)  # data dict

    # Loggers
    loggers = {'wandb': None, 'tb': None}  # loggers dict
    if RANK in [-1, 0]:
        # TensorBoard
        if not evolve:
            prefix = colorstr('tensorboard: ')
            logger.info(
                f"{prefix}Start with 'tensorboard --logdir {opt.project}', view at http://localhost:6006/"
            )
            loggers['tb'] = SummaryWriter(str(save_dir))

        # W&B
        opt.hyp = hyp  # add hyperparameters
        run_id = torch.load(weights).get('wandb_id') if weights.endswith(
            '.pt') and os.path.isfile(weights) else None
        run_id = run_id if opt.resume else None  # start fresh run if transfer learning
        wandb_logger = WandbLogger(opt, save_dir.stem, run_id, data_dict)
        loggers['wandb'] = wandb_logger.wandb
        if loggers['wandb']:
            data_dict = wandb_logger.data_dict
            weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp  # may update weights, epochs if resuming

    nc = 1 if single_cls else int(data_dict['nc'])  # number of classes
    names = ['item'] if single_cls and len(
        data_dict['names']) != 1 else data_dict['names']  # class names
    assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (
        len(names), nc, data)  # check
    is_coco = data.endswith('coco.yaml') and nc == 80  # COCO dataset

    # Model
    pretrained = weights.endswith('.pt')
    if pretrained:
        with torch_distributed_zero_first(RANK):
            weights = attempt_download(
                weights)  # download if not found locally
        ckpt = torch.load(weights, map_location=device)  # load checkpoint
        model = Model(cfg or ckpt['model'].yaml,
                      ch=3,
                      nc=nc,
                      anchors=hyp.get('anchors')).to(device)  # create
        exclude = [
            'anchor'
        ] if (cfg or hyp.get('anchors')) and not resume else []  # exclude keys
        state_dict = ckpt['model'].float().state_dict()  # to FP32
        state_dict = intersect_dicts(state_dict,
                                     model.state_dict(),
                                     exclude=exclude)  # intersect
        model.load_state_dict(state_dict, strict=False)  # load
        logger.info(
            'Transferred %g/%g items from %s' %
            (len(state_dict), len(model.state_dict()), weights))  # report
    else:
        model = Model(cfg, ch=3, nc=nc,
                      anchors=hyp.get('anchors')).to(device)  # create
    with torch_distributed_zero_first(RANK):
        check_dataset(data_dict)  # check
    train_path = data_dict['train']
    test_path = data_dict['val']

    # Freeze
    freeze = []  # parameter names to freeze (full or partial)
    for k, v in model.named_parameters():
        v.requires_grad = True  # train all layers
        if any(x in k for x in freeze):
            print('freezing %s' % k)
            v.requires_grad = False

    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / batch_size),
                     1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= batch_size * accumulate / nbs  # scale weight_decay
    logger.info(f"Scaled weight_decay = {hyp['weight_decay']}")

    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_modules():
        if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
            pg2.append(v.bias)  # biases
        if isinstance(v, nn.BatchNorm2d):
            pg0.append(v.weight)  # no decay
        elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
            pg1.append(v.weight)  # apply decay

    if opt.adam:
        optimizer = optim.Adam(pg0,
                               lr=hyp['lr0'],
                               betas=(hyp['momentum'],
                                      0.999))  # adjust beta1 to momentum
    else:
        optimizer = optim.SGD(pg0,
                              lr=hyp['lr0'],
                              momentum=hyp['momentum'],
                              nesterov=True)

    optimizer.add_param_group({
        'params': pg1,
        'weight_decay': hyp['weight_decay']
    })  # add pg1 with weight_decay
    optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
    logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' %
                (len(pg2), len(pg1), len(pg0)))
    del pg0, pg1, pg2

    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
    if opt.linear_lr:
        lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp[
            'lrf']  # linear
    else:
        lf = one_cycle(1, hyp['lrf'], epochs)  # cosine 1->hyp['lrf']
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    # plot_lr_scheduler(optimizer, scheduler, epochs)

    # EMA
    ema = ModelEMA(model) if RANK in [-1, 0] else None

    # Resume
    start_epoch, best_fitness = 0, 0.0
    if pretrained:
        # Optimizer
        if ckpt['optimizer'] is not None:
            optimizer.load_state_dict(ckpt['optimizer'])
            best_fitness = ckpt['best_fitness']

        # EMA
        if ema and ckpt.get('ema'):
            ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
            ema.updates = ckpt['updates']

        # Results
        if ckpt.get('training_results') is not None:
            results_file.write_text(
                ckpt['training_results'])  # write results.txt

        # Epochs
        start_epoch = ckpt['epoch'] + 1
        if resume:
            assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (
                weights, epochs)
            if opt.stop:
                epochs = start_epoch + 1
        if epochs < start_epoch:
            logger.info(
                '%s has been trained for %g epochs. Fine-tuning for %g additional epochs.'
                % (weights, ckpt['epoch'], epochs))
            epochs += ckpt['epoch']  # finetune additional epochs

        del ckpt, state_dict

    # Image sizes
    gs = max(int(model.stride.max()), 32)  # grid size (max stride)
    nl = model.model[
        -1].nl  # number of detection layers (used for scaling hyp['obj'])
    imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size
                         ]  # verify imgsz are gs-multiples

    # DP mode
    if cuda and RANK == -1 and torch.cuda.device_count() > 1:
        logging.warning(
            'DP not recommended, instead use torch.distributed.run for best DDP Multi-GPU results.\n'
            'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.'
        )
        model = torch.nn.DataParallel(model)

    # SyncBatchNorm
    if opt.sync_bn and cuda and RANK != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        logger.info('Using SyncBatchNorm()')

    # Trainloader
    dataloader, dataset = create_dataloader(train_path,
                                            imgsz,
                                            batch_size // WORLD_SIZE,
                                            gs,
                                            single_cls,
                                            hyp=hyp,
                                            augment=True,
                                            cache=opt.cache_images,
                                            rect=opt.rect,
                                            rank=RANK,
                                            workers=workers,
                                            image_weights=opt.image_weights,
                                            quad=opt.quad,
                                            prefix=colorstr('train: '))
    mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
    nb = len(dataloader)  # number of batches
    assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (
        mlc, nc, data, nc - 1)

    # Process 0
    if RANK in [-1, 0]:
        testloader = create_dataloader(test_path,
                                       imgsz_test,
                                       batch_size // WORLD_SIZE * 2,
                                       gs,
                                       single_cls,
                                       hyp=hyp,
                                       cache=opt.cache_images and not notest,
                                       rect=True,
                                       rank=-1,
                                       workers=workers,
                                       pad=0.5,
                                       prefix=colorstr('val: '))[0]

        if not resume:
            labels = np.concatenate(dataset.labels, 0)
            c = torch.tensor(labels[:, 0])  # classes
            # cf = torch.bincount(c.long(), minlength=nc) + 1.  # frequency
            # model._initialize_biases(cf.to(device))
            if plots:
                plot_labels(labels, names, save_dir, loggers)
                if loggers['tb']:
                    loggers['tb'].add_histogram('classes', c, 0)  # TensorBoard

            # Anchors
            if not opt.noautoanchor:
                check_anchors(dataset,
                              model=model,
                              thr=hyp['anchor_t'],
                              imgsz=imgsz)
            model.half().float()  # pre-reduce anchor precision

    # DDP mode
    if cuda and RANK != -1:
        model = DDP(
            model,
            device_ids=[LOCAL_RANK],
            output_device=LOCAL_RANK,
            # nn.MultiheadAttention incompatibility with DDP https://github.com/pytorch/pytorch/issues/26698
            find_unused_parameters=any(
                isinstance(layer, nn.MultiheadAttention)
                for layer in model.modules()))

    # Model parameters
    hyp['box'] *= 3. / nl  # scale to layers
    hyp['cls'] *= nc / 80. * 3. / nl  # scale to classes and layers
    hyp['obj'] *= (imgsz / 640)**2 * 3. / nl  # scale to image size and layers
    hyp['label_smoothing'] = opt.label_smoothing
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # iou loss ratio (obj_loss = 1.0 or iou)
    model.class_weights = labels_to_class_weights(
        dataset.labels, nc).to(device) * nc  # attach class weights
    model.names = names

    # Start training
    t0 = time.time()
    nw = max(round(hyp['warmup_epochs'] * nb),
             1000)  # number of warmup iterations, max(3 epochs, 1k iterations)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    maps = np.zeros(nc)  # mAP per class
    results = (0, 0, 0, 0, 0, 0, 0
               )  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
    scheduler.last_epoch = start_epoch - 1  # do not move
    scaler = amp.GradScaler(enabled=cuda)
    compute_loss = ComputeLoss(model)  # init loss class
    logger.info(f'Image sizes {imgsz} train, {imgsz_test} test\n'
                f'Using {dataloader.num_workers} dataloader workers\n'
                f'Logging results to {save_dir}\n'
                f'Starting training for {epochs} epochs...')
    for epoch in range(
            start_epoch, epochs
    ):  # epoch ------------------------------------------------------------------
        model.train()

        # Update image weights (optional)
        if opt.image_weights:
            # Generate indices
            if RANK in [-1, 0]:
                cw = model.class_weights.cpu().numpy() * (
                    1 - maps)**2 / nc  # class weights
                iw = labels_to_image_weights(dataset.labels,
                                             nc=nc,
                                             class_weights=cw)  # image weights
                dataset.indices = random.choices(
                    range(dataset.n), weights=iw,
                    k=dataset.n)  # rand weighted idx
            # Broadcast if DDP
            if RANK != -1:
                indices = (torch.tensor(dataset.indices)
                           if RANK == 0 else torch.zeros(dataset.n)).int()
                dist.broadcast(indices, 0)
                if RANK != 0:
                    dataset.indices = indices.cpu().numpy()

        # Update mosaic border
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = torch.zeros(4, device=device)  # mean losses
        if RANK != -1:
            dataloader.sampler.set_epoch(epoch)
        pbar = enumerate(dataloader)
        logger.info(
            ('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls',
                                   'total', 'labels', 'img_size'))
        if RANK in [-1, 0]:
            pbar = tqdm(pbar, total=nb)  # progress bar
        optimizer.zero_grad()
        for i, (
                imgs, targets, paths, _
        ) in pbar:  # batch -------------------------------------------------------------
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device, non_blocking=True).float(
            ) / 255.0  # uint8 to float32, 0-255 to 0.0-1.0

            # Warmup
            if ni <= nw:
                xi = [0, nw]  # x interp
                # model.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
                accumulate = max(
                    1,
                    np.interp(ni, xi, [1, nbs / batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x['lr'] = np.interp(ni, xi, [
                        hyp['warmup_bias_lr'] if j == 2 else 0.0,
                        x['initial_lr'] * lf(epoch)
                    ])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(
                            ni, xi, [hyp['warmup_momentum'], hyp['momentum']])

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5,
                                      imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]
                          ]  # new shape (stretched to gs-multiple)
                    imgs = F.interpolate(imgs,
                                         size=ns,
                                         mode='bilinear',
                                         align_corners=False)

            # Forward
            with amp.autocast(enabled=cuda):
                pred = model(imgs)  # forward
                loss, loss_items = compute_loss(
                    pred, targets.to(device))  # loss scaled by batch_size
                if RANK != -1:
                    loss *= WORLD_SIZE  # gradient averaged between devices in DDP mode
                if opt.quad:
                    loss *= 4.

            # Backward
            scaler.scale(loss).backward()

            # Optimize
            if ni % accumulate == 0:
                scaler.step(optimizer)  # optimizer.step
                scaler.update()
                optimizer.zero_grad()
                if ema:
                    ema.update(model)

            # Print
            if RANK in [-1, 0]:
                mloss = (mloss * i + loss_items) / (i + 1
                                                    )  # update mean losses
                mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9
                                 if torch.cuda.is_available() else 0)  # (GB)
                s = ('%10s' * 2 +
                     '%10.4g' * 6) % (f'{epoch}/{epochs - 1}', mem, *mloss,
                                      targets.shape[0], imgs.shape[-1])
                pbar.set_description(s)

                # Plot
                if plots and ni < 3:
                    f = save_dir / f'train_batch{ni}.jpg'  # filename
                    Thread(target=plot_images,
                           args=(imgs, targets, paths, f),
                           daemon=True).start()
                    if loggers['tb'] and ni == 0:  # TensorBoard
                        with warnings.catch_warnings():
                            warnings.simplefilter(
                                'ignore')  # suppress jit trace warning
                            loggers['tb'].add_graph(
                                torch.jit.trace(de_parallel(model),
                                                imgs[0:1],
                                                strict=False), [])
                elif plots and ni == 10 and loggers['wandb']:
                    wandb_logger.log({
                        'Mosaics': [
                            loggers['wandb'].Image(str(x), caption=x.name)
                            for x in save_dir.glob('train*.jpg') if x.exists()
                        ]
                    })

            # end batch ------------------------------------------------------------------------------------------------

        # Scheduler
        lr = [x['lr'] for x in optimizer.param_groups]  # for loggers
        scheduler.step()

        # DDP process 0 or single-GPU
        if RANK in [-1, 0]:
            # mAP
            ema.update_attr(model,
                            include=[
                                'yaml', 'nc', 'hyp', 'gr', 'names', 'stride',
                                'class_weights'
                            ])
            final_epoch = epoch + 1 == epochs
            if not notest or final_epoch:  # Calculate mAP
                wandb_logger.current_epoch = epoch + 1
                results, maps, _ = test.run(data_dict,
                                            batch_size=batch_size //
                                            WORLD_SIZE * 2,
                                            imgsz=imgsz_test,
                                            model=ema.ema,
                                            single_cls=single_cls,
                                            dataloader=testloader,
                                            save_dir=save_dir,
                                            save_json=is_coco and final_epoch,
                                            verbose=nc < 50 and final_epoch,
                                            plots=plots and final_epoch,
                                            wandb_logger=wandb_logger,
                                            compute_loss=compute_loss)

            # Write
            with open(results_file, 'a') as f:
                f.write(s + '%10.4g' * 7 % results +
                        '\n')  # append metrics, val_loss

            # Log
            tags = [
                'train/box_loss',
                'train/obj_loss',
                'train/cls_loss',  # train loss
                'metrics/precision',
                'metrics/recall',
                'metrics/mAP_0.5',
                'metrics/mAP_0.5:0.95',
                'val/box_loss',
                'val/obj_loss',
                'val/cls_loss',  # val loss
                'x/lr0',
                'x/lr1',
                'x/lr2'
            ]  # params
            for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
                if loggers['tb']:
                    loggers['tb'].add_scalar(tag, x, epoch)  # TensorBoard
                if loggers['wandb']:
                    wandb_logger.log({tag: x})  # W&B

            # Update best mAP
            fi = fitness(np.array(results).reshape(
                1, -1))  # weighted combination of [P, R, [email protected], [email protected]]
            if fi > best_fitness:
                best_fitness = fi
            wandb_logger.end_epoch(best_result=best_fitness == fi)

            # Save model
            if (not nosave) or (final_epoch and not evolve):  # if save
                ckpt = {
                    'epoch':
                    epoch,
                    'best_fitness':
                    best_fitness,
                    'training_results':
                    results_file.read_text(),
                    'model':
                    deepcopy(de_parallel(model)).half(),
                    'ema':
                    deepcopy(ema.ema).half(),
                    'updates':
                    ema.updates,
                    'optimizer':
                    optimizer.state_dict(),
                    'wandb_id':
                    wandb_logger.wandb_run.id if loggers['wandb'] else None
                }

                # Save last, best and delete
                torch.save(ckpt, last)
                if best_fitness == fi:
                    torch.save(ckpt, best)
                if loggers['wandb']:
                    if ((epoch + 1) % opt.save_period == 0
                            and not final_epoch) and opt.save_period != -1:
                        wandb_logger.log_model(last.parent,
                                               opt,
                                               epoch,
                                               fi,
                                               best_model=best_fitness == fi)
                del ckpt

        # end epoch ----------------------------------------------------------------------------------------------------
    # end training -----------------------------------------------------------------------------------------------------
    if RANK in [-1, 0]:
        logger.info(
            f'{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.\n'
        )
        if plots:
            plot_results(save_dir=save_dir)  # save as results.png
            if loggers['wandb']:
                files = [
                    'results.png', 'confusion_matrix.png',
                    *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]
                ]
                wandb_logger.log({
                    "Results": [
                        loggers['wandb'].Image(str(save_dir / f), caption=f)
                        for f in files if (save_dir / f).exists()
                    ]
                })

        if not evolve:
            if is_coco:  # COCO dataset
                for m in [last, best
                          ] if best.exists() else [last]:  # speed, mAP tests
                    results, _, _ = test.run(
                        data,
                        batch_size=batch_size // WORLD_SIZE * 2,
                        imgsz=imgsz_test,
                        conf_thres=0.001,
                        iou_thres=0.7,
                        model=attempt_load(m, device).half(),
                        single_cls=single_cls,
                        dataloader=testloader,
                        save_dir=save_dir,
                        save_json=True,
                        plots=False)

            # Strip optimizers
            for f in last, best:
                if f.exists():
                    strip_optimizer(f)  # strip optimizers
            if loggers['wandb']:  # Log the stripped model
                loggers['wandb'].log_artifact(
                    str(best if best.exists() else last),
                    type='model',
                    name='run_' + wandb_logger.wandb_run.id + '_model',
                    aliases=['latest', 'best', 'stripped'])
        wandb_logger.finish_run()

    torch.cuda.empty_cache()
    return results
Пример #5
0
                        nargs='+',
                        type=int,
                        default=[640, 640],
                        help='image size')
    parser.add_argument('--batch-size', type=int, default=1, help='batch size')
    opt = parser.parse_args()
    opt.img_size *= 2 if len(opt.img_size) == 1 else 1  # expand
    print(opt)
    set_logging()

    # Input
    img = torch.zeros((opt.batch_size, 3,
                       *opt.img_size))  # image size(1,3,320,192) iDetection

    # Load PyTorch model
    attempt_download(opt.weights)
    model = torch.load(opt.weights,
                       map_location=torch.device('cpu'))['model'].float()
    model.eval()
    model.model[-1].export = True  # set Detect() layer export=True
    y = model(img)  # dry run

    # TorchScript export
    try:
        print('\nStarting TorchScript export with torch %s...' %
              torch.__version__)
        f = opt.weights.replace('.pt', '.torchscript.pt')  # filename
        ts = torch.jit.trace(model, img)
        ts.save(f)
        print('TorchScript export success, saved as %s' % f)
    except Exception as e:
Пример #6
0
def train(hyp, opt, device, tb_writer=None):
    logger.info(f'Hyperparameters {hyp}')

    print("tb_writer.log_dir: ", tb_writer.log_dir)  #resumed的时候可以从这里恢复
    log_dir = Path(tb_writer.log_dir) if tb_writer else Path(
        opt.logdir) / 'evolve'  # logging directory
    wdir = log_dir / 'weights'  # weights directory
    os.makedirs(wdir, exist_ok=True)
    last = wdir / 'last.pt'
    best = wdir / 'best.pt'
    print("log_dir: ", log_dir)
    print("wdir: ", wdir)
    print("last: ", last)
    print("best: ", best)
    results_file = str(log_dir / 'results.txt')
    epochs, batch_size, total_batch_size, weights, rank = \
        opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank
    print("epochs: ", epochs)
    print("batch_size: ", batch_size)
    print("total_batch_size: ", total_batch_size)
    print("weights: ", weights)
    print("rank: ", rank)

    # Save run settings
    with open(log_dir / 'hyp.yaml', 'w') as f:
        yaml.dump(hyp, f, sort_keys=False)
    with open(log_dir / 'opt.yaml', 'w') as f:
        yaml.dump(vars(opt), f, sort_keys=False)

    # Configure
    cuda = device.type != 'cpu'
    print("cuda: ", cuda)
    init_seeds(2 + rank)
    with open(opt.data) as f:
        data_dict = yaml.load(f, Loader=yaml.FullLoader)  # data dict
    print("data_dict: ", data_dict)

    with torch_distributed_zero_first(rank):
        check_dataset(data_dict)  # check

    train_path = data_dict['train']
    test_path = data_dict['val']
    nc, names = (1, ['item']) if opt.single_cls else (int(
        data_dict['nc']), data_dict['names'])  # number classes, names

    assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (
        len(names), nc, opt.data)  # check

    # Model
    pretrained = weights.endswith('.pt')
    print("pretrained: ", pretrained)

    if pretrained:
        with torch_distributed_zero_first(rank):
            attempt_download(weights)  # download if not found locally
        ckpt = torch.load(weights, map_location=device)  # load checkpoint
        """ckpt中,['epoch'], ['best_fitness'], ['training_results'], ['model'], ['optimizer']"""
        # print("ckpt: ", ckpt)
        print(
            "ckpt: ['epoch'], ['best_fitness'], ['training_results'], ['optimizer']: ",
            ckpt['epoch'], ckpt['best_fitness'], ckpt['training_results'],
            ckpt['optimizer'])
        # print("ckpt['model']: ", ckpt['model'])
        # print("ckpt['model'].model: ", ckpt['model'].model)
        # print("ckpt['model'].state_dict(): ", ckpt['model'].state_dict())
        print("ckpt['model'].save: ", ckpt['model'].save)
        print("ckpt['model'].yaml: ", ckpt['model'].yaml)

        print("hyp.get('anchors'): ", hyp.get('anchors'))
        if hyp.get('anchors'):
            ckpt['model'].yaml['anchors'] = round(
                hyp['anchors'])  # force autoanchor

        print("opt.cfg: ", opt.cfg)
        # create, 都为真则取or前面的, 即以opt.cfg中的内容(eg:yolov5s.yaml, yolov5x.yaml...)为主,其次是ckpt['model'].yaml
        model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc).to(device)
        exclude = (['anchor'] if opt.cfg or hyp.get('anchors') else []
                   )  # exclude keys, 以opt.cfg中的anchor为主,其次是hyp中的
        print("exclude: ", exclude)
        state_dict = ckpt['model'].float().state_dict()  # to FP32
        state_dict = intersect_dicts(state_dict,
                                     model.state_dict(),
                                     exclude=exclude)  # intersect
        model.load_state_dict(state_dict, strict=False)  # load
        # print("state_dict: ", state_dict)
        logger.info(
            'Transferred %g/%g items from %s' %
            (len(state_dict), len(model.state_dict()), weights))  # report
    else:
        model = Model(opt.cfg, ch=3, nc=nc).to(device)  # create

    # Freeze
    freeze = [
        '',
    ]  # parameter names to freeze (full or partial)
    if any(freeze):
        for k, v in model.named_parameters():
            if any(x in k for x in freeze):
                print('freezing %s' % k)
                v.requires_grad = False

    # Optimizer
    """当模型梯度累积了(nbs/total_batch_size)次之后,再更新一次模型参数,变相的扩大了batch_size"""
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / total_batch_size),
                     1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= total_batch_size * accumulate / nbs  # scale weight_decay

    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_parameters():
        v.requires_grad = True
        if '.bias' in k:
            pg2.append(v)  # biases
        elif '.weight' in k and '.bn' not in k:
            pg1.append(v)  # apply weight decay
        else:
            pg0.append(v)  # all else

    #optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999))  # adjust beta1 to momentum
    optimizer = optim.SGD(pg0,
                          lr=hyp['lr0'],
                          momentum=hyp['momentum'],
                          nesterov=True)

    optimizer.add_param_group({
        'params': pg1,
        'weight_decay': hyp['weight_decay']
    })  # add pg1 with weight_decay
    optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
    logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' %
                (len(pg2), len(pg1), len(pg0)))
    del pg0, pg1, pg2

    # 设置学习率衰减,这里为余弦退火方式进行衰减
    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
    lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - hyp[
        'lrf']) + hyp['lrf']  # cosine
    scheduler = lr_scheduler.LambdaLR(optimizer,
                                      lr_lambda=lf)  #每个epochs具有一个不同的学习率
    # plot_lr_scheduler(optimizer, scheduler, epochs)

    # Resume
    start_epoch, best_fitness = 0, 0.0
    if pretrained:
        # Optimizer
        if ckpt['optimizer'] is not None:
            optimizer.load_state_dict(ckpt['optimizer'])
            best_fitness = ckpt['best_fitness']

        # Results
        if ckpt.get('training_results') is not None:
            with open(results_file, 'w') as file:
                file.write(ckpt['training_results'])  # write results.txt

        # Epochs
        start_epoch = ckpt['epoch'] + 1
        if opt.resume:
            assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (
                weights, epochs)
            shutil.copytree(wdir, wdir.parent /
                            f'weights_backup_epoch{start_epoch - 1}'
                            )  # save previous weights
        if epochs < start_epoch:
            logger.info(
                '%s has been trained for %g epochs. Fine-tuning for %g additional epochs.'
                % (weights, ckpt['epoch'], epochs))
            epochs += ckpt['epoch']  # finetune additional epochs

        del ckpt, state_dict

    # Image sizes
    gs = int(max(model.stride))  # grid size (max stride)  # 获取模型总步长和模型输入图片分辨率
    imgsz, imgsz_test = [
        check_img_size(x, gs) for x in opt.img_size
    ]  # verify imgsz are gs-multiples  #检查输入图片分辨率是gs=32的整数倍
    print("imgsz: ", imgsz)
    print("imgsz_test: ", imgsz_test)

    # DP mode
    if cuda and rank == -1 and torch.cuda.device_count() > 1:
        print(
            "DP mode..............................................................................."
        )
        model = torch.nn.DataParallel(model)

    # SyncBatchNorm
    if opt.sync_bn and cuda and rank != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        logger.info('Using SyncBatchNorm()')

    # Exponential moving average
    ema = ModelEMA(model) if rank in [-1, 0] else None

    # DDP mode
    if cuda and rank != -1:
        model = DDP(model,
                    device_ids=[opt.local_rank],
                    output_device=opt.local_rank)

    # Trainloader
    dataloader, dataset = create_dataloader(train_path,
                                            imgsz,
                                            batch_size,
                                            gs,
                                            opt,
                                            hyp=hyp,
                                            augment=True,
                                            cache=opt.cache_images,
                                            rect=opt.rect,
                                            rank=rank,
                                            world_size=opt.world_size,
                                            workers=opt.workers)
    print("dataloader: ", dataloader)
    print("dataset: ", dataset)

    mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
    assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (
        mlc, nc, opt.data, nc - 1)

    nb = len(dataloader)  # number of batches
    print("nb: ", nb)

    # Process 0
    if rank in [-1, 0]:
        ema.updates = start_epoch * nb // accumulate  # set EMA updates
        print("ema.updates: ", ema.updates)
        testloader = create_dataloader(test_path,
                                       imgsz_test,
                                       total_batch_size,
                                       gs,
                                       opt,
                                       hyp=hyp,
                                       augment=False,
                                       cache=opt.cache_images
                                       and not opt.notest,
                                       rect=True,
                                       rank=-1,
                                       world_size=opt.world_size,
                                       workers=opt.workers)[0]  # testloader

        if not opt.resume:
            labels = np.concatenate(dataset.labels, 0)
            c = torch.tensor(labels[:, 0])  # classes
            # cf = torch.bincount(c.long(), minlength=nc) + 1.  # frequency
            # model._initialize_biases(cf.to(device))
            plot_labels(labels, save_dir=log_dir)
            if tb_writer:
                # tb_writer.add_hparams(hyp, {})  # causes duplicate https://github.com/ultralytics/yolov5/pull/384
                tb_writer.add_histogram('classes', c, 0)

            # Anchors
            if not opt.noautoanchor:
                check_anchors(dataset,
                              model=model,
                              thr=hyp['anchor_t'],
                              imgsz=imgsz)

    # Model parameters
    hyp['cls'] *= nc / 80.  # scale coco-tuned hyp['cls'] to current dataset
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # giou loss ratio (obj_loss = 1.0 or giou)
    model.class_weights = labels_to_class_weights(dataset.labels, nc).to(
        device)  # attach class weights
    model.names = names
    #print("model: ", model)

    # Start training
    t0 = time.time()
    n_warmup = max(
        round(hyp['warmup_epochs'] * nb),
        1e3)  # number of warmup iterations, max(3 epochs, 1k iterations)
    # n_warmup = min(n_warmup, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    print("n_warmup: ", n_warmup)

    scheduler.last_epoch = start_epoch - 1  # do not move
    scaler = amp.GradScaler(enabled=cuda)  #混合精度梯度放大模块

    maps = np.zeros(nc)  # mAP per class
    results = (
        0, 0, 0, 0, 0, 0, 0
    )  # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'

    logger.info(
        'Image sizes %g train, %g test\nUsing %g dataloader workers\nLogging results to %s\n'
        'Starting training for %g epochs...' %
        (imgsz, imgsz_test, dataloader.num_workers, log_dir, epochs))

    for epoch in range(
            start_epoch, epochs
    ):  # epoch ------------------------------------------------------------------
        model.train()

        # Update image weights (optional)
        if opt.image_weights:
            # Generate indices
            if rank in [-1, 0]:
                cw = model.class_weights.cpu().numpy() * (
                    1 - maps)**2  # class weights
                iw = labels_to_image_weights(dataset.labels,
                                             nc=nc,
                                             class_weights=cw)  # image weights
                dataset.indices = random.choices(
                    range(dataset.n), weights=iw,
                    k=dataset.n)  # rand weighted idx
            # Broadcast if DDP
            if rank != -1:
                indices = (torch.tensor(dataset.indices)
                           if rank == 0 else torch.zeros(dataset.n)).int()
                dist.broadcast(indices, 0)
                if rank != 0:
                    dataset.indices = indices.cpu().numpy()

        # Update mosaic border
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = torch.zeros(4, device=device)  # mean losses
        if rank != -1:
            dataloader.sampler.set_epoch(epoch)

        pbar = enumerate(dataloader)
        logger.info(
            ('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls',
                                   'total', 'targets', 'img_size'))
        if rank in [-1, 0]:
            pbar = tqdm(pbar, total=nb)  # progress bar

        optimizer.zero_grad()
        for i, (
                imgs, targets, paths, _
        ) in pbar:  # batch -------------------------------------------------------------
            ni = i + nb * epoch  # number integrated batches (since train start batch)
            imgs = imgs.to(device, non_blocking=True).float(
            ) / 255.0  # uint8 to float32, 0-255 to 0.0-1.0
            # Warmup
            if ni <= n_warmup:
                # model.gr = np.interp(ni, xi, [0.0, 1.0])  # giou loss ratio (obj_loss = 1.0 or giou)
                accumulate = max(
                    1,
                    np.interp(ni, [0, n_warmup],
                              [1, nbs / total_batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x['lr'] = np.interp(ni, [0, n_warmup], [
                        hyp['warmup_bias_lr'] if j == 2 else 0.0,
                        x['initial_lr'] * lf(epoch)
                    ])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(
                            ni, [0, n_warmup],
                            [hyp['warmup_momentum'], hyp['momentum']])

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5,
                                      imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]
                          ]  # new shape (stretched to gs-multiple)
                    imgs = F.interpolate(imgs,
                                         size=ns,
                                         mode='bilinear',
                                         align_corners=False)

            # Forward
            with amp.autocast(enabled=cuda):  #自动混合精度
                pred = model(imgs)  # forward
                loss, loss_items = compute_loss(
                    pred, targets.to(device),
                    model)  # loss scaled by batch_size
                if rank != -1:
                    loss *= opt.world_size  # gradient averaged between devices in DDP mode

            # Backward
            scaler.scale(loss).backward()

            # Optimize
            """每accumulate个batch时更新一次, 在n_warmup之内时,accumulate从1逐渐增大到4"""
            if ni % accumulate == 0:
                scaler.step(optimizer)  # optimizer.step
                scaler.update()
                optimizer.zero_grad()
                if ema:
                    ema.update(model)

            # Print
            if rank in [-1, 0]:
                mloss = (mloss * i + loss_items) / (i + 1
                                                    )  # update mean losses
                mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9
                                 if torch.cuda.is_available() else 0)  # (GB)
                s = ('%10s' * 2 +
                     '%10.4g' * 6) % ('%g/%g' % (epoch, epochs - 1), mem,
                                      *mloss, targets.shape[0], imgs.shape[-1])
                pbar.set_description(s)

                # Plot
                if ni < 3:
                    f = str(log_dir / ('train_batch%g.jpg' % ni))  # filename
                    result = plot_images(images=imgs,
                                         targets=targets,
                                         paths=paths,
                                         fname=f)
                    if tb_writer and result is not None:
                        tb_writer.add_image(f,
                                            result,
                                            dataformats='HWC',
                                            global_step=epoch)
                        # tb_writer.add_graph(model, imgs)  # add model to tensorboard

            # end batch ------------------------------------------------------------------------------------------------

        # Scheduler
        lr = [x['lr'] for x in optimizer.param_groups]  # for tensorboard
        scheduler.step()

        # DDP process 0 or single-GPU
        if rank in [-1, 0]:
            # mAP
            if ema:
                ema.update_attr(
                    model,
                    include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride'])
            final_epoch = epoch + 1 == epochs
            if not opt.notest or final_epoch:  # Calculate mAP
                if final_epoch:  # replot predictions
                    [
                        os.remove(x) for x in glob.glob(
                            str(log_dir / 'test_batch*_pred.jpg'))
                        if os.path.exists(x)
                    ]
                results, maps, times = evaluate.test(
                    opt.data,
                    batch_size=total_batch_size,
                    imgsz=imgsz_test,
                    model=ema.ema,
                    single_cls=opt.single_cls,
                    dataloader=testloader,
                    save_dir=log_dir)

            # Write
            with open(results_file, 'a') as f:
                f.write(s + '%10.4g' * 7 % results +
                        '\n')  # P, R, mAP, F1, test_losses=(GIoU, obj, cls)
            if len(opt.name) and opt.bucket:
                os.system('gsutil cp %s gs://%s/results/results%s.txt' %
                          (results_file, opt.bucket, opt.name))

            # Tensorboard
            if tb_writer:
                tags = [
                    'train/giou_loss',
                    'train/obj_loss',
                    'train/cls_loss',  # train loss
                    'metrics/precision',
                    'metrics/recall',
                    'metrics/mAP_0.5',
                    'metrics/mAP_0.5:0.95',
                    'val/giou_loss',
                    'val/obj_loss',
                    'val/cls_loss',  # val loss
                    'x/lr0',
                    'x/lr1',
                    'x/lr2'
                ]  # params
                for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
                    tb_writer.add_scalar(tag, x, epoch)

            # Update best mAP
            fi = fitness(np.array(results).reshape(
                1, -1))  # fitness_i = weighted combination of [P, R, mAP, F1]
            if fi > best_fitness:
                best_fitness = fi

            # Save model
            save = (not opt.nosave) or (final_epoch and not opt.evolve)
            if save:
                with open(results_file, 'r') as f:  # create checkpoint
                    ckpt = {
                        'epoch':
                        epoch,
                        'best_fitness':
                        best_fitness,
                        'training_results':
                        f.read(),
                        'model':
                        ema.ema,
                        'optimizer':
                        None if final_epoch else optimizer.state_dict()
                    }

                # Save last, best and delete
                torch.save(ckpt, last)
                if best_fitness == fi:
                    torch.save(ckpt, best)
                del ckpt
        # end epoch ----------------------------------------------------------------------------------------------------
    # end training

    if rank in [-1, 0]:
        # Strip optimizers
        n = opt.name if opt.name.isnumeric() else ''
        fresults, flast, fbest = log_dir / f'results{n}.txt', wdir / f'last{n}.pt', wdir / f'best{n}.pt'
        for f1, f2 in zip([wdir / 'last.pt', wdir / 'best.pt', results_file],
                          [flast, fbest, fresults]):
            if os.path.exists(f1):
                os.rename(f1, f2)  # rename
                if str(f2).endswith('.pt'):  # is *.pt
                    strip_optimizer(f2)  # strip optimizer
                    os.system(
                        'gsutil cp %s gs://%s/weights' %
                        (f2, opt.bucket)) if opt.bucket else None  # upload
        # Finish
        if not opt.evolve:
            plot_results(save_dir=log_dir)  # save as results.png
        logger.info('%g epochs completed in %.3f hours.\n' %
                    (epoch - start_epoch + 1, (time.time() - t0) / 3600))

    dist.destroy_process_group() if rank not in [-1, 0] else None
    torch.cuda.empty_cache()
    return results
Пример #7
0
def _create(name,
            pretrained=True,
            channels=3,
            classes=80,
            autoshape=True,
            verbose=True):
    """Creates a specified YOLOv5 model

    Arguments:
        name (str): name of model, i.e. 'yolov5s'
        pretrained (bool): load pretrained weights into the model
        channels (int): number of input channels
        classes (int): number of model classes
        autoshape (bool): apply YOLOv5 .autoshape() wrapper to model
        verbose (bool): print all information to screen

    Returns:
        YOLOv5 pytorch model
    """
    from pathlib import Path

    from models.yolo import Model, attempt_load
    from utils.general import check_requirements, set_logging
    from utils.google_utils import attempt_download
    from utils.torch_utils import select_device

    check_requirements(Path(__file__).parent / 'requirements.txt',
                       exclude=('tensorboard', 'pycocotools', 'thop'))
    set_logging(verbose=verbose)

    fname = Path(name).with_suffix('.pt')  # checkpoint filename
    try:
        if pretrained and channels == 3 and classes == 80:
            model = attempt_load(
                fname,
                map_location=torch.device('cpu'))  # download/load FP32 model
        else:
            cfg = list((Path(__file__).parent /
                        'models').rglob(f'{name}.yaml'))[0]  # model.yaml path
            model = Model(cfg, channels, classes)  # create model
            if pretrained:
                attempt_download(fname)  # download if not found locally
                ckpt = torch.load(fname,
                                  map_location=torch.device('cpu'))  # load
                msd = model.state_dict()  # model state_dict
                csd = ckpt['model'].float().state_dict(
                )  # checkpoint state_dict as FP32
                csd = {
                    k: v
                    for k, v in csd.items() if msd[k].shape == v.shape
                }  # filter
                model.load_state_dict(csd, strict=False)  # load
                if len(ckpt['model'].names) == classes:
                    model.names = ckpt[
                        'model'].names  # set class names attribute
        if autoshape:
            model = model.autoshape()  # for file/URI/PIL/cv2/np inputs and NMS
        device = select_device('0' if torch.cuda.is_available() else
                               'cpu')  # default to GPU if available
        return model.to(device)

    except Exception as e:
        help_url = 'https://github.com/ultralytics/yolov5/issues/36'
        s = 'Cache may be out of date, try `force_reload=True`. See %s for help.' % help_url
        raise Exception(s) from e
Пример #8
0
def detect(save_img=False):
    ## Writing output video
    fps = 30
    codec = cv2.VideoWriter_fourcc(*'XVID')
    output_path = './name_video.avi'
    out_vid_write = cv2.VideoWriter(output_path, codec, fps, (width, height))

    out, source, weights, view_img, save_txt, imgsz = \
        opt.output, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
    webcam = source == '0' or source.startswith('rtsp') or source.startswith(
        'http') or source.endswith('.txt')

    # Initialize
    device = torch_utils.select_device(opt.device)
    if os.path.exists(out):
        shutil.rmtree(out)  # delete output folder
    os.makedirs(out)  # make new output folder
    half = device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    google_utils.attempt_download(weights)
    model = torch.load(weights,
                       map_location=device)['model'].float()  # load to FP32
    # torch.save(torch.load(weights, map_location=device), weights)  # update model if SourceChangeWarning
    # model.fuse()
    model.to(device).eval()
    if half:
        model.half()  # to FP16

    # Second-stage classifier
    classify = False
    if classify:
        modelc = torch_utils.load_classifier(name='resnet101',
                                             n=2)  # initialize
        modelc.load_state_dict(
            torch.load('weights/resnet101.pt',
                       map_location=device)['model'])  # load weights
        modelc.to(device).eval()

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = True
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz)
    else:
        save_img = True
        dataset = LoadImages(source, img_size=imgsz)

    # Get names and colors
    names = model.module.names if hasattr(model, 'module') else model.names

    fps_disp = 0.0

    # Run inference
    t0 = time.time()
    img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
    _ = model(img.half() if half else img
              ) if device.type != 'cpu' else None  # run once

    ## Init
    first_detection = True
    lmk_id = 0
    old_objects = {}
    old_num = 0
    codebook_match = {}
    txt = " "
    correct_hist = {}
    rbt_glb_pose = robot_global_pose()  ## robot global pose
    lmk_global = landmarks_global_pose()  ## landmarks global pose
    lmk_obsv_poses = {}
    spatial_filter_text = ' '
    frames_wo_det = 0

    ## Main loop
    for path, img, im0s, d_map, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0

        dmap = d_map
        if dmap is not None:
            d4d = np.uint8(dmap.astype(float) * 255 / 2**12 -
                           1)  # Correct the range. Depth images are 12bits
            d4d = 255 - cv2.cvtColor(d4d, cv2.COLOR_GRAY2RGB)
            timestamp = rospy.Time.now()
            rbt_glb_pose.trans_mat()
            lmk_global.lmk_gPoses_list()

        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        ## Online operation data
        online_data = {
            'timestamp': timestamp,
            'depth_map': dmap,
            'robot_global_pose': rbt_glb_pose.trans
        }
        # Inference
        t1 = torch_utils.time_synchronized()
        pred = model(img, augment=opt.augment)[0]

        # Apply NMS
        pred = non_max_suppression(pred,
                                   opt.conf_thres,
                                   opt.iou_thres,
                                   classes=opt.classes,
                                   agnostic=opt.agnostic_nms)

        # Apply Classifier
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)

        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
            else:
                p, s, im0 = path, '', im0s

            im_rgb = cv2.cvtColor(im0, cv2.COLOR_BGR2RGB)

            save_path = str(Path(out) / Path(p).name)
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1,
                                          0]]  #  normalization gain whwh

            if det is not None and len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                          im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += '%g %ss, ' % (n, names[int(c)])  # add to string

                # Write results
                for *xyxy, conf, cls in det:
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) /
                                gn).view(-1).tolist()  # normalized xywh
                        with open(save_path[:save_path.rfind('.')] + '.txt',
                                  'a') as file:
                            file.write(('%g ' * 5 + '\n') %
                                       (cls, *xywh))  # label format

                    if save_img or view_img:  # Add bbox to image
                        label = '%s %.2f' % (names[int(cls)], conf)
                        #plot_one_box(xyxy, im_rgb, label=label, color=colors[int(cls)], line_thickness=3)
                        plot_one_box(xyxy,
                                     im_rgb,
                                     label=label,
                                     color=(0, 255, 0),
                                     line_thickness=3)

            ## Check if any detections happen
            detections = pred[0]
            objects = detections
            if det is not None:
                ## number of detections:
                num_d = len(detections)
                for i in range(num_d):
                    det_info = detections[i].data.cpu().tolist()
                    bbox = [int(j)
                            for j in det_info[0:4]]  ## bbox = [x1 y1 x2 y2]

                    ## Check if the object is within range
                    obj_cent = [
                        (bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2
                    ]  ## [x y] center pixel of the area the object is located
                    ## Optimal operation range: 0.8-3.5m
                    im_rgb = cv2.circle(im_rgb,
                                        (int(obj_cent[0]), int(obj_cent[1])),
                                        5, (0, 255, 0), -1)
                    d4d = cv2.circle(d4d, (int(obj_cent[0]), int(obj_cent[1])),
                                     5, (0, 0, 255), -1)
                    if dmap[int(obj_cent[1]),
                            int(obj_cent[0])] < 800 or dmap[
                                int(obj_cent[1]),
                                int(obj_cent[0])] > 3500:
                        objects = torch.cat(
                            [detections[0:i], detections[i + 1:]])

                if not objects.cpu().tolist(): objects = None

            ## Track and sample landmarks
            if objects is not None:
                if first_detection:
                    frames_wo_det = 0
                    lmk_id += 1
                    old_num = len(objects)
                    im_rgb, old_objects, tracked_histograms, lmkObsv = new_landmarks(
                        objects, lmk_id, im0, im_rgb, online_data, names)
                    first_detection = False
                    codebook_match = {}
                    correct_hist = {}
                else:
                    ## Track objects and serch for best match in keyframes
                    tracker = track_detections(old_num, im0, im_rgb,
                                               old_objects, objects, lmk_id,
                                               tracked_histograms,
                                               codebook_match, correct_hist,
                                               online_data, lmkObsv, names,
                                               frames_wo_det)
                    lmk_id = tracker.id
                    old_objects = tracker.old_objects
                    old_num = tracker.old_num
                    im_rgb = tracker.disp
                    tracked_histograms = tracker.tracked_histograms
                    codebook_match = tracker.codebook_match
                    correct_hist = tracker.keyframes_hist
                    lmkObsv = tracker.lmkObsv
                    frames_wo_det = 0

                    if tracker.publish_flag:
                        ## Filter spatially and publish correct landmarks to cartographer
                        lmk_gp = lmk_global.landmarks_global_poses  ## Global poses of landmarks
                        filtered_obsv = spatial_filter(lmkObsv, correct_hist,
                                                       tracked_histograms,
                                                       lmk_gp, lmk_obsv_poses,
                                                       spatial_filter_text,
                                                       lmk_pub, lmk_id)

                        correct_hist = filtered_obsv.keyframes_copy
                        tracked_histograms = filtered_obsv.tracked_hists
                        lmkObsv = filtered_obsv.lmkObsv
                        spatial_filter_text = filtered_obsv.spatial_filter_text
                        lmk_id = filtered_obsv.lmk_id

                    if hasattr(tracker,
                               'sampler_txt') and tracker.sampler_txt != " ":
                        txt = tracker.sampler_txt

            else:  ## no detections
                frames_wo_det += 1

        img2 = cv2.putText(im_rgb, txt, (0, 60),
                           cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 1,
                           cv2.LINE_AA)
        img2 = cv2.putText(im_rgb, spatial_filter_text, (0, 450),
                           cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (255, 0, 0), 1,
                           cv2.LINE_AA)
        fps_disp = (fps_disp + (1. /
                                (torch_utils.time_synchronized() - t1))) / 2
        img2 = cv2.putText(img2, "FPS: {:.2f}".format(fps_disp), (0, 30),
                           cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 2)
        # Stream results
        if view_img or save_img:
            out_vid_write.write(img2)

            if cv2.waitKey(1) == ord('q'):  # q to quit
                raise StopIteration

        # Save results (image with detections)
        if save_img:
            if dataset.mode == 'images':
                cv2.imwrite(save_path, display)
            else:
                if vid_path != save_path:  # new video
                    vid_path = save_path
                    if isinstance(vid_writer, cv2.VideoWriter):
                        vid_writer.release()  # release previous video writer

                    fps = vid_cap.get(cv2.CAP_PROP_FPS)
                    w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                    h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                    vid_writer = cv2.VideoWriter(
                        save_path, cv2.VideoWriter_fourcc(*opt.fourcc), fps,
                        (w, h))

    if save_txt or save_img:
        print('Results saved to %s' % os.getcwd() + os.sep + out)
        if platform == 'darwin':  # MacOS
            os.system('open ' + save_path)

    print('Done. (%.3fs)' % (time.time() - t0))
Пример #9
0
def load_checkpoint(type_,
                    weights,
                    device,
                    cfg=None,
                    hyp=None,
                    nc=None,
                    recipe=None,
                    resume=None,
                    rank=-1):
    with torch_distributed_zero_first(rank):
        attempt_download(weights)  # download if not found locally
    ckpt = torch.load(weights, map_location=device)  # load checkpoint
    start_epoch = ckpt['epoch'] + 1 if 'epoch' in ckpt else 0
    pickled = isinstance(ckpt['model'], nn.Module)

    if pickled and type_ == 'ensemble':
        # load ensemble using pickled
        cfg = None
        model = attempt_load(weights, map_location=device)  # load FP32 model
        state_dict = model.state_dict()
    else:
        # load model from config and weights
        cfg = cfg or (ckpt['yaml'] if 'yaml' in ckpt else None) or \
              (ckpt['model'].yaml if pickled else None)
        model = Model(cfg,
                      ch=3,
                      nc=ckpt['nc'] if ('nc' in ckpt and not nc) else nc,
                      anchors=hyp.get('anchors') if hyp else None).to(device)
        model_key = 'ema' if (type_ in ['ema', 'ensemble'] and 'ema' in ckpt
                              and ckpt['ema']) else 'model'
        state_dict = ckpt[model_key].float().state_dict(
        ) if pickled else ckpt[model_key]

    # turn gradients for params back on in case they were removed
    for p in model.parameters():
        p.requires_grad = True

    # load sparseml recipe for applying pruning and quantization
    recipe = recipe or (ckpt['recipe'] if 'recipe' in ckpt else None)
    sparseml_wrapper = SparseMLWrapper(model, recipe)
    if type_ in ['ema', 'ensemble']:
        # apply the recipe to create the final state of the model when not training
        sparseml_wrapper.apply()
    else:
        # intialize the recipe for training
        sparseml_wrapper.initialize(start_epoch)

    if type_ == 'train':
        # load any missing weights from the model
        exclude = [
            'anchor'
        ] if (cfg or hyp.get('anchors')) and not resume else []  # exclude keys
        state_dict = intersect_dicts(state_dict,
                                     model.state_dict(),
                                     exclude=exclude)  # intersect

    model.load_state_dict(state_dict, strict=type_ != 'train')  # load
    model.float()
    report = 'Transferred %g/%g items from %s' % (
        len(state_dict), len(model.state_dict()), weights)

    return model, {
        'ckpt': ckpt,
        'state_dict': state_dict,
        'start_epoch': start_epoch,
        'sparseml_wrapper': sparseml_wrapper,
        'report': report,
    }
Пример #10
0
def train(hyp, opt, device, tb_writer=None):
    # 控制台打印日志
    logger.info(f'Hyperparameters {hyp}')
    log_dir = Path(tb_writer.log_dir) if tb_writer else Path(
        opt.logdir) / 'evolve'  # logging directory
    wdir = log_dir / 'weights'  # weights directory
    os.makedirs(wdir, exist_ok=True)
    last = wdir / 'last.pt'
    best = wdir / 'best.pt'
    results_file = str(log_dir / 'results.txt')
    # weights:权重文件(预训练的);rank:全局进程;
    epochs, batch_size, total_batch_size, weights, rank = \
        opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank

    # Save run settings
    with open(log_dir / 'hyp.yaml', 'w') as f:
        yaml.dump(hyp, f, sort_keys=False)
    with open(log_dir / 'opt.yaml', 'w') as f:
        yaml.dump(vars(opt), f, sort_keys=False)

    # Configure
    cuda = device.type != 'cpu'
    # 初始化随机种子(numpy,random,torch的)
    init_seeds(2 + rank)
    with open(opt.data) as f:
        data_dict = yaml.load(f, Loader=yaml.FullLoader)  # data dict
    '''
        执行逻辑:如果是0号进程进来会直接从torch_distributed_zero_first返回,然后执行check_dataset,
        执行完check_dataset后会进入torch_distributed_zero_first函数从yield之下开始执行barrier函数暂停等到所有线程都到这个函数再继续执行,
        如果不是0号线程进入那么就会执行barrier函数等待,等到所有进程都进入此函数的时候解除barrier继续执行
        
        解除barrier的方法就是等所有进程都执行barrier函数的时候就会解除
    '''
    # 核实数据
    with torch_distributed_zero_first(rank):
        check_dataset(data_dict)  # check
    train_path = data_dict['train']
    test_path = data_dict['val']
    nc, names = (1, ['item']) if opt.single_cls else (int(
        data_dict['nc']), data_dict['names'])  # number classes, names
    assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (
        len(names), nc, opt.data)  # check

    # Model
    pretrained = weights.endswith('.pt')
    # 加载预训练的模型参数
    if pretrained:
        # 下载与训练数据
        with torch_distributed_zero_first(rank):
            attempt_download(weights)  # download if not found locally
        ckpt = torch.load(weights, map_location=device)  # load checkpoint
        if hyp.get('anchors'):
            ckpt['model'].yaml['anchors'] = round(
                hyp['anchors'])  # force autoanchor
        # 载入输入的配置或者是加载的pretrained的配置,ch=3是输入channel
        model = Model(opt.cfg or ckpt['model'].yaml, ch=3,
                      nc=nc).to(device)  # create
        exclude = ['anchor'] if opt.cfg or hyp.get('anchors') else [
        ]  # exclude keys
        state_dict = ckpt['model'].float().state_dict()  # to FP32
        # 只加载在预训练的模型和当前模型中都有的组件的参数,这要求与训练的模型和当前模型的shape要相等
        # intersect_dicts的左右就是将与训练的模型参数和当前的模型参数进行比较,取shape一致的那些参数(shape不一样的是没法运用在当前模型的)
        state_dict = intersect_dicts(state_dict,
                                     model.state_dict(),
                                     exclude=exclude)  # intersect
        # 非严格模式加载参数
        model.load_state_dict(state_dict, strict=False)  # load
        logger.info(
            'Transferred %g/%g items from %s' %
            (len(state_dict), len(model.state_dict()), weights))  # report
    else:
        model = Model(opt.cfg, ch=3, nc=nc).to(device)  # create

    # Freeze
    # 冻结某几层,finetune可以用
    freeze = [
        '',
    ]  # parameter names to freeze (full or partial)
    if any(freeze):
        for k, v in model.named_parameters():
            if any(x in k for x in freeze):
                print('freezing %s' % k)
                v.requires_grad = False

    # Optimizer
    # 将batch_size和64比较,当64不是batch_size的整数倍的时候,权重做相应的调整
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / total_batch_size),
                     1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= total_batch_size * accumulate / nbs  # scale weight_decay

    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_parameters():
        v.requires_grad = True
        if '.bias' in k:
            pg2.append(v)  # biases
        elif '.weight' in k and '.bn' not in k:
            pg1.append(v)  # apply weight decay
        else:
            pg0.append(v)  # all else

    if opt.adam:
        optimizer = optim.Adam(pg0,
                               lr=hyp['lr0'],
                               betas=(hyp['momentum'],
                                      0.999))  # adjust beta1 to momentum
    else:
        optimizer = optim.SGD(pg0,
                              lr=hyp['lr0'],
                              momentum=hyp['momentum'],
                              nesterov=True)

    # 添加卷积权重参数和biases参数,其中biases不需要权重衰减,这里的params只能是这个名字,执行完add_param_group后optimizer的数据就是一个list中有三个值
    optimizer.add_param_group({
        'params': pg1,
        'weight_decay': hyp['weight_decay']
    })  # add pg1 with weight_decay
    optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
    logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' %
                (len(pg2), len(pg1), len(pg0)))
    del pg0, pg1, pg2

    # Scheduler
    # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
    # 权重衰减策略
    lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - hyp[
        'lrf']) + hyp['lrf']  # cosine
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    # plot_lr_scheduler(optimizer, scheduler, epochs)

    # Resume
    start_epoch, best_fitness = 0, 0.0
    if pretrained:
        # Optimizer
        if ckpt['optimizer'] is not None:
            optimizer.load_state_dict(ckpt['optimizer'])
            best_fitness = ckpt['best_fitness']

        # Results
        if ckpt.get('training_results') is not None:
            with open(results_file, 'w') as file:
                file.write(ckpt['training_results'])  # write results.txt

        # Epochs
        start_epoch = ckpt['epoch'] + 1
        if opt.resume:
            assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (
                weights, epochs)
            shutil.copytree(wdir, wdir.parent /
                            f'weights_backup_epoch{start_epoch - 1}'
                            )  # save previous weights
        if epochs < start_epoch:
            logger.info(
                '%s has been trained for %g epochs. Fine-tuning for %g additional epochs.'
                % (weights, ckpt['epoch'], epochs))
            epochs += ckpt['epoch']  # finetune additional epochs

        del ckpt, state_dict

    # Image sizes
    gs = int(max(model.stride))  # grid size (max stride)
    # 得到处理(就是让图片大小能被网格大小整除)后的图像和测试图像的大小
    imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size
                         ]  # verify imgsz are gs-multiples

    # DP mode
    # 分布式(单机多GPU)
    if cuda and rank == -1 and torch.cuda.device_count() > 1:
        model = torch.nn.DataParallel(model)

    # SyncBatchNorm
    if opt.sync_bn and cuda and rank != -1:
        # 同步batchnorm,如果不同步的话每个GPU上的batchnorm都会使用当前GPU上数据的方差和均值,那几个GPU虽然训练的是同一个batch的数据,值却是不一样的
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        logger.info('Using SyncBatchNorm()')

    # Exponential moving average 指数移动平均
    # 给予近期数据更高的权重,就是说对于参数,我们给予最近的几次的参数更高的权重,其假设就是最近几次的参数是在最优处抖动,所以最近几次的参数权重就给高点
    ema = ModelEMA(model) if rank in [-1, 0] else None

    # DDP mode
    # 分布式(多机器多GPU)
    if cuda and rank != -1:
        # local_rank指定的是当前进程使用的是哪块GPU,local_rank表示的就是GPU序号
        model = DDP(model,
                    device_ids=[opt.local_rank],
                    output_device=opt.local_rank)

    # Trainloader
    dataloader, dataset = create_dataloader(train_path,
                                            imgsz,
                                            batch_size,
                                            gs,
                                            opt,
                                            hyp=hyp,
                                            augment=True,
                                            cache=opt.cache_images,
                                            rect=opt.rect,
                                            rank=rank,
                                            world_size=opt.world_size,
                                            workers=opt.workers)
    mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
    nb = len(dataloader)  # number of batches
    assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (
        mlc, nc, opt.data, nc - 1)

    # Process 0
    if rank in [-1, 0]:
        ema.updates = start_epoch * nb // accumulate  # set EMA updates
        testloader = create_dataloader(test_path,
                                       imgsz_test,
                                       total_batch_size,
                                       gs,
                                       opt,
                                       hyp=hyp,
                                       augment=False,
                                       cache=opt.cache_images
                                       and not opt.notest,
                                       rect=True,
                                       rank=-1,
                                       world_size=opt.world_size,
                                       workers=opt.workers)[0]  # testloader

        if not opt.resume:
            labels = np.concatenate(dataset.labels, 0)
            c = torch.tensor(labels[:, 0])  # classes
            # cf = torch.bincount(c.long(), minlength=nc) + 1.  # frequency
            # model._initialize_biases(cf.to(device))
            plot_labels(labels, save_dir=log_dir)
            if tb_writer:
                # tb_writer.add_hparams(hyp, {})  # causes duplicate https://github.com/ultralytics/yolov5/pull/384
                tb_writer.add_histogram('classes', c, 0)

            # Anchors
            if not opt.noautoanchor:
                check_anchors(dataset,
                              model=model,
                              thr=hyp['anchor_t'],
                              imgsz=imgsz)

    # Model parameters
    hyp['cls'] *= nc / 80.  # scale coco-tuned hyp['cls'] to current dataset
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # iou loss ratio (obj_loss = 1.0 or iou)
    model.class_weights = labels_to_class_weights(dataset.labels, nc).to(
        device)  # attach class weights
    model.names = names

    # Start training
    t0 = time.time()
    nw = max(round(hyp['warmup_epochs'] * nb),
             1e3)  # number of warmup iterations, max(3 epochs, 1k iterations)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    maps = np.zeros(nc)  # mAP per class
    results = (0, 0, 0, 0, 0, 0, 0
               )  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
    scheduler.last_epoch = start_epoch - 1  # do not move
    scaler = amp.GradScaler(enabled=cuda)
    logger.info('Image sizes %g train, %g test\n'
                'Using %g dataloader workers\nLogging results to %s\n'
                'Starting training for %g epochs...' %
                (imgsz, imgsz_test, dataloader.num_workers, log_dir, epochs))
    for epoch in range(
            start_epoch, epochs
    ):  # epoch ------------------------------------------------------------------
        model.train()

        # Update image weights (optional)
        if opt.image_weights:
            # Generate indices
            if rank in [-1, 0]:
                cw = model.class_weights.cpu().numpy() * (
                    1 - maps)**2  # class weights
                iw = labels_to_image_weights(dataset.labels,
                                             nc=nc,
                                             class_weights=cw)  # image weights
                dataset.indices = random.choices(
                    range(dataset.n), weights=iw,
                    k=dataset.n)  # rand weighted idx
            # Broadcast if DDP
            if rank != -1:
                indices = (torch.tensor(dataset.indices)
                           if rank == 0 else torch.zeros(dataset.n)).int()
                dist.broadcast(indices, 0)
                if rank != 0:
                    dataset.indices = indices.cpu().numpy()

        # Update mosaic border
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = torch.zeros(4, device=device)  # mean losses
        if rank != -1:
            dataloader.sampler.set_epoch(epoch)
        pbar = enumerate(dataloader)
        logger.info(
            ('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls',
                                   'total', 'targets', 'img_size'))
        if rank in [-1, 0]:
            pbar = tqdm(pbar, total=nb)  # progress bar
        optimizer.zero_grad()
        for i, (
                imgs, targets, paths, _
        ) in pbar:  # batch -------------------------------------------------------------
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device, non_blocking=True).float(
            ) / 255.0  # uint8 to float32, 0-255 to 0.0-1.0

            # Warmup
            if ni <= nw:
                xi = [0, nw]  # x interp
                # model.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
                accumulate = max(
                    1,
                    np.interp(ni, xi, [1, nbs / total_batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x['lr'] = np.interp(ni, xi, [
                        hyp['warmup_bias_lr'] if j == 2 else 0.0,
                        x['initial_lr'] * lf(epoch)
                    ])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(
                            ni, xi, [hyp['warmup_momentum'], hyp['momentum']])

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5,
                                      imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]
                          ]  # new shape (stretched to gs-multiple)
                    imgs = F.interpolate(imgs,
                                         size=ns,
                                         mode='bilinear',
                                         align_corners=False)

            # Forward
            with amp.autocast(enabled=cuda):
                pred = model(imgs)  # forward
                loss, loss_items = compute_loss(
                    pred, targets.to(device),
                    model)  # loss scaled by batch_size
                if rank != -1:
                    loss *= opt.world_size  # gradient averaged between devices in DDP mode

            # Backward
            scaler.scale(loss).backward()

            # Optimize
            if ni % accumulate == 0:
                scaler.step(optimizer)  # optimizer.step
                scaler.update()
                optimizer.zero_grad()
                if ema:
                    ema.update(model)

            # Print
            if rank in [-1, 0]:
                mloss = (mloss * i + loss_items) / (i + 1
                                                    )  # update mean losses
                mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9
                                 if torch.cuda.is_available() else 0)  # (GB)
                s = ('%10s' * 2 +
                     '%10.4g' * 6) % ('%g/%g' % (epoch, epochs - 1), mem,
                                      *mloss, targets.shape[0], imgs.shape[-1])
                pbar.set_description(s)

                # Plot
                if ni < 3:
                    f = str(log_dir / ('train_batch%g.jpg' % ni))  # filename
                    result = plot_images(images=imgs,
                                         targets=targets,
                                         paths=paths,
                                         fname=f)
                    if tb_writer and result is not None:
                        tb_writer.add_image(f,
                                            result,
                                            dataformats='HWC',
                                            global_step=epoch)
                        # tb_writer.add_graph(model, imgs)  # add model to tensorboard

            # end batch ------------------------------------------------------------------------------------------------

        # Scheduler
        lr = [x['lr'] for x in optimizer.param_groups]  # for tensorboard
        scheduler.step()

        # DDP process 0 or single-GPU
        if rank in [-1, 0]:
            # mAP
            if ema:
                ema.update_attr(
                    model,
                    include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride'])
            final_epoch = epoch + 1 == epochs
            if not opt.notest or final_epoch:  # Calculate mAP
                results, maps, times = test.test(
                    opt.data,
                    batch_size=total_batch_size,
                    imgsz=imgsz_test,
                    model=ema.ema,
                    single_cls=opt.single_cls,
                    dataloader=testloader,
                    save_dir=log_dir,
                    plots=epoch == 0 or final_epoch)  # plot first and last

            # Write
            with open(results_file, 'a') as f:
                f.write(
                    s + '%10.4g' * 7 % results +
                    '\n')  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
            if len(opt.name) and opt.bucket:
                os.system('gsutil cp %s gs://%s/results/results%s.txt' %
                          (results_file, opt.bucket, opt.name))

            # Tensorboard
            if tb_writer:
                tags = [
                    'train/box_loss',
                    'train/obj_loss',
                    'train/cls_loss',  # train loss
                    'metrics/precision',
                    'metrics/recall',
                    'metrics/mAP_0.5',
                    'metrics/mAP_0.5:0.95',
                    'val/box_loss',
                    'val/obj_loss',
                    'val/cls_loss',  # val loss
                    'x/lr0',
                    'x/lr1',
                    'x/lr2'
                ]  # params
                for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
                    tb_writer.add_scalar(tag, x, epoch)

            # Update best mAP
            fi = fitness(np.array(results).reshape(
                1, -1))  # weighted combination of [P, R, [email protected], [email protected]]
            if fi > best_fitness:
                best_fitness = fi

            # Save model
            save = (not opt.nosave) or (final_epoch and not opt.evolve)
            if save:
                with open(results_file, 'r') as f:  # create checkpoint
                    ckpt = {
                        'epoch':
                        epoch,
                        'best_fitness':
                        best_fitness,
                        'training_results':
                        f.read(),
                        'model':
                        ema.ema,
                        'optimizer':
                        None if final_epoch else optimizer.state_dict()
                    }

                # Save last, best and delete
                torch.save(ckpt, last)
                if best_fitness == fi:
                    torch.save(ckpt, best)
                del ckpt
        # end epoch ----------------------------------------------------------------------------------------------------
    # end training

    if rank in [-1, 0]:
        # Strip optimizers
        n = opt.name if opt.name.isnumeric() else ''
        fresults, flast, fbest = log_dir / f'results{n}.txt', wdir / f'last{n}.pt', wdir / f'best{n}.pt'
        for f1, f2 in zip([wdir / 'last.pt', wdir / 'best.pt', results_file],
                          [flast, fbest, fresults]):
            if os.path.exists(f1):
                os.rename(f1, f2)  # rename
                if str(f2).endswith('.pt'):  # is *.pt
                    strip_optimizer(f2)  # strip optimizer
                    os.system(
                        'gsutil cp %s gs://%s/weights' %
                        (f2, opt.bucket)) if opt.bucket else None  # upload
        # Finish
        if not opt.evolve:
            plot_results(save_dir=log_dir)  # save as results.png
        logger.info('%g epochs completed in %.3f hours.\n' %
                    (epoch - start_epoch + 1, (time.time() - t0) / 3600))

    dist.destroy_process_group() if rank not in [-1, 0] else None
    torch.cuda.empty_cache()
    return results
Пример #11
0
from utils.google_utils import attempt_download

attempt_download(f'yolov5m.pt')
Пример #12
0
def __detect(image, opt, save_img=False):
    out, source, weights, view_img, save_txt, imgsz = \
        opt['output'], opt['source'], opt['weights'], opt['view_img'], opt['save_txt'], opt['img_size']
    webcam = False

    # Initialize
    device = torch_utils.select_device(opt['device'])
    if os.path.exists(out):
        shutil.rmtree(out)  # delete output folder
    os.makedirs(out)  # make new output folder
    # half = device.type != 'cpu'  # half precision only supported on CUDA
    half = False

    # Load model
    google_utils.attempt_download(weights)
    model = torch.load(weights, map_location=device)['model'].float()  # load to FP32
    # torch.save(torch.load(weights, map_location=device), weights)  # update model if SourceChangeWarning
    # model.fuse()
    model.to(device).eval()
    imgsz = check_img_size(imgsz, s=model.model[-1].stride.max())  # check img_size

    # Set Dataloader
    dataset = LoadInMemoryImage(image, img_size=imgsz)

    # Get names and colors
    names = model.module.names if hasattr(model, 'module') else model.names
    colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))]

    # Run inference
    res = []
    t0 = time.time()
    img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
    _ = model(img.half() if half else img) if device.type != 'cpu' else None  # run once
    for img, im0s in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        t1 = torch_utils.time_synchronized()
        pred = model(img, augment = opt['augment'])[0]

        # Apply NMS
        pred = non_max_suppression(pred, opt['conf_thres'], opt['iou_thres'], classes=opt['classes'], agnostic=opt['agnostic_nms'])
        t2 = torch_utils.time_synchronized()

        # Process detections
        for i, det in enumerate(pred):  # detections per image
            im0 = im0s
            
            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
            if det is not None and len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()

                # Write results
                detections = []
                for *xyxy, conf, cls in det:
                    xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                    detections.append({
                        'class': cls.item(),
                        'x': xywh[0],
                        'y': xywh[1],
                        'w': xywh[2],
                        'h': xywh[3],
                        'confidence': conf
                    })
                res.append(detections)
    return res
Пример #13
0
def train(hyp, opt, device):
    save_dir, epochs, batch_size, total_batch_size, weights, rank = \
    Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank
    do_semi = opt.do_semi
    # Directories
    wdir = save_dir / 'weights'
    wdir.mkdir(parents=True, exist_ok=True)
    last = wdir / 'last.pt'
    best = wdir / 'best.pt'
    results_file = save_dir / 'results.txt'

    # Save run settings
    with open(save_dir / 'hyp.yaml', 'w') as f:
        yaml.dump(hyp, f, sort_keys=False)
    with open(save_dir / 'opt.yaml', 'w') as f:
        yaml.dump(vars(opt), f, sort_keys=False)

    # Configure
    plots = not opt.evolve  #create plots
    cuda = device.type != 'cpu'
    init_seeds(2 + rank)
    with open(opt.data) as f:
        data_dict = yaml.load(f, Loader=yaml.SafeLoader)
    nc = 1 if opt.single_cls else int(data_dict['nc'])  #number of classes
    names = ['item'] if opt.single_cls and len(
        data_dict['names']) != 1 else data_dict['names']
    assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (
        len(names), nc, opt.data)

    # Model
    pretrained = weights.endswith('.pt')
    if pretrained:
        with torch_distributed_zero_first(rank):
            attempt_download(weights)  # download if not found locally
        ckpt = torch.load(weights, map_location=device)  #load checkpoint
        model = Model(opt.cfg or ckpt['model'].yaml,
                      ch=3,
                      nc=nc,
                      anchors=hyp.get('anchors')).to(device)  #create
        exclude = [
            'anchor'
        ] if (opt.cfg or hyp.get('anchors')) and not opt.resume else [
        ]  #exclude keys
        state_dict = ckpt['model'].float().state_dict()  # to FP32
        state_dict = intersect_dicts(state_dict,
                                     model.state_dict(),
                                     exclude=exclude)  #intersect
        model.load_state_dict(state_dict, strict=False)  #load

    else:
        model = Model(opt.cfg, ch=3, nc=nc,
                      anchors=hyp.get('anchors')).to(device)

    with torch_distributed_zero_first(rank):
        check_dataset(data_dict)  #check
    train_path = data_dict['train']
    test_path = data_dict['val']

    # Optimizer
    nbs = 64
    accumulate = max(round(nbs / total_batch_size),
                     1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= total_batch_size * accumulate / nbs

    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_modules():
        if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
            pg2.append(v.bias)  # biases
        if isinstance(v, nn.BatchNorm2d):
            pg0.append(v.weight)  # no decay
        elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
            pg1.append(v.weight)  # apply dacay

    if opt.adam:
        optimizer = optim.Adam(pg0,
                               lr=hyp['lr0'],
                               betas=(hyp['momentum'],
                                      0.999))  # adjust betal to momentum
    else:
        optimizer = optim.SGD(pg0,
                              lr=hyp['lr0'],
                              momentum=hyp['momentum'],
                              nesterov=True)

    optimizer.add_param_group({
        'params': pg1,
        'weight_decay': hyp['weight_decay']
    })  # add pg1 with weight_decay
    optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
    del pg0, pg1, pg2

    if opt.linear_lr:
        lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp[
            'lrf']  # linear
    else:
        lf = one_cycle(1, hyp['lrf'], epochs)
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)

    # EMA
    ema = ModelEMA(model) if rank in [-1, 0] else None

    # Resume
    start_epoch, best_fitness = 0, 0.0

    if pretrained:
        # optimizer
        if ckpt['optimizer'] is not None:
            optimizer.load_state_dict(ckpt['optimizer'])
            best_fitness = ckpt['best_fitness']

        # EMA
        if ema and ckpt.get('ema'):
            ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
            ema.updates = ckpt['updates']

        # Results
        if ckpt.get('training_results') is not None:
            results_file.write_text(
                ckpt['training_results'])  # write results.txt

        # Epochs
        start_epoch = ckpt['epoch'] + 1
        if opt.resume:
            assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (
                weight, epochs)
        if epochs < start_epoch:
            epochs += ckpt['epoch']
        del ckpt, state_dict

        # Image sizes
        gs = max(int(model.stride.max()), 32)  # grid size (max stride)
        nl = model.model[
            -1].nl  # number of detection layer (used for scaling hyp['obj])
        imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size
                             ]  # verify imgsz are gs-multiples

        # DP mode
        if cuda and rank == -1 and torch.cuda.device_count() > 1:
            model = torch.nn.DataParallel(model)

        # SyncBatchNorm
        if opt.sync_bn and cuda and rank != -1:
            model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(
                device)

        # Trainloader
    if do_semi:
        dataloader, dataset, unlabeldataloader = create_dataloader(
            train_path,
            imgsz,
            batch_size,
            gs,
            opt,
            hyp=hyp,
            augment=True,
            cache=opt.cache_images,
            rect=opt.rect,
            rank=rank,
            world_size=opt.world_size,
            workers=opt.workers,
            image_weights=opt.image_weights,
            quad=opt.quad,
            prefix=colorstr('train: '),
            do_semi=opt.do_semi)
    else:
        dataloader, dataset = create_dataloader(
            train_path,
            imgsz,
            batch_size,
            gs,
            opt,
            hyp=hyp,
            augment=True,
            cache=opt.cache_images,
            rect=opt.rect,
            rank=rank,
            world_size=opt.world_size,
            workers=opt.workers,
            image_weights=opt.image_weights,
            quad=opt.quad,
            prefix=colorstr('train: '),
            do_semi=opt.do_semi)

    # Train teacher model
    mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
    nb = len(dataloader)  # number of batches

    assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (
        mlc, nc, opt.data, nc - 1)

    # process 0
    if rank in [-1, 0]:
        testloader = create_dataloader(
            test_path,
            imgsz_test,
            batch_size * 2,
            gs,
            opt,  # testloader
            hyp=hyp,
            cache=opt.cache_images and not opt.notest,
            rect=True,
            rank=-1,
            world_size=opt.world_size,
            workers=opt.workers,
            pad=0.5,
            prefix=colorstr('val: '),
            do_semi=False)[0]

        if not opt.resume:
            labels = np.concatenate(dataset.labels, 0)
            c = torch.tensor(labels[:, 0])  # classes
            # Anchors
            if not opt.noautoanchor:
                check_anchors(dataset,
                              model=model,
                              thr=hyp['anchor_t'],
                              imgsz=imgsz)
            model.half().float()  # pre-reduce anchor precision

    # DDP mode
    if cuda and rank != 1:
        model = DDP(model,
                    device_ids=[opt.local_rank],
                    output_device=opt.local_rank,
                    find_unused_parameters=any(
                        isinstance(layer, nn.MultiheadAttention)
                        for layer in model.modules()))

    # Model parameters
    hyp['box'] *= 3. / nl  # scale to layers
    hyp['cls'] *= nc / 80. * 3. / nl  # scale to classes and layers
    hyp['obj'] *= (imgsz / 640)**2 * 3. / nl  # scale to image size and layers
    hyp['label_smoothing'] = opt.label_smoothing
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # iou loss ratio (obj_loss = 1.0 or iou)
    model.class_weights = labels_to_class_weights(
        dataset.labels, nc).to(device) * nc  # attach class weights
    model.names = names

    # Train teacher model --> burn in
    t0 = time.time()
    nw = max(round(hyp['warmup_epochs'] * nb),
             1000)  # number of warmup iterations, max(3 epochs, 1k iterations)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    maps = np.zeros(nc)  # mAP per class
    results = (0, 0, 0, 0, 0, 0, 0
               )  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
    scheduler.last_epoch = start_epoch - 1  # do not move
    scaler = amp.GradScaler(enabled=cuda)
    compute_loss = ComputeLoss(model)  # init loss class
    burnin_epochs = epochs / 2

    # burn in
    for epoch in range(start_epoch,
                       burnin_epochs):  # epoch-------------------------
        model.train()
        nb = len(dataloader)
        mloss = torch.zeros(4, device=device)  # mean loss
        if rank != -1:
            dataloader.sampler.set_epoch(epoch)
        pbar = enumerate(dataloader)

        if rank in [-1, 0]:
            pbar = tqdm(pbar, total=nb)
        optimizer.zero_grad()
        for i, (imgs, targets, paths, _) in pbar:
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device, non_blocking=True).float(
            ) / 255.0  # uint8 to float32, 0-255 to 0.0-1.0

            # Warm up
            if ni <= [0, nw]:
                xi = [0, nw]
                accumulate = max(
                    1, np.interp(ni, xi, [1, nbs / total_batch_size].round()))
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x['lr'] = np.interp(ni, xi, [
                        hyp['warmup_bias_lr'] if j == 2 else 0.0,
                        x['initial_lr'] * lf(epoch)
                    ])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(
                            ni, xi, [hyp['warmup_momentum'], hyp['momentum']])

            # Forward
            with amp.autocast(enabled=cuda):
                pred = model(imgs)  # forward
                loss, loss_item = compute_loss(
                    pred, targets.to(device))  # loss scaled by batch_size
                if rank != -1:
                    loss *= opt.world_size  # gradient averaged between device in DDP mode
                if opt.quad:
                    loss *= 4.

            # Backward
            scaler.scale(loss).backward()

            # Optimize
            if ni % accumulate == 0:
                scaler.step(optimizer)
                scaler.update()
                optimizer.zero_grad()
                if ema:
                    ema.update(model)

            # print
            if rank in [-1, 0]:
                mloss = (mloss * i + loss_item) / (i + 1)  # update mean losses
                mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9
                                 if torch.cuda.is_available() else 0)  # (GB)
                s = ('%10s' * 2 +
                     '%10.4g' * 6) % ('%g/%g' % (epoch, epochs - 1), mem,
                                      *mloss, targets.shape[0], imgs.shape[-1])
                pbar.set_description(s)

        scheduler.step()

        # DDP process 0 or single-GPU
        if rank in [-1, 0]:
            # mAP
            ema.update_attr(model,
                            include=[
                                'yaml', 'nc', 'hyp', 'gr', 'names', 'stride',
                                'class_weights'
                            ])
            final_epoch = epoch + 1 == epochs
            if not opt.notest or final_epoch:  # Calculate mAP

                results, maps, times = test.test(data_dict,
                                                 batch_size=batch_size * 2,
                                                 imgsz=imgsz_test,
                                                 model=ema.ema,
                                                 single_cls=opt.single_cls,
                                                 dataloader=testloader,
                                                 save_dir=save_dir,
                                                 verbose=nc < 50
                                                 and final_epoch,
                                                 plots=plots and final_epoch,
                                                 compute_loss=compute_loss)

        fi = fitness(np.array(results).reshape(
            1, -1))  # weighted combination of [P, R, mAP@50, [email protected]]
        if fi > best_fitness:
            best_fitness = fi

        if (not opt.nosave) or (final_epoch and not opt.evolve):  # if save
            ckpt = {
                'epoch':
                epoch,
                'best_fitness':
                best_fitness,
                'training_results':
                results_file.read_text(),
                'model':
                deepcopy(model.module if is_parallel(model) else model).half(),
                'ema':
                deepcopy(ema.ema).half(),
                'updates':
                ema.updates,
                'optimizer':
                optimizer.state_dict()
            }
            if best_fitness == fi:
                torch.save(ckpt, best)
            del ckpt

        # end epoch ----------------------------------------------------------------------------
    # end warm up

    # get persudo label
    # STAC
    # first apply weak augmentation on unlabeled dataset then use teacher net to predict the persudo labels
    # Then apply strong augmentation on unlabeled dataset, use student net to get the logists and compute the unlabeled loss.

    model.eval()
    img = []
    target = []
    Path = []
    imgsz = opt.img_size
    for idx, batch in tqdm(enumerate(unlabeldataloader),
                           total=len(unlabeldataloader)):
        imgs0, _, path, _ = batch  # from uint8 to float16

        with torch.no_grad():
            pred = model(imgs0.to(device, non_blocking=True).float() /
                         255.0)[0]

        gn = torch.tensor(imgs0.shape)[[3, 2, 3, 2]]
        pred = non_max_suppression(pred,
                                   opt.conf_thres,
                                   opt.iou_thres,
                                   classes=opt.classes,
                                   agnostic=opt.agnostic_nms)

        for index, pre in enumerate(pred):
            predict_number = len(pre)
            if predict_number == 0:
                continue
            Class = pre[:, 5].view(predict_number, 1).cpu()
            XYWH = (xyxy2xywh(pre[:, :4])).cpu()
            XYWH /= gn
            pre = torch.cat((torch.zeros(predict_number, 1), Class, XYWH),
                            dim=1)
            img.append(imgs0[index])
            target.append(pre)
            Path.append(path[index])

    unlabeldataset = semiDataset(img, target, Path)
    del img, targets, Path
    model.train()
Пример #14
0
def train(hyp, logger, work_dir, device):

    epochs = opt.epochs
    batch_size = opt.batch_size
    total_batch_size = opt.total_batch_size
    weights = opt.weights
    rank = opt.local_rank

    # Configure
    init_seeds(1)
    with open(opt.data) as f:
        data_dict = yaml.load(f, Loader=yaml.FullLoader)  # model dict
    #train_path = data_dict['train']
    #test_path = data_dict['val']
    train_path = os.path.join(data_dict['convertor_path'], 'images',
                              'train2017')
    test_path = os.path.join(data_dict['convertor_path'], 'images', 'val2017')
    nc, names = (1, ['item']) if opt.single_cls else (int(
        len(data_dict['names'])), data_dict['names'])  # number classes, names
    assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (
        len(names), nc, opt.data)  # check

    # Create model
    model = Model(opt.cfg, nc=nc).to(device)

    # Image sizes
    gs = int(max(model.stride))  # grid size (max stride)
    imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size
                         ]  # verify imgsz are gs-multiples

    # Optimizer
    nbs = 64  # nominal batch size
    # default DDP implementation is slow for accumulation according to: https://pytorch.org/docs/stable/notes/ddp.html
    # all-reduce operation is carried out during loss.backward().
    # Thus, there would be redundant all-reduce communications in a accumulation procedure,
    # which means, the result is still right but the training speed gets slower.
    # TODO: If acceleration is needed, there is an implementation of allreduce_post_accumulation
    # in https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/LanguageModeling/BERT/run_pretraining.py
    accumulate = max(round(nbs / total_batch_size),
                     1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= total_batch_size * accumulate / nbs  # scale weight_decay

    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_parameters():
        if v.requires_grad:
            if '.bias' in k:
                pg2.append(v)  # biases
            elif '.weight' in k and '.bn' not in k:
                pg1.append(v)  # apply weight decay
            else:
                pg0.append(v)  # all else

    if hyp['optimizer'] == 'adam':  # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
        optimizer = optim.Adam(pg0,
                               lr=hyp['lr0'],
                               betas=(hyp['momentum'],
                                      0.999))  # adjust beta1 to momentum
    else:
        optimizer = optim.SGD(pg0,
                              lr=hyp['lr0'],
                              momentum=hyp['momentum'],
                              nesterov=True)

    optimizer.add_param_group({
        'params': pg1,
        'weight_decay': hyp['weight_decay']
    })  # add pg1 with weight_decay
    optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
    logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' %
                (len(pg2), len(pg1), len(pg0)))
    del pg0, pg1, pg2

    # Load Model
    google_utils.attempt_download(weights)
    start_epoch, best_fitness = 0, 0.0

    # 加载自己的模型
    if not weights.endswith('.pt'):
        ckpt = torch.load(weights, map_location=device).float()
        model.load_state_dict(ckpt.state_dict(), strict=True)
        logger.info(f'load myself ckpt: {weights}')

    if weights.endswith('.pt'):  # pytorch format
        ckpt = torch.load(weights, map_location=device)  # load checkpoint

        # load model
        try:
            exclude = ['anchor']  # exclude keys
            ckpt['model'] = {
                k: v
                for k, v in ckpt['model'].float().state_dict().items()
                if k in model.state_dict() and not any(x in k for x in exclude)
                and model.state_dict()[k].shape == v.shape
            }
            model.load_state_dict(ckpt['model'], strict=False)
            print('Transferred %g/%g items from %s' %
                  (len(ckpt['model']), len(model.state_dict()), weights))
        except KeyError as e:
            s = "%s is not compatible with %s. This may be due to model differences or %s may be out of date. " \
             "Please delete or update %s and try again, or use --weights '' to train from scratch." \
             % (weights, opt.cfg, weights, weights)
            raise KeyError(s) from e

        # load optimizer
        if ckpt['optimizer'] is not None:
            optimizer.load_state_dict(ckpt['optimizer'])
            best_fitness = ckpt['best_fitness']

        # load results
        if ckpt.get('training_results') is not None:
            with open(results_file, 'w') as file:
                file.write(ckpt['training_results'])  # write results.txt

        # epochs
        start_epoch = ckpt['epoch'] + 1
        if epochs < start_epoch:
            print(
                '%s has been trained for %g epochs. Fine-tuning for %g additional epochs.'
                % (weights, ckpt['epoch'], epochs))
            epochs += ckpt['epoch']  # finetune additional epochs

        del ckpt

    # Mixed precision training https://github.com/NVIDIA/apex
    if mixed_precision:
        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          opt_level='O1',
                                          verbosity=0)

    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    lf = lambda x: ((
        (1 + math.cos(x * math.pi / epochs)) / 2)**1.0) * 0.8 + 0.2  # cosine
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    # https://discuss.pytorch.org/t/a-problem-occured-when-resuming-an-optimizer/28822
    # plot_lr_scheduler(optimizer, scheduler, epochs)

    # DP mode
    if device.type != 'cpu' and rank == -1 and torch.cuda.device_count() > 1:
        model = torch.nn.DataParallel(model)

    # SyncBatchNorm
    if opt.sync_bn and device.type != 'cpu' and rank != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        logger.info('Using SyncBatchNorm()')

    # Exponential moving average
    ema = torch_utils.ModelEMA(model) if rank in [-1, 0] else None

    # DDP mode
    if device.type != 'cpu' and rank != -1:
        model = DDP(model, device_ids=[rank], output_device=rank)

    # Trainloader
    dataloader, dataset = create_dataloader(train_path,
                                            imgsz,
                                            batch_size,
                                            gs,
                                            opt,
                                            hyp=hyp,
                                            augment=True,
                                            cache=opt.cache_images,
                                            rect=opt.rect,
                                            local_rank=rank,
                                            world_size=opt.world_size)
    mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
    nb = len(dataloader)  # number of batches
    assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (
        mlc, nc, opt.data, nc - 1)

    # Testloader
    if rank in [-1, 0]:
        # local_rank is set to -1. Because only the first process is expected to do evaluation.
        testloader = create_dataloader(test_path,
                                       imgsz_test,
                                       total_batch_size,
                                       gs,
                                       opt,
                                       hyp=hyp,
                                       augment=False,
                                       cache=opt.cache_images,
                                       rect=True,
                                       local_rank=-1,
                                       world_size=opt.world_size)[0]

    # Model parameters
    hyp['cls'] *= nc / 80.  # scale coco-tuned hyp['cls'] to current dataset
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # giou loss ratio (obj_loss = 1.0 or giou)
    model.class_weights = labels_to_class_weights(dataset.labels, nc).to(
        device)  # attach class weights
    model.names = names

    # Class frequency
    if rank in [-1, 0]:
        labels = np.concatenate(dataset.labels, 0)
        c = torch.tensor(labels[:, 0])  # classes
        # cf = torch.bincount(c.long(), minlength=nc) + 1.
        # model._initialize_biases(cf.to(device))

        # Check anchors
        if not opt.noautoanchor:
            check_anchors(dataset,
                          model=model,
                          thr=hyp['anchor_t'],
                          imgsz=imgsz)

        # save anchors
        m = model.module.model[-1] if hasattr(model,
                                              'module') else model.model[-1]
        anchors = []
        for i in range(3):
            for j in range(3):
                anchor = m.anchor_grid[i, 0, j, 0,
                                       0].cpu().detach().numpy().tolist()
                anchors.append(anchor)
        with open(os.path.join(work_dir, 'anchors.txt'), 'w') as f:
            for anchor in anchors:
                f.write(f'{anchor[0]},{anchor[1]}\n')

    # Start training
    t0 = time.time()
    nw = max(3 * nb,
             1e3)  # number of warmup iterations, max(3 epochs, 1k iterations)
    maps = np.zeros(nc)  # mAP per class
    results = (
        0, 0, 0, 0, 0, 0, 0
    )  # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'
    scheduler.last_epoch = start_epoch - 1  # do not move
    if rank in [0, -1]:
        logger.info('Image sizes %g train, %g test' % (imgsz, imgsz_test))
        logger.info('Using %g dataloader workers' % dataloader.num_workers)
        logger.info('Starting training for %g epochs...' % epochs)
    # torch.autograd.set_detect_anomaly(True)
    for epoch in range(
            start_epoch, epochs
    ):  # epoch ------------------------------------------------------------------
        train_time_start = time.time()
        logger.info('')
        logger.info('epoch: {epoch} lr: {lr}'.format(
            epoch=epoch, lr=optimizer.param_groups[0]['lr']))

        model.train()

        # Update image weights (optional)
        # When in DDP mode, the generated indices will be broadcasted to synchronize dataset.
        if dataset.image_weights:
            # Generate indices.
            if rank in [-1, 0]:
                w = model.class_weights.cpu().numpy() * (
                    1 - maps)**2  # class weights
                image_weights = labels_to_image_weights(dataset.labels,
                                                        nc=nc,
                                                        class_weights=w)
                dataset.indices = random.choices(
                    range(dataset.n), weights=image_weights,
                    k=dataset.n)  # rand weighted idx
            # Broadcast.
            if rank != -1:
                indices = torch.zeros([dataset.n], dtype=torch.int)
                if rank == 0:
                    indices[:] = torch.from_tensor(dataset.indices,
                                                   dtype=torch.int)
                dist.broadcast(indices, 0)
                if rank != 0:
                    dataset.indices = indices.cpu().numpy()

        # Update mosaic border
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = torch.zeros(4, device=device)  # mean losses
        if rank != -1:
            dataloader.sampler.set_epoch(epoch)
        '''
		pbar = enumerate(dataloader)
		if rank in [-1, 0]:
			logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls', 'total', 'targets', 'img_size'))
			pbar = tqdm(pbar, total=nb)  # progress bar
		'''
        optimizer.zero_grad()
        for i, (imgs, targets, paths, _) in enumerate(
                dataloader
        ):  # batch -------------------------------------------------------------
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device, non_blocking=True).float(
            ) / 255.0  # uint8 to float32, 0 - 255 to 0.0 - 1.0

            # Warmup
            if ni <= nw:
                xi = [0, nw]  # x interp
                # model.gr = np.interp(ni, xi, [0.0, 1.0])  # giou loss ratio (obj_loss = 1.0 or giou)
                accumulate = max(
                    1,
                    np.interp(ni, xi, [1, nbs / total_batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x['lr'] = np.interp(
                        ni, xi,
                        [0.1 if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(ni, xi,
                                                  [0.9, hyp['momentum']])

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5,
                                      imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]
                          ]  # new shape (stretched to gs-multiple)
                    imgs = F.interpolate(imgs,
                                         size=ns,
                                         mode='bilinear',
                                         align_corners=False)

            # Forward
            pred = model(imgs)

            # Loss
            loss, loss_items = compute_loss(pred, targets.to(device),
                                            model)  # scaled by batch_size
            if rank != -1:
                loss *= opt.world_size  # gradient averaged between devices in DDP mode
            if not torch.isfinite(loss):
                logger.info('WARNING: non-finite loss, ending training ',
                            loss_items)
                return results

            # Backward
            if mixed_precision:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            # Optimize
            if ni % accumulate == 0:
                optimizer.step()
                optimizer.zero_grad()
                if ema is not None:
                    ema.update(model)

            if i % 200 == 0:
                logger.info(
                    '[Epoch:{epoch}/{epochs} iter:{iter}] loss:{loss}'.format(
                        epoch=epoch,
                        epochs=epochs - 1,
                        iter=i,
                        loss=loss.item()))

            # end batch ------------------------------------------------------------------------------------------------

        # Scheduler
        scheduler.step()

        train_time_end = time.time()
        logger.info('train time: {train_time}s'.format(
            train_time=int(train_time_end - train_time_start)))

        # Only the first process in DDP mode is allowed to log or save checkpoints.
        if rank in [-1, 0]:
            # mAP
            if ema is not None:
                ema.update_attr(
                    model,
                    include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride'])
            final_epoch = epoch + 1 == epochs
            if (epoch % data_dict['eval_interval'] == 0
                    and epoch != 0) or final_epoch:  # Calculate mAP
                results, maps, times = test.test(
                    data_dict,
                    batch_size=total_batch_size,
                    imgsz=imgsz_test,
                    save_json=final_epoch
                    and opt.data.endswith(os.sep + 'coco.yaml'),
                    model=ema.ema.module
                    if hasattr(ema.ema, 'module') else ema.ema,
                    single_cls=opt.single_cls,
                    dataloader=testloader,
                    save_dir=work_dir)
                map50, map = results[2], results[3]
                logger.info(f'eval:   [email protected]: {map50}    [email protected]:.95: {map}')

                # 保存模型
                ckpt = ema.ema.module if hasattr(ema.ema,
                                                 'module') else ema.ema
                torch.save(
                    ckpt,
                    os.path.join(work_dir,
                                 'epoch_{epoch}.pth'.format(epoch=epoch)))

        # end epoch ----------------------------------------------------------------------------------------------------
    # end training

    dist.destroy_process_group() if rank not in [-1, 0] else None
    torch.cuda.empty_cache()
    return results
Пример #15
0
def train(hyp):
    print(f"Hyperparameters {hyp}")
    log_dir = tb_writer.log_dir if tb_writer else "runs/evolution"  # run directory
    wdir = str(Path(log_dir) / "weights") + os.sep  # weights directory

    os.makedirs(wdir, exist_ok=True)
    last = wdir + "last.pt"
    best = wdir + "best.pt"
    results_file = log_dir + os.sep + "results.txt"

    # Save run settings
    with open(Path(log_dir) / "hyp.yaml", "w") as f:
        yaml.dump(hyp, f, sort_keys=False)
    with open(Path(log_dir) / "opt.yaml", "w") as f:
        yaml.dump(vars(opt), f, sort_keys=False)

    epochs = opt.epochs  # 300
    batch_size = opt.batch_size  # 64
    weights = opt.weights  # initial training weights

    # Configure
    init_seeds(1)
    with open(opt.data) as f:
        data_dict = yaml.load(f, Loader=yaml.FullLoader)  # model dict
    train_path = data_dict["train"]
    test_path = data_dict["val"]
    nc, names = (
        (1, ["item"]) if opt.single_cls else
        (int(data_dict["nc"]), data_dict["names"]))  # number classes, names
    assert len(names) == nc, "%g names found for nc=%g dataset in %s" % (
        len(names),
        nc,
        opt.data,
    )  # check

    # Remove previous results
    for f in glob.glob("*_batch*.jpg") + glob.glob(results_file):
        os.remove(f)

    # Create model
    model = Model(opt.cfg, nc=nc).to(device)

    # Image sizes
    gs = int(max(model.stride))  # grid size (max stride)
    imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size
                         ]  # verify imgsz are gs-multiples

    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / batch_size),
                     1)  # accumulate loss before optimizing
    hyp["weight_decay"] *= batch_size * accumulate / nbs  # scale weight_decay
    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_parameters():
        if v.requires_grad:
            if ".bias" in k:
                pg2.append(v)  # biases
            elif ".weight" in k and ".bn" not in k:
                pg1.append(v)  # apply weight decay
            else:
                pg0.append(v)  # all else

    if (
            hyp["optimizer"] == "adam"
    ):  # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
        optimizer = optim.Adam(pg0,
                               lr=hyp["lr0"],
                               betas=(hyp["momentum"],
                                      0.999))  # adjust beta1 to momentum
    else:
        optimizer = optim.SGD(pg0,
                              lr=hyp["lr0"],
                              momentum=hyp["momentum"],
                              nesterov=True)

    optimizer.add_param_group({
        "params": pg1,
        "weight_decay": hyp["weight_decay"]
    })  # add pg1 with weight_decay
    optimizer.add_param_group({"params": pg2})  # add pg2 (biases)
    print("Optimizer groups: %g .bias, %g conv.weight, %g other" %
          (len(pg2), len(pg1), len(pg0)))
    del pg0, pg1, pg2

    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    lf = lambda x: ((
        (1 + math.cos(x * math.pi / epochs)) / 2)**1.0) * 0.9 + 0.1  # cosine
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    # plot_lr_scheduler(optimizer, scheduler, epochs, save_dir=log_dir)

    # Load Model
    google_utils.attempt_download(weights)
    start_epoch, best_fitness = 0, 0.0
    if weights.endswith(".pt"):  # pytorch format
        ckpt = torch.load(weights, map_location=device)  # load checkpoint

        # load model
        try:
            ckpt["model"] = {
                k: v
                for k, v in ckpt["model"].float().state_dict().items()
                if model.state_dict()[k].shape == v.shape
            }  # to FP32, filter
            model.load_state_dict(ckpt["model"], strict=False)
        except KeyError as e:
            s = (
                "%s is not compatible with %s. This may be due to model differences or %s may be out of date. "
                "Please delete or update %s and try again, or use --weights '' to train from scratch."
                % (opt.weights, opt.cfg, opt.weights, opt.weights))
            raise KeyError(s) from e

        # load optimizer
        if ckpt["optimizer"] is not None:
            optimizer.load_state_dict(ckpt["optimizer"])
            best_fitness = ckpt["best_fitness"]

        # load results
        if ckpt.get("training_results") is not None:
            with open(results_file, "w") as file:
                file.write(ckpt["training_results"])  # write results.txt

        # epochs
        start_epoch = ckpt["epoch"] + 1
        if epochs < start_epoch:
            print(
                "%s has been trained for %g epochs. Fine-tuning for %g additional epochs."
                % (opt.weights, ckpt["epoch"], epochs))
            epochs += ckpt["epoch"]  # finetune additional epochs

        del ckpt

    # Mixed precision training https://github.com/NVIDIA/apex
    if mixed_precision:
        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          opt_level="O1",
                                          verbosity=0)

    # Distributed training
    if device.type != "cpu" and torch.cuda.device_count(
    ) > 1 and dist.is_available():
        dist.init_process_group(
            backend="nccl",  # distributed backend
            init_method="tcp://127.0.0.1:9999",  # init method
            world_size=1,  # number of nodes
            rank=0,
        )  # node rank
        # model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)  # requires world_size > 1
        model = torch.nn.parallel.DistributedDataParallel(model)

    # Trainloader
    dataloader, dataset = create_dataloader(
        train_path,
        imgsz,
        batch_size,
        gs,
        opt,
        hyp=hyp,
        augment=True,
        cache=opt.cache_images,
        rect=opt.rect,
    )
    mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
    nb = len(dataloader)  # number of batches
    assert mlc < nc, "Label class %g exceeds nc=%g in %s. Correct your labels or your model." % (
        mlc,
        nc,
        opt.cfg,
    )

    # Testloader
    testloader = create_dataloader(
        test_path,
        imgsz_test,
        batch_size,
        gs,
        opt,
        hyp=hyp,
        augment=False,
        cache=opt.cache_images,
        rect=True,
    )[0]

    # Model parameters
    hyp["cls"] *= nc / 80.0  # scale coco-tuned hyp['cls'] to current dataset
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # giou loss ratio (obj_loss = 1.0 or giou)
    model.class_weights = labels_to_class_weights(dataset.labels, nc).to(
        device)  # attach class weights
    model.names = names

    # Class frequency
    labels = np.concatenate(dataset.labels, 0)
    c = torch.tensor(labels[:, 0])  # classes
    # cf = torch.bincount(c.long(), minlength=nc) + 1.
    # model._initialize_biases(cf.to(device))
    plot_labels(labels, save_dir=log_dir)
    if tb_writer:
        # tb_writer.add_hparams(hyp, {})  # causes duplicate https://github.com/ultralytics/yolov5/pull/384
        tb_writer.add_histogram("classes", c, 0)

    # Check anchors
    if not opt.noautoanchor:
        check_anchors(dataset, model=model, thr=hyp["anchor_t"], imgsz=imgsz)

    # Exponential moving average
    ema = torch_utils.ModelEMA(model)

    # Start training
    t0 = time.time()
    nw = max(3 * nb,
             1e3)  # number of warmup iterations, max(3 epochs, 1k iterations)
    maps = np.zeros(nc)  # mAP per class
    results = (
        0,
        0,
        0,
        0,
        0,
        0,
        0,
    )  # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'
    scheduler.last_epoch = start_epoch - 1  # do not move
    print("Image sizes %g train, %g test" % (imgsz, imgsz_test))
    print("Using %g dataloader workers" % dataloader.num_workers)
    print("Starting training for %g epochs..." % epochs)
    # torch.autograd.set_detect_anomaly(True)
    for epoch in range(
            start_epoch, epochs
    ):  # epoch ------------------------------------------------------------------
        model.train()

        # Update image weights (optional)
        if dataset.image_weights:
            w = model.class_weights.cpu().numpy() * (1 -
                                                     maps)**2  # class weights
            image_weights = labels_to_image_weights(dataset.labels,
                                                    nc=nc,
                                                    class_weights=w)
            dataset.indices = random.choices(range(dataset.n),
                                             weights=image_weights,
                                             k=dataset.n)  # rand weighted idx

        # Update mosaic border
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = torch.zeros(4, device=device)  # mean losses
        print(("\n" + "%10s" * 8) % ("Epoch", "gpu_mem", "GIoU", "obj", "cls",
                                     "total", "targets", "img_size"))
        pbar = tqdm(enumerate(dataloader), total=nb)  # progress bar
        for (
                i,
            (imgs, targets, paths, _),
        ) in pbar:  # batch -------------------------------------------------------------
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = (imgs.to(device, non_blocking=True).float() / 255.0
                    )  # uint8 to float32, 0 - 255 to 0.0 - 1.0

            # Warmup
            if ni <= nw:
                xi = [0, nw]  # x interp
                # model.gr = np.interp(ni, xi, [0.0, 1.0])  # giou loss ratio (obj_loss = 1.0 or giou)
                accumulate = max(
                    1,
                    np.interp(ni, xi, [1, nbs / batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x["lr"] = np.interp(
                        ni, xi,
                        [0.1 if j == 2 else 0.0, x["initial_lr"] * lf(epoch)])
                    if "momentum" in x:
                        x["momentum"] = np.interp(ni, xi,
                                                  [0.9, hyp["momentum"]])

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5,
                                      imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]
                          ]  # new shape (stretched to gs-multiple)
                    imgs = F.interpolate(imgs,
                                         size=ns,
                                         mode="bilinear",
                                         align_corners=False)

            # Forward
            pred = model(imgs)

            # Loss
            loss, loss_items = compute_loss(pred, targets.to(device), model)
            if not torch.isfinite(loss):
                print("WARNING: non-finite loss, ending training ", loss_items)
                return results

            # Backward
            if mixed_precision:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            # Optimize
            if ni % accumulate == 0:
                optimizer.step()
                optimizer.zero_grad()
                ema.update(model)

            # Print
            mloss = (mloss * i + loss_items) / (i + 1)  # update mean losses
            mem = "%.3gG" % (torch.cuda.memory_cached() /
                             1e9 if torch.cuda.is_available() else 0)  # (GB)
            s = ("%10s" * 2 + "%10.4g" * 6) % (
                "%g/%g" % (epoch, epochs - 1),
                mem,
                *mloss,
                targets.shape[0],
                imgs.shape[-1],
            )
            pbar.set_description(s)

            # Plot
            if ni < 3:
                f = str(Path(log_dir) / ("train_batch%g.jpg" % ni))  # filename
                result = plot_images(images=imgs,
                                     targets=targets,
                                     paths=paths,
                                     fname=f)
                if tb_writer and result is not None:
                    tb_writer.add_image(f,
                                        result,
                                        dataformats="HWC",
                                        global_step=epoch)
                    # tb_writer.add_graph(model, imgs)  # add model to tensorboard

            # end batch ------------------------------------------------------------------------------------------------

        # Scheduler
        scheduler.step()

        # mAP
        ema.update_attr(model,
                        include=["md", "nc", "hyp", "gr", "names", "stride"])
        final_epoch = epoch + 1 == epochs
        if not opt.notest or final_epoch:  # Calculate mAP
            results, maps, times = test.test(
                opt.data,
                batch_size=batch_size,
                imgsz=imgsz_test,
                save_json=final_epoch
                and opt.data.endswith(os.sep + "coco.yaml"),
                model=ema.ema,
                single_cls=opt.single_cls,
                dataloader=testloader,
                save_dir=log_dir,
            )

        # Write
        with open(results_file, "a") as f:
            f.write(s + "%10.4g" * 7 % results +
                    "\n")  # P, R, mAP, F1, test_losses=(GIoU, obj, cls)
        if len(opt.name) and opt.bucket:
            os.system("gsutil cp %s gs://%s/results/results%s.txt" %
                      (results_file, opt.bucket, opt.name))

        # Tensorboard
        if tb_writer:
            tags = [
                "train/giou_loss",
                "train/obj_loss",
                "train/cls_loss",
                "metrics/precision",
                "metrics/recall",
                "metrics/mAP_0.5",
                "metrics/mAP_0.5:0.95",
                "val/giou_loss",
                "val/obj_loss",
                "val/cls_loss",
            ]
            for x, tag in zip(list(mloss[:-1]) + list(results), tags):
                tb_writer.add_scalar(tag, x, epoch)

        # Update best mAP
        fi = fitness(np.array(results).reshape(
            1, -1))  # fitness_i = weighted combination of [P, R, mAP, F1]
        if fi > best_fitness:
            best_fitness = fi

        # Save model
        save = (not opt.nosave) or (final_epoch and not opt.evolve)
        if save:
            with open(results_file, "r") as f:  # create checkpoint
                ckpt = {
                    "epoch": epoch,
                    "best_fitness": best_fitness,
                    "training_results": f.read(),
                    "model": ema.ema,
                    "optimizer":
                    None if final_epoch else optimizer.state_dict(),
                }

            # Save last, best and delete
            torch.save(ckpt, last)
            if (best_fitness == fi) and not final_epoch:
                torch.save(ckpt, best)
            del ckpt

        # end epoch ----------------------------------------------------------------------------------------------------
    # end training

    # Strip optimizers
    n = ("_" if len(opt.name) and not opt.name.isnumeric() else "") + opt.name
    fresults, flast, fbest = "results%s.txt" % n, wdir + "last%s.pt" % n, wdir + "best%s.pt" % n
    for f1, f2 in zip([wdir + "last.pt", wdir + "best.pt", "results.txt"],
                      [flast, fbest, fresults]):
        if os.path.exists(f1):
            os.rename(f1, f2)  # rename
            ispt = f2.endswith(".pt")  # is *.pt
            strip_optimizer(f2) if ispt else None  # strip optimizer
            os.system(
                "gsutil cp %s gs://%s/weights" %
                (f2, opt.bucket)) if opt.bucket and ispt else None  # upload

    # Finish
    if not opt.evolve:
        plot_results(save_dir=log_dir)  # save as results.png
    print("%g epochs completed in %.3f hours.\n" % (epoch - start_epoch + 1,
                                                    (time.time() - t0) / 3600))
    dist.destroy_process_group(
    ) if device.type != "cpu" and torch.cuda.device_count() > 1 else None
    torch.cuda.empty_cache()
    return results
Пример #16
0
def train(hyp, opt, device):
    logger.info(
        colorstr('hyperparameters: ') + ', '.join(f'{k}={v}'
                                                  for k, v in hyp.items()))
    save_dir, epochs, batch_size, total_batch_size, weights, rank = \
        Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank

    # Directories
    wdir = save_dir / 'weights'
    wdir.mkdir(parents=True, exist_ok=True)  # make dir
    last = wdir / 'last.pt'
    best = wdir / 'best.pt'
    results_file = save_dir / 'results.txt'

    # Save run settings
    with open(save_dir / 'hyp.yaml', 'w') as f:
        yaml.dump(hyp, f, sort_keys=False)
    with open(save_dir / 'opt.yaml', 'w') as f:
        yaml.dump(vars(opt), f, sort_keys=False)

    # Configure
    plots = not opt.evolve  # create plots
    cuda = device.type != 'cpu'
    init_seeds(2 + rank)
    with open(opt.data) as f:
        data_dict = yaml.load(f, Loader=yaml.SafeLoader)  # data dict
    is_coco = opt.data.endswith('coco.yaml')

    # Logging- Doing this before checking the dataset. Might update data_dict
    opt.hyp = hyp  # add hyperparameters

    nc = int(data_dict['nc'])  # number of classes
    names = data_dict['names']  # class names
    assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (
        len(names), nc, opt.data)  # check

    # Model
    pretrained = weights.endswith('.pt')
    if pretrained:
        attempt_download(weights)  # download if not found locally
        ckpt = torch.load(weights, map_location=device)  # load checkpoint
        model = Model(opt.cfg or ckpt['model'].yaml,
                      ch=3,
                      nc=nc,
                      anchors=hyp.get('anchors')).to(device)  # create
        exclude = [
            'anchor'
        ] if (opt.cfg or hyp.get('anchors')) and not opt.resume else [
        ]  # exclude keys
        state_dict = ckpt['model'].float().state_dict()  # to FP32
        state_dict = intersect_dicts(state_dict,
                                     model.state_dict(),
                                     exclude=exclude)  # intersect
        model.load_state_dict(state_dict, strict=False)  # load
        logger.info(
            'Transferred %g/%g items from %s' %
            (len(state_dict), len(model.state_dict()), weights))  # report
    else:
        model = Model(opt.cfg, ch=3, nc=nc,
                      anchors=hyp.get('anchors')).to(device)  # create
    check_dataset(data_dict)  # check
    train_path = data_dict['train']
    test_path = data_dict['val']

    # Freeze
    freeze = []  # parameter names to freeze (full or partial)
    for k, v in model.named_parameters():
        v.requires_grad = True  # train all layers
        if any(x in k for x in freeze):
            print('freezing %s' % k)
            v.requires_grad = False

    # Optimizer
    nbs = 64  # nominal batch size
    # accumulate loss before optimizing
    accumulate = max(round(nbs / total_batch_size), 1)
    hyp['weight_decay'] *= total_batch_size * \
        accumulate / nbs  # scale weight_decay
    logger.info(f"Scaled weight_decay = {hyp['weight_decay']}")

    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_modules():
        if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
            pg2.append(v.bias)  # biases
        if isinstance(v, nn.BatchNorm2d):
            pg0.append(v.weight)  # no decay
        elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
            pg1.append(v.weight)  # apply decay

    if opt.adam:
        optimizer = optim.Adam(pg0,
                               lr=hyp['lr0'],
                               betas=(hyp['momentum'],
                                      0.999))  # adjust beta1 to momentum
    else:
        optimizer = optim.SGD(pg0,
                              lr=hyp['lr0'],
                              momentum=hyp['momentum'],
                              nesterov=True)

    # add pg1 with weight_decay
    optimizer.add_param_group({
        'params': pg1,
        'weight_decay': hyp['weight_decay']
    })
    optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
    logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' %
                (len(pg2), len(pg1), len(pg0)))
    del pg0, pg1, pg2

    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
    if opt.linear_lr:

        def lf(x):            return (1 - x / (epochs - 1)) * \
     (1.0 - hyp['lrf']) + hyp['lrf']  # linear
    else:
        lf = one_cycle(1, hyp['lrf'], epochs)  # cosine 1->hyp['lrf']
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    # plot_lr_scheduler(optimizer, scheduler, epochs)

    # EMA
    ema = ModelEMA(model) if rank == -1 else None

    # Resume
    start_epoch, best_fitness = 0, 0.0
    if pretrained:
        # Optimizer
        if ckpt['optimizer'] is not None:
            optimizer.load_state_dict(ckpt['optimizer'])
            best_fitness = ckpt['best_fitness']

        # EMA
        if ema and ckpt.get('ema'):
            ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
            ema.updates = ckpt['updates']

        # Results
        if ckpt.get('training_results') is not None:
            results_file.write_text(
                ckpt['training_results'])  # write results.txt

        # Epochs
        start_epoch = ckpt['epoch'] + 1
        if opt.resume:
            assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (
                weights, epochs)
        if epochs < start_epoch:
            logger.info(
                '%s has been trained for %g epochs. Fine-tuning for %g additional epochs.'
                % (weights, ckpt['epoch'], epochs))
            epochs += ckpt['epoch']  # finetune additional epochs

        del ckpt, state_dict

    # Image sizes
    gs = max(int(model.stride.max()), 32)  # grid size (max stride)
    # number of detection layers (used for scaling hyp['obj'])
    nl = model.model[-1].nl
    # verify imgsz are gs-multiples
    imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size]

    # Trainloader
    dataloader, dataset = create_dataloader(train_path,
                                            imgsz,
                                            batch_size,
                                            gs,
                                            opt,
                                            hyp=hyp,
                                            augment=True,
                                            cache=opt.cache_images,
                                            rect=opt.rect,
                                            world_size=opt.world_size,
                                            workers=opt.workers,
                                            image_weights=opt.image_weights,
                                            quad=opt.quad,
                                            prefix=colorstr('train: '))
    mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
    nb = len(dataloader)  # number of batches
    assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (
        mlc, nc, opt.data, nc - 1)

    # Process 0
    if rank == -1:
        testloader = create_dataloader(
            test_path,
            imgsz_test,
            batch_size * 2,
            gs,
            opt,  # testloader
            hyp=hyp,
            cache=opt.cache_images and not opt.notest,
            rect=True,
            world_size=opt.world_size,
            workers=opt.workers,
            pad=0.5,
            prefix=colorstr('val: '))[0]

        if not opt.resume:
            labels = np.concatenate(dataset.labels, 0)
            c = torch.tensor(labels[:, 0])  # classes
            if plots:
                plot_labels(labels, names, save_dir)

            # Anchors
            if not opt.noautoanchor:
                check_anchors(dataset,
                              model=model,
                              thr=hyp['anchor_t'],
                              imgsz=imgsz)
            model.half().float()  # pre-reduce anchor precision

    # Model parameters
    hyp['box'] *= 3. / nl  # scale to layers
    hyp['cls'] *= nc / 80. * 3. / nl  # scale to classes and layers
    # scale to image size and layers
    hyp['obj'] *= (imgsz / 640)**2 * 3. / nl
    hyp['label_smoothing'] = opt.label_smoothing
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # iou loss ratio (obj_loss = 1.0 or iou)
    model.class_weights = labels_to_class_weights(
        dataset.labels, nc).to(device) * nc  # attach class weights
    model.names = names

    # Start training
    t0 = time.time()
    # number of warmup iterations, max(3 epochs, 1k iterations)
    nw = max(round(hyp['warmup_epochs'] * nb), 1000)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    maps = np.zeros(nc)  # mAP per class
    # P, R, [email protected], [email protected], val_loss(box, obj, cls)
    results = (0, 0, 0, 0, 0, 0, 0)
    scheduler.last_epoch = start_epoch - 1  # do not move
    scaler = amp.GradScaler(enabled=cuda)
    compute_loss = ComputeLoss(model)  # init loss class
    logger.info(f'Image sizes {imgsz} train, {imgsz_test} test\n'
                f'Using {dataloader.num_workers} dataloader workers\n'
                f'Logging results to {save_dir}\n'
                f'Starting training for {epochs} epochs...')
    # epoch ------------------------------------------------------------------
    for epoch in range(start_epoch, epochs):
        model.train()

        # Update image weights (optional)
        if opt.image_weights:
            # Generate indices
            cw = model.class_weights.cpu().numpy() * (
                1 - maps)**2 / nc  # class weights
            iw = labels_to_image_weights(dataset.labels,
                                         nc=nc,
                                         class_weights=cw)  # image weights
            dataset.indices = random.choices(range(dataset.n),
                                             weights=iw,
                                             k=dataset.n)  # rand weighted idx

        mloss = torch.zeros(4, device=device)  # mean losses
        pbar = enumerate(dataloader)
        logger.info(
            ('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls',
                                   'total', 'labels', 'img_size'))
        if rank == -1:
            pbar = tqdm(pbar, total=nb)  # progress bar
        optimizer.zero_grad()
        # batch -------------------------------------------------------------
        for i, (imgs, targets, paths, _) in pbar:
            # number integrated batches (since train start)
            ni = i + nb * epoch
            imgs = imgs.to(device, non_blocking=True).float() / \
                255.0  # uint8 to float32, 0-255 to 0.0-1.0

            # Warmup
            if ni <= nw:
                xi = [0, nw]  # x interp
                # model.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
                accumulate = max(
                    1,
                    np.interp(ni, xi, [1, nbs / total_batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x['lr'] = np.interp(ni, xi, [
                        hyp['warmup_bias_lr'] if j == 2 else 0.0,
                        x['initial_lr'] * lf(epoch)
                    ])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(
                            ni, xi, [hyp['warmup_momentum'], hyp['momentum']])

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5,
                                      imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    # new shape (stretched to gs-multiple)
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]]
                    imgs = F.interpolate(imgs,
                                         size=ns,
                                         mode='bilinear',
                                         align_corners=False)

            # Forward
            with amp.autocast(enabled=cuda):
                pred = model(imgs)  # forward
                loss, loss_items = compute_loss(
                    pred, targets.to(device))  # loss scaled by batch_size
                if opt.quad:
                    loss *= 4.

            # Backward
            scaler.scale(loss).backward()

            # Optimize
            if ni % accumulate == 0:
                scaler.step(optimizer)  # optimizer.step
                scaler.update()
                optimizer.zero_grad()
                if ema:
                    ema.update(model)

            # Print
            if rank == -1:
                mloss = (mloss * i + loss_items) / \
                    (i + 1)  # update mean losses
                mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9
                                 if torch.cuda.is_available() else 0)  # (GB)
                s = ('%10s' * 2 +
                     '%10.4g' * 6) % ('%g/%g' % (epoch, epochs - 1), mem,
                                      *mloss, targets.shape[0], imgs.shape[-1])
                pbar.set_description(s)

                # Plot
                if plots and ni < 3:
                    f = save_dir / f'train_batch{ni}.jpg'  # filename
                    Thread(target=plot_images,
                           args=(imgs, targets, paths, f),
                           daemon=True).start()

            # end batch ------------------------------------------------------------------------------------------------
        # end epoch ----------------------------------------------------------------------------------------------------

        # Scheduler
        lr = [x['lr'] for x in optimizer.param_groups]  # for tensorboard
        scheduler.step()

        # single-GPU
        if rank == -1:
            # mAP
            ema.update_attr(model,
                            include=[
                                'yaml', 'nc', 'hyp', 'gr', 'names', 'stride',
                                'class_weights'
                            ])
            final_epoch = epoch + 1 == epochs
            if not opt.notest or final_epoch:  # Calculate mAP
                results, maps, times = test.test(data_dict,
                                                 batch_size=batch_size * 2,
                                                 imgsz=imgsz_test,
                                                 model=ema.ema,
                                                 dataloader=testloader,
                                                 save_dir=save_dir,
                                                 verbose=nc < 50
                                                 and final_epoch,
                                                 plots=plots and final_epoch,
                                                 compute_loss=compute_loss,
                                                 is_coco=is_coco)

            # Write
            with open(results_file, 'a') as f:
                # append metrics, val_loss
                f.write(s + '%10.4g' * 7 % results + '\n')

            # Log
            tags = [
                'train/box_loss',
                'train/obj_loss',
                'train/cls_loss',  # train loss
                'metrics/precision',
                'metrics/recall',
                'metrics/mAP_0.5',
                'metrics/mAP_0.5:0.95',
                'val/box_loss',
                'val/obj_loss',
                'val/cls_loss',  # val loss
                'x/lr0',
                'x/lr1',
                'x/lr2'
            ]  # params

            # Update best mAP
            # weighted combination of [P, R, [email protected], [email protected]]
            fi = fitness(np.array(results).reshape(1, -1))
            if fi > best_fitness:
                best_fitness = fi

            # Save model
            if (not opt.nosave) or (final_epoch and not opt.evolve):  # if save
                ckpt = {
                    'epoch': epoch,
                    'best_fitness': best_fitness,
                    'training_results': results_file.read_text(),
                    'model': deepcopy(model).half(),
                    'ema': deepcopy(ema.ema).half(),
                    'updates': ema.updates,
                    'optimizer': optimizer.state_dict()
                }

                # Save last, best and delete
                torch.save(ckpt, last)
                if best_fitness == fi:
                    torch.save(ckpt, best)
                del ckpt

        # end epoch ----------------------------------------------------------------------------------------------------
    # end training
    if rank == -1:
        # Plots
        if plots:
            plot_results(save_dir=save_dir)  # save as results.png
        # Test best.pt
        logger.info('%g epochs completed in %.3f hours.\n' %
                    (epoch - start_epoch + 1, (time.time() - t0) / 3600))
        if opt.data.endswith('coco.yaml') and nc == 80:  # if COCO
            for m in (last,
                      best) if best.exists() else (last):  # speed, mAP tests
                results, _, _ = test.test(opt.data,
                                          batch_size=batch_size * 2,
                                          imgsz=imgsz_test,
                                          conf_thres=0.001,
                                          iou_thres=0.7,
                                          model=attempt_load(m, device).half(),
                                          dataloader=testloader,
                                          save_dir=save_dir,
                                          save_json=True,
                                          plots=False,
                                          is_coco=is_coco)

        # Strip optimizers
        for f in last, best:
            if f.exists():
                strip_optimizer(f)  # strip optimizers
    else:
        dist.destroy_process_group()
    torch.cuda.empty_cache()
    return results
Пример #17
0
def train(hyp, opt, device, tb_writer=None):
    logger.info(f'Hyperparameters {hyp}')
    log_dir = Path(tb_writer.log_dir) if tb_writer else Path(
        opt.logdir) / 'evolve'  # logging directory
    wdir = log_dir / 'weights'  # weights directory
    os.makedirs(wdir, exist_ok=True)
    last = wdir / 'last.pt'
    best = wdir / 'best.pt'
    results_file = str(log_dir / 'results.txt')
    epochs, batch_size, total_batch_size, weights, rank = \
        opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank

    # Save run settings
    with open(log_dir / 'hyp.yaml', 'w') as f:
        yaml.dump(hyp, f, sort_keys=False)
    with open(log_dir / 'opt.yaml', 'w') as f:
        yaml.dump(vars(opt), f, sort_keys=False)

    # Configure
    cuda = device.type != 'cpu'
    init_seeds(2 + rank)
    with open(opt.data) as f:
        data_dict = yaml.load(f, Loader=yaml.FullLoader)  # model dict
    with torch_distributed_zero_first(rank):
        check_dataset(data_dict)  # check
    train_path = data_dict['train']
    test_path = data_dict['val']
    nc, names = (1, ['item']) if opt.single_cls else (int(
        data_dict['nc']), data_dict['names'])  # number classes, names
    assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (
        len(names), nc, opt.data)  # check

    # Model
    pretrained = weights.endswith('.pt')
    if pretrained:
        with torch_distributed_zero_first(rank):
            attempt_download(weights)  # download if not found locally
        ckpt = torch.load(weights, map_location=device)  # load checkpoint
        # added by jiangrong
        if not opt.resume:
            ckpt['epoch'] = -1
        if opt.nas:
            model = NasModel(opt.cfg,
                             ch=3,
                             nc=nc,
                             nas=opt.nas,
                             nas_stage=opt.nas_stage).to(device)  # create
        else:
            model = Model(opt.cfg or ckpt['model'].yaml, ch=3,
                          nc=nc).to(device)  # create
        exclude = ['anchor'] if opt.cfg else []  # exclude keys
        state_dict = ckpt['model'].float().state_dict()  # to FP32
        state_dict = intersect_dicts(state_dict,
                                     model.state_dict(),
                                     exclude=exclude)  # intersect
        model.load_state_dict(state_dict, strict=False)  # load
        logger.info(
            'Transferred %g/%g items from %s' %
            (len(state_dict), len(model.state_dict()), weights))  # report
    else:
        if opt.nas:
            model = NasModel(opt.cfg,
                             ch=3,
                             nc=nc,
                             nas=opt.nas,
                             nas_stage=opt.nas_stage).to(device)  # create
            if opt.nas_stage == 3:
                # TODO, Remapping with BN Statistics on Width-level
                model.re_organize_middle_weights()
        else:
            model = Model(opt.cfg, ch=3, nc=nc).to(device)  # create

    if opt.nas and opt.nas_stage > 0:
        from models.experimental import attempt_load
        """
            P           R           [email protected]
            0.535       0.835       0.742
            python test.py \
                --weights /workspace/yolov5-v3/yolov5/runs/exp122/weights/best.pt \
                --data ./data/baiguang.yaml \
                --device 1 \
                --conf-thres 0.2
        """
        teacher_model = attempt_load(
            "/workspace/yolov5-v3/yolov5/runs/exp259/weights/best.pt",
            map_location='cuda:1')
        teacher_model.eval()
    # Freeze
    freeze = [
        '',
    ]  # parameter names to freeze (full or partial)
    if any(freeze):
        for k, v in model.named_parameters():
            if any(x in k for x in freeze):
                print('freezing %s' % k)
                v.requires_grad = False

    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / total_batch_size),
                     1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= total_batch_size * accumulate / nbs  # scale weight_decay

    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_parameters():
        v.requires_grad = True
        if '.bias' in k:
            pg2.append(v)  # biases
        elif '.weight' in k and '.bn' not in k:
            pg1.append(v)  # apply weight decay
        else:
            pg0.append(v)  # all else

    if opt.adam:
        optimizer = optim.Adam(pg0,
                               lr=hyp['lr0'],
                               betas=(hyp['momentum'],
                                      0.999))  # adjust beta1 to momentum
    else:
        optimizer = optim.SGD(pg0,
                              lr=hyp['lr0'],
                              momentum=hyp['momentum'],
                              nesterov=True)

    optimizer.add_param_group({
        'params': pg1,
        'weight_decay': hyp['weight_decay']
    })  # add pg1 with weight_decay
    optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
    logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' %
                (len(pg2), len(pg1), len(pg0)))
    del pg0, pg1, pg2

    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
    lf = lambda x: ((
        (1 + math.cos(x * math.pi / epochs)) / 2)**1.0) * 0.8 + 0.2  # cosine
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    # plot_lr_scheduler(optimizer, scheduler, epochs)

    # Resume
    start_epoch, best_fitness = 0, 0.0
    if pretrained:
        # Optimizer
        if ckpt['optimizer'] is not None and not opt.nas > 0:
            optimizer.load_state_dict(ckpt['optimizer'])
            best_fitness = ckpt['best_fitness']

        # Results
        if ckpt.get('training_results') is not None:
            with open(results_file, 'w') as file:
                file.write(ckpt['training_results'])  # write results.txt

        # Epochs
        start_epoch = ckpt['epoch'] + 1
        if opt.resume:
            assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (
                weights, epochs)
            shutil.copytree(wdir, wdir.parent /
                            f'weights_backup_epoch{start_epoch - 1}'
                            )  # save previous weights
        if epochs < start_epoch:
            logger.info(
                '%s has been trained for %g epochs. Fine-tuning for %g additional epochs.'
                % (weights, ckpt['epoch'], epochs))
            epochs += ckpt['epoch']  # finetune additional epochs

        del ckpt, state_dict

    # Image sizes
    gs = int(max(model.stride))  # grid size (max stride)
    imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size
                         ]  # verify imgsz are gs-multiples

    # DP mode
    # TheModel = model
    if cuda and rank == -1 and torch.cuda.device_count() > 1 and not (
            opt.nas and opt.nas_stage > 0):
        # https://pytorch.org/docs/stable/generated/torch.nn.DataParallel.html
        # >>> net = torch.nn.DataParallel(model, device_ids=[0, 1, 2])
        # >>> output = net(input_var)  # input_var can be on any device, including CPU
        model = torch.nn.DataParallel(model)

    # SyncBatchNorm
    if opt.sync_bn and cuda and rank != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        logger.info('Using SyncBatchNorm()')

    # Exponential moving average
    ema = ModelEMA(model) if rank in [-1, 0] else None

    # DDP mode
    if cuda and rank != -1:
        model = DDP(model,
                    device_ids=[opt.local_rank],
                    output_device=(opt.local_rank))

    # Trainloader
    dataloader, dataset = create_dataloader(train_path,
                                            imgsz,
                                            batch_size,
                                            gs,
                                            opt,
                                            hyp=hyp,
                                            augment=True,
                                            cache=opt.cache_images,
                                            rect=opt.rect,
                                            rank=rank,
                                            world_size=opt.world_size,
                                            workers=opt.workers)
    mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
    nb = len(dataloader)  # number of batches
    assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (
        mlc, nc, opt.data, nc - 1)

    # Testloader
    if rank in [-1, 0]:
        ema.updates = start_epoch * nb // accumulate  # set EMA updates
        testloader = create_dataloader(
            test_path,
            imgsz_test,
            total_batch_size,
            gs,
            opt,
            hyp=hyp,
            augment=False,
            cache=opt.cache_images,
            rect=True,
            rank=-1,
            world_size=opt.world_size,
            workers=opt.workers)[0]  # only runs on process 0

    # Model parameters
    hyp['cls'] *= nc / 80.  # scale coco-tuned hyp['cls'] to current dataset
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # giou loss ratio (obj_loss = 1.0 or giou)
    model.class_weights = labels_to_class_weights(dataset.labels, nc).to(
        device)  # attach class weights
    model.names = names

    # Class frequency
    if rank in [-1, 0]:
        labels = np.concatenate(dataset.labels, 0)
        c = torch.tensor(labels[:, 0])  # classes
        # cf = torch.bincount(c.long(), minlength=nc) + 1.
        # model._initialize_biases(cf.to(device))
        plot_labels(labels, save_dir=log_dir)
        if tb_writer:
            # tb_writer.add_hparams(hyp, {})  # causes duplicate https://github.com/ultralytics/yolov5/pull/384
            tb_writer.add_histogram('classes', c, 0)

        # Check anchors
        if not opt.noautoanchor:
            check_anchors(dataset,
                          model=model,
                          thr=hyp['anchor_t'],
                          imgsz=imgsz)

    # Start training
    t0 = time.time()
    nw = max(3 * nb,
             1e3)  # number of warmup iterations, max(3 epochs, 1k iterations)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    maps = np.zeros(nc)  # mAP per class
    results = (
        0, 0, 0, 0, 0, 0, 0
    )  # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'
    scheduler.last_epoch = start_epoch - 1  # do not move
    # scaler = amp.GradScaler(enabled=cuda)
    logger.info('Image sizes %g train, %g test' % (imgsz, imgsz_test))
    logger.info('Using %g dataloader workers' % dataloader.num_workers)
    logger.info('Starting training for %g epochs...' % epochs)
    # torch.autograd.set_detect_anomaly(True)
    plot_csum = 0
    for epoch in range(
            start_epoch, epochs
    ):  # epoch ------------------------------------------------------------------
        model.train()

        # Update image weights (optional)
        if dataset.image_weights:
            # Generate indices
            if rank in [-1, 0]:
                w = model.class_weights.cpu().numpy() * (
                    1 - maps)**2  # class weights
                image_weights = labels_to_image_weights(dataset.labels,
                                                        nc=nc,
                                                        class_weights=w)
                dataset.indices = random.choices(
                    range(dataset.n), weights=image_weights,
                    k=dataset.n)  # rand weighted idx
            # Broadcast if DDP
            if rank != -1:
                indices = torch.zeros([dataset.n], dtype=torch.int)
                if rank == 0:
                    indices[:] = torch.tensor(dataset.indices, dtype=torch.int)
                dist.broadcast(indices, 0)
                if rank != 0:
                    dataset.indices = indices.cpu().numpy()

        # Update mosaic border
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = torch.zeros(4, device=device)  # mean losses
        if rank != -1:
            dataloader.sampler.set_epoch(epoch)
        pbar = enumerate(dataloader)
        logger.info(
            ('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls',
                                   'total', 'targets', 'img_size'))
        if rank in [-1, 0]:
            pbar = tqdm(pbar, total=nb)  # progress bar
        optimizer.zero_grad()
        for i, (
                imgs, targets, paths, _
        ) in pbar:  # batch -------------------------------------------------------------
            # print(type(targets), targets.size()) #  [[_,classid(start from 0), x,y,w,h (0-1)]]
            # print('---> targets: ', targets)
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device, non_blocking=True).float(
            ) / 255.0  # uint8 to float32, 0-255 to 0.0-1.0

            # Warmup
            if ni <= nw:
                xi = [0, nw]  # x interp
                # model.gr = np.interp(ni, xi, [0.0, 1.0])  # giou loss ratio (obj_loss = 1.0 or giou)
                accumulate = max(
                    1,
                    np.interp(ni, xi, [1, nbs / total_batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x['lr'] = np.interp(
                        ni, xi,
                        [0.1 if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(ni, xi,
                                                  [0.9, hyp['momentum']])

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5,
                                      imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]
                          ]  # new shape (stretched to gs-multiple)
                    imgs = F.interpolate(imgs,
                                         size=ns,
                                         mode='bilinear',
                                         align_corners=False)

            # Forward
            ###### jiangrong, turn off mixed precision ##########
            # with amp.autocast(enabled=cuda):
            if 1 == 1:
                pred = model(imgs)  # forward, format x(bs,3,20,20,80+1+4)
                loss, loss_items = compute_loss(
                    pred, targets.to(device),
                    model)  # loss scaled by batch_size
                if rank != -1:
                    loss *= opt.world_size  # gradient averaged between devices in DDP mode
                # z= []
                # for i in range(TheModel._modules['model'][-1].nl):
                #     bs, _, ny, nx, _ = pred[i].shape
                #     if TheModel._modules['model'][-1].grid[i].shape[2:4] != pred[i].shape[2:4]:
                #         TheModel._modules['model'][-1].grid[i] = TheModel._modules['model'][-1]._make_grid(nx, ny).to(pred[i].device)

                #     y = pred[i].sigmoid()
                #     y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + TheModel._modules['model'][-1].grid[i].to(pred[i].device)) * TheModel._modules['model'][-1].stride[i]  # xy
                #     y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * TheModel._modules['model'][-1].anchor_grid[i]  # wh
                #     z.append(y.view(bs, -1, TheModel._modules['model'][-1].no))
                # inf_out = torch.cat(z, 1)
                # teacher_pred = non_max_suppression(inf_out, conf_thres=0.2, iou_thres=0.6, merge=False)
                # assert len(teacher_pred) == imgs.size()[0]
                # for i, (det, plot_img) in enumerate(zip(teacher_pred, imgs.detach().cpu().numpy())):
                #     plot_img = np.transpose(plot_img, (1,2,0))
                #     plot_img = np.uint8(plot_img * 255.0)
                #     plot_csum += 1
                #     cv2.imwrite('./tmp/{}.jpg'.format(plot_csum), plot_img)
                #     plot_img = cv2.imread('./tmp/{}.jpg'.format(plot_csum))
                #     for tgt in targets.detach().cpu().numpy():
                #         _, tgt_class_id, c_x, c_y, c_w, c_h = tgt
                #         c_x, c_y, c_w, c_h = float(c_x), float(c_y), float(c_w), float(c_h)
                #         c_x, c_y, c_w, c_h = c_x * plot_img.shape[1], c_y * plot_img.shape[0], c_w * plot_img.shape[1], c_h * plot_img.shape[0]
                #         cv2.rectangle(plot_img, (int(c_x - c_w / 2), int(c_y - c_h / 2)), (int(c_x + c_w / 2), int(c_y + c_h / 2)), (0,0,255), 2)
                #         print('===> ', int(c_x - c_w / 2), int(c_y - c_h / 2), int(c_x + c_w / 2), int(c_y + c_h / 2), tgt_class_id)
                #     if det is not None:
                #         det = det.detach().cpu().numpy()
                #         for each_b in det:
                #             pass
                #             cv2.rectangle(plot_img, (int(each_b[0]), int(each_b[1])), (int(each_b[2]), int(each_b[3])), (255,0,0), 2)
                #             print('---> ', int(each_b[0]), int(each_b[1]), int(each_b[2]), int(each_b[3]), float(each_b[4]), int(each_b[5]))
                #     cv2.imwrite('./tmp/{}.jpg'.format(plot_csum), plot_img)

            if opt.nas and opt.nas_stage > 0:
                teacher_imgs = imgs.to('cuda:1')
                with torch.no_grad():
                    inf_out, _ = teacher_model(teacher_imgs)  # forward
                    # filter by obj confidence 0.05
                    teacher_pred = non_max_suppression_teacher(
                        inf_out, conf_thres=0.05, iou_thres=0.6, merge=False
                    )  # (x1, y1, x2, y2, conf, cls) in resized image size
                    teacher_targets = teacher2targets(teacher_pred,
                                                      teacher_imgs)
                    # print('---> teacher_pred', teacher_pred)
                    # print('---> targets', targets)
                    # print('---> teacher_targets', teacher_targets)
                    # TODO: apply soft label loss
                    teacher_loss, teacher_loss_items = compute_teacher_loss(
                        pred, teacher_targets.to(device),
                        model)  # loss scaled by batch_size
                    # print("===> origin loss", loss, loss_items)
                    # print("===> teacher loss", teacher_loss, teacher_loss_items)
                    teacher_loss_scale = 2.0
                    loss += teacher_loss * teacher_loss_scale
                    loss_items += teacher_loss_items * teacher_loss_scale
                    ########## the targets and teacher predictions are matched, but they both can not be restored to the image, need TODO!! ###########
                    # assert len(teacher_pred) == imgs.size()[0]
                    # for i, (det, plot_img) in enumerate(zip(teacher_pred, imgs.detach().cpu().numpy())):
                    #     plot_img = np.transpose(plot_img, (1,2,0))
                    #     plot_img = np.uint8(plot_img * 255.0)
                    #     plot_csum += 1
                    #     cv2.imwrite('./tmp/{}.jpg'.format(plot_csum), plot_img)
                    #     plot_img = cv2.imread('./tmp/{}.jpg'.format(plot_csum))
                    #     for tgt in targets.detach().cpu().numpy():
                    #         _, tgt_class_id, c_x, c_y, c_w, c_h = tgt
                    #         c_x, c_y, c_w, c_h = float(c_x), float(c_y), float(c_w), float(c_h)
                    #         c_x, c_y, c_w, c_h = c_x * plot_img.shape[1], c_y * plot_img.shape[0], c_w * plot_img.shape[1], c_h * plot_img.shape[0]
                    #         cv2.rectangle(plot_img, (int(c_x - c_w / 2), int(c_y - c_h / 2)), (int(c_x + c_w / 2), int(c_y + c_h / 2)), (0,0,255), 2)
                    #         print('===> ', int(c_x - c_w / 2), int(c_y - c_h / 2), int(c_x + c_w / 2), int(c_y + c_h / 2), tgt_class_id)
                    #     if det is not None:
                    #         det = det.detach().cpu().numpy()
                    #         for each_b in det:
                    #             pass
                    #             cv2.rectangle(plot_img, (int(each_b[0]), int(each_b[1])), (int(each_b[2]), int(each_b[3])), (255,0,0), 2)
                    #             print('---> ', int(each_b[0]), int(each_b[1]), int(each_b[2]), int(each_b[3]), float(each_b[4]), int(each_b[5]))
                    #     cv2.imwrite('./tmp/{}.jpg'.format(plot_csum), plot_img)
            # Backward
            # scaler.scale(loss).backward()
            loss.backward()

            # Optimize
            if ni % accumulate == 0:
                # scaler.step(optimizer)  # optimizer.step
                # scaler.update()
                optimizer.step()
                optimizer.zero_grad()
                if ema:
                    ema.update(model)

            # Print
            if rank in [-1, 0]:
                mloss = (mloss * i + loss_items) / (i + 1
                                                    )  # update mean losses
                mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9
                                 if torch.cuda.is_available() else 0)  # (GB)
                s = ('%10s' * 2 +
                     '%10.4g' * 6) % ('%g/%g' % (epoch, epochs - 1), mem,
                                      *mloss, targets.shape[0], imgs.shape[-1])
                pbar.set_description(s)

                # Plot
                if ni < 3:
                    f = str(log_dir / ('train_batch%g.jpg' % ni))  # filename
                    result = plot_images(images=imgs,
                                         targets=targets,
                                         paths=paths,
                                         fname=f)
                    if tb_writer and result is not None:
                        tb_writer.add_image(f,
                                            result,
                                            dataformats='HWC',
                                            global_step=epoch)
                        # tb_writer.add_graph(model, imgs)  # add model to tensorboard

            # end batch ------------------------------------------------------------------------------------------------

        # Scheduler
        lr = [x['lr'] for x in optimizer.param_groups]  # for tensorboard
        scheduler.step()

        # DDP process 0 or single-GPU
        if rank in [-1, 0]:
            # mAP
            if ema:
                ema.update_attr(
                    model,
                    include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride'])
            final_epoch = epoch + 1 == epochs
            if not opt.notest or final_epoch:  # Calculate mAP
                if opt.nas:
                    # only evaluate the super network
                    ema.ema.nas_stage = 0
                results, maps, times = test.test(opt.data,
                                                 batch_size=total_batch_size,
                                                 imgsz=imgsz_test,
                                                 model=ema.ema,
                                                 single_cls=opt.single_cls,
                                                 dataloader=testloader,
                                                 save_dir=log_dir)
                if opt.nas:
                    ema.ema.nas_stage = opt.nas_stage

            # Write
            with open(results_file, 'a') as f:
                f.write(s + '%10.4g' * 7 % results +
                        '\n')  # P, R, mAP, F1, test_losses=(GIoU, obj, cls)
            if len(opt.name) and opt.bucket:
                os.system('gsutil cp %s gs://%s/results/results%s.txt' %
                          (results_file, opt.bucket, opt.name))

            # Tensorboard
            if tb_writer:
                tags = [
                    'train/giou_loss',
                    'train/obj_loss',
                    'train/cls_loss',  # train loss
                    'metrics/precision',
                    'metrics/recall',
                    'metrics/mAP_0.5',
                    'metrics/mAP_0.5:0.95',
                    'val/giou_loss',
                    'val/obj_loss',
                    'val/cls_loss',  # val loss
                    'x/lr0',
                    'x/lr1',
                    'x/lr2'
                ]  # params
                for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
                    tb_writer.add_scalar(tag, x, epoch)

            # Update best mAP
            fi = fitness(np.array(results).reshape(
                1, -1))  # fitness_i = weighted combination of [P, R, mAP, F1]
            if fi > best_fitness:
                best_fitness = fi

            # Save model
            save = (not opt.nosave) or (final_epoch and not opt.evolve)
            if save:
                with open(results_file, 'r') as f:  # create checkpoint
                    ckpt = {
                        'epoch':
                        epoch,
                        'best_fitness':
                        best_fitness,
                        'training_results':
                        f.read(),
                        'model':
                        ema.ema,
                        'optimizer':
                        None if final_epoch else optimizer.state_dict()
                    }

                # Save last, best and delete
                torch.save(ckpt, last)
                if best_fitness == fi:
                    torch.save(ckpt, best)
                del ckpt
        # end epoch ----------------------------------------------------------------------------------------------------
    # end training

    if rank in [-1, 0]:
        # Strip optimizers
        n = ('_'
             if len(opt.name) and not opt.name.isnumeric() else '') + opt.name
        fresults, flast, fbest = 'results%s.txt' % n, wdir / f'last{n}.pt', wdir / f'best{n}.pt'
        for f1, f2 in zip([wdir / 'last.pt', wdir / 'best.pt', 'results.txt'],
                          [flast, fbest, fresults]):
            if os.path.exists(f1):
                os.rename(f1, f2)  # rename
                if str(f2).endswith('.pt'):  # is *.pt
                    strip_optimizer(f2)  # strip optimizer
                    os.system(
                        'gsutil cp %s gs://%s/weights' %
                        (f2, opt.bucket)) if opt.bucket else None  # upload
        # Finish
        if not opt.evolve:
            plot_results(save_dir=log_dir)  # save as results.png
        logger.info('%g epochs completed in %.3f hours.\n' %
                    (epoch - start_epoch + 1, (time.time() - t0) / 3600))

    dist.destroy_process_group() if rank not in [-1, 0] else None
    torch.cuda.empty_cache()
    return results
def detect():
    out, source, weights, view_img, save_txt, imgsz = \
        opt.output, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
    # Initialize
    device = torch_utils.select_device(opt.device)
    if os.path.exists(out):
        shutil.rmtree(out)  # delete output folder
    os.makedirs(out)  # make new output folder
    half = device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    google_utils.attempt_download(weights)
    model = torch.load(
        weights,
        map_location=device)['model'].float().eval()  # load FP32 model
    imgsz = check_img_size(imgsz, s=model.stride.max())  # check img_size
    if half:
        model.half()  # to FP16

    # Set Dataloader
    dataset = LoadImages(source, img_size=imgsz)

    # Get names and colors
    names = model.module.names if hasattr(model, 'module') else model.names
    # Run inference
    t0 = time.time()
    img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
    _ = model(img.half() if half else img
              ) if device.type != 'cpu' else None  # run once
    for path, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        raw_h, raw_w, _ = im0s.shape  #
        # Inference
        t1 = torch_utils.time_synchronized()
        pred = model(img, augment=opt.augment)[0]
        # Apply NMS
        pred = non_max_suppression(pred,
                                   opt.conf_thres,
                                   opt.iou_thres,
                                   classes=opt.classes,
                                   agnostic=opt.agnostic_nms)
        t2 = torch_utils.time_synchronized()
        # Process detections
        for i, det in enumerate(pred):  # detections per image
            p, s, im0 = path, '', im0s
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1,
                                          0]]  # normalization gain whwh
            if det is not None and len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                          im0.shape).round()
                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += '%g %ss, ' % (n, names[int(c)])  # add to string
                # Write results
                for *xyxy, conf, cls in det:
                    submit_result.append({
                        'name':
                        path.split('/')[-1],
                        'category':
                        int(cls.item()) + 1,
                        'bbox': [
                            int(xyxy[0]),
                            int(xyxy[1]),
                            int(xyxy[2]),
                            int(xyxy[3])
                        ],
                        'score':
                        conf.item()
                    })

            # Print time (inference + NMS)
            print('%sDone. (%.3fs)' % (s, t2 - t1))
            # Save results (image with detections)
    print('Done. (%.3fs)' % (time.time() - t0))
    print(submit_result)
    with open('resut_yolov5l.json', 'w') as fp:
        json.dump(submit_result, fp, indent=4, ensure_ascii=False)
Пример #19
0
def detect(opt):

    out, source, weights, imgsz = \
        opt.output, opt.source, opt.weights, opt.img_size
    parameters = opt.parameters
    webcam = source == '0' or source.startswith('rtsp') or source.startswith(
        'http') or source.endswith('.txt')
    # TRACKING_NUM = parameters["timelimit"] * 24 * 60
    TRACKING_NUM = opt.record_length
    save_img, view_img, save_txt = False, False, False

    # get scenario
    scenario = Path(opt.output).name
    if scenario == 'beam':
        TRACKING_NUM = 720 * 60

    # Initialize
    device = torch_utils.select_device(opt.device)
    #print(device)
    if opt.camera_id:
        out += "/{}".format(opt.camera_id)

    if os.path.exists(out):
        shutil.rmtree(out, ignore_errors=True)  # delete output folder
    if not os.path.exists(out):
        os.makedirs(out)  # make new output folder
    half = device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    google_utils.attempt_download(weights)
    model = torch.load(
        weights,
        map_location=device)['model'].float().eval()  # load FP32 model
    imgsz = check_img_size(imgsz, s=model.stride.max())  # check img_size
    if half:
        model.half()  # to FP16

    # Second-stage classifier
    classify = False
    # if scenario in {"damper"}:
    #     classify = True
    if classify:
        modelc = torch_utils.load_classifier(name='resnet101',
                                             n=2)  # initialize
        modelc.load_state_dict(
            torch.load('weights/resnet101_damper.pt',
                       map_location=device))  # load weights
        modelc.to(device).eval()

    status_classify = True if scenario in ["damper"] else False

    if status_classify:
        modelc = torch_utils.load_classifier(name='resnet101',
                                             n=2)  # initialize
        modelc.load_state_dict(
            torch.load('weights/resnet101_damper.pt',
                       map_location=device))  # load weights
        modelc.to(device).eval()

    # Set Dataloader
    vid_path, vid_writer = None, None

    if webcam:
        view_img = True
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz)
        fourcc = cv2.VideoWriter_fourcc(*"mp4v")
        # fps = vid_cap.get(cv2.CAP_PROP_FPS)
        temp_cap = cv2.VideoCapture(source)
        w = int(temp_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
        h = int(temp_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
        temp_cap.release()
        fps = 3
        sp = out + "/" + time.strftime(
            "%Y%m%d%H%M%S") + "_" + opt.online_save_name
        print(sp)
        stream_writer = cv2.VideoWriter(sp, fourcc, fps, (w, h))

    else:
        save_img = True
        dataset = LoadImages(source, img_size=imgsz)

    # Get names and colors
    names = model.module.names if hasattr(model, 'module') else model.names
    colors = [[random.randint(0, 255) for _ in range(3)]
              for _ in range(len(names))]

    # Run inference
    t0 = time.time()
    img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
    _ = model(img.half() if half else img
              ) if device.type != 'cpu' else None  # run once

    Tracking = TRACKING_NUM
    Start_tracking = False
    for idx, data in enumerate(
            dataset
    ):  # path;fix size img;origin img;the video capture if there are video file
        path, img, im0s, vid_cap = data
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float(
        )  # uint8 to fp16/32, half precise computation to accelerate speed;
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        t1 = torch_utils.time_synchronized()
        pred = model(img, augment=opt.augment)[0]

        # Apply NMS
        pred = non_max_suppression(
            pred,
            opt.conf_thres,
            opt.iou_thres,
            classes=opt.classes,
            agnostic=opt.agnostic_nms)  # pred: xyxy,prob,class
        t2 = torch_utils.time_synchronized()

        if scenario in ["rock"]:
            pred = [x[x[:, 4] > 0.6] for x in pred if x is not None]

        # Apply Classifier
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)
        if status_classify:
            pred = status_classifier(pred, modelc, img, im0s)

        # Process detections
        IS_VIOLATION = False
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
            else:
                p, s, im0 = path, '', im0s

            save_path = str(Path(out) / Path(p).name)
            txt_path = str(Path(out) / Path(p).stem) + (
                '_%g' % dataset.frame if dataset.mode == 'video' else '')
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1,
                                          0]]  # normalization gain whwh

            if det is not None and len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                          im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += '%g %ss, ' % (n, names[int(c)])  # add to string

                res, det, im0 = violation_detection(im0,
                                                    scenario=scenario,
                                                    detections=det,
                                                    names=names,
                                                    parameters=parameters)
                # print(res)
                IS_VIOLATION = res["violation"]
                if scenario == "beam":
                    if res["工人"] or res["试探员"]:
                        IS_VIOLATION = res["violation"]

                # Write results
                for *xyxy, conf, cls in det:
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) /
                                gn).view(-1).tolist()  # normalized xywh
                        with open(txt_path + '.txt', 'a') as f:
                            f.write(('%g ' * 5 + '\n') %
                                    (cls, *xywh))  # label format

                    if save_img or view_img:  # Add bbox to image
                        label = '%s %.2f' % (names[int(cls)], conf)
                        #im0 = im0[int(xyxy[1]):int(xyxy[3]), int(xyxy[0]):int(xyxy[2])]
                        # plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)

                # Print time (inference + NMS)
                # print('%sDone. (%.3fs)' % (s, t2 - t1))

            if det is None or len(det) == 0:
                if scenario == "sensor":
                    IS_VIOLATION = True
                    res = {
                        "violation": 1,
                        "传感器位置错误": 0,
                        "无传感器": 0,
                        "传感器数目不足": 0,
                        "传感器离顶过近": 0,
                        "传感器离墙过近": 0,
                        "传感器悬挂过低": 0,
                    }
                elif scenario == "Huge_rock":
                    IS_VIOLATION = False
                    res = {"violation": 0, "大型煤块": 0}

                elif scenario == "beam":
                    IS_VIOLATION = False
                    res = {
                        "violation": 0,
                        "前探梁满足": 0,
                        "前探梁": 0,
                        "工人": 0,
                        "试探员": 0,
                        "液压机": 0
                    }

                elif scenario == "damper":
                    IS_VIOLATION = True
                    res = {"violation": 1, "未检测到风门": 1, "风门打开": 0}

            if IS_VIOLATION:
                Start_tracking = True

            # Print time (inference + NMS)
            #print('%sDone. (%.3fs)' % (s, t2 - t1))

            # Stream results
            if view_img:
                cv2.imshow(p, im0)
                if cv2.waitKey(1) == ord('q'):  # q to quit
                    raise StopIteration
                if Start_tracking:
                    if Tracking > 0:
                        Tracking -= 1
                        stream_writer.write(im0)
                        save_notes(sp + ".json", res)
                    else:
                        Tracking = TRACKING_NUM
                        Start_tracking = False
                        if isinstance(stream_writer, cv2.VideoWriter):
                            stream_writer.release()
                        fourcc = cv2.VideoWriter_fourcc(*"mp4v")
                        # fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        temp_cap = cv2.VideoCapture(source)
                        w = int(temp_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        h = int(temp_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        temp_cap.release()
                        fps = 6
                        sp = out + "/" + time.strftime(
                            "%Y%m%d%H%M%S") + "_" + opt.online_save_name
                        print(sp)
                        stream_writer = cv2.VideoWriter(
                            sp, fourcc, fps, (w, h))
                else:
                    pass
                if idx % 720 == 0:
                    cv2.imwrite(sp + "_{}_.png".format(idx), im0)
                # print("Tracking : ", Tracking)
                # print("idx : ", idx)

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'images':
                    cv2.imwrite(save_path, im0)
                else:
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release(
                            )  # release previous video writer

                        #fourcc = 'mp4v'  # output video codec
                        fourcc = cv2.VideoWriter_fourcc(*"mp4v")
                        #fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        fps = 3
                        w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        vid_writer = cv2.VideoWriter(save_path, fourcc, fps,
                                                     (w, h))
                    if IS_VIOLATION:
                        vid_writer.write(im0)
                        save_notes(save_path + ".json", res)
                        if idx % 720 == 0:
                            cv2.imwrite(save_path + "_{}_.png".format(idx),
                                        im0)
                        #IS_VIOLATION = False
                    #if evidence_vid_path != evidence_save_path:  # new evidence piece
                    # evidence_vid_path = evidence_save_path
                    # if isinstance(evidence_vid_writer, cv2.VideoWriter):
                    #     evidence_vid_writer.release()
                    # fourcc = 'mp4v'  # output video codec
                    # #fps = vid_cap.get(cv2.CAP_PROP_FPS)
                    # fps = 24
                    # w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                    # h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                    # evidence_vid_writer = cv2.VideoWriter(evidence_save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h))
                    #IS_VIOLATION:
                    # evidence_vid_writer.write(im0)

    if save_txt or save_img:
        print('Results saved to %s' % os.getcwd() + os.sep + out)
        if platform == 'darwin':  # MacOS
            os.system('open ' + save_path)

    print('Done. (%.3fs)' % (time.time() - t0))
Пример #20
0
def train(hyp, opt, device, tb_writer=None, wandb=None):
    logger.info(f'Hyperparameters {hyp}')
    log_dir = Path(tb_writer.log_dir) if tb_writer else Path(
        opt.logdir) / 'evolve'  # logging directory
    wdir = log_dir / 'weights'  # weights dfirectory
    os.makedirs(wdir, exist_ok=True)
    last = wdir / 'last.pt'
    best = wdir / 'best.pt'
    results_file = str(log_dir / 'results.txt')
    epochs, batch_size, total_batch_size, weights, rank = \
        opt.epochs_init, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank

    # Save run settings
    with open(log_dir / 'hyp.yaml', 'w') as f:
        yaml.dump(hyp, f, sort_keys=False)
    with open(log_dir / 'opt.yaml', 'w') as f:
        yaml.dump(vars(opt), f, sort_keys=False)

    # Configure
    cuda = device.type != 'cpu'
    init_seeds(2 + rank)
    with open(opt.data) as f:
        data_dict = yaml.load(f, Loader=yaml.FullLoader)  # data dict
    with torch_distributed_zero_first(rank):
        check_dataset(data_dict)  # check
    train_path = data_dict['train']
    test_path = data_dict['val']
    nc, names = (1, ['item']) if opt.single_cls else (int(
        data_dict['nc']), data_dict['names'])  # number classes, names
    assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (
        len(names), nc, opt.data)  # check

    # Model
    pretrained = weights.endswith('.pt')
    if pretrained:
        with torch_distributed_zero_first(rank):
            attempt_download(weights)  # download if not found locally
        ckpt = torch.load(weights, map_location=device)  # load checkpoint
        if hyp.get('anchors'):
            ckpt['model'].yaml['anchors'] = round(
                hyp['anchors'])  # force autoanchor
        model = Model(opt.cfg or ckpt['model'].yaml, ch=3,
                      nc=nc).to(device)  # create
        exclude = ['anchor'] if opt.cfg or hyp.get('anchors') else [
        ]  # exclude keys
        state_dict = ckpt['model'].float().state_dict()  # to FP32
        state_dict = intersect_dicts(state_dict,
                                     model.state_dict(),
                                     exclude=exclude)  # intersect
        model.load_state_dict(state_dict, strict=False)  # load
        logger.info(
            'Transferred %g/%g items from %s' %
            (len(state_dict), len(model.state_dict()), weights))  # report
    else:
        model = Model(opt.cfg, ch=3, nc=nc).to(device)  # create

    # Freeze
    freeze = []  # parameter names to freeze (full or partial)
    for k, v in model.named_parameters():
        v.requires_grad = True  # train all layers
        if any(x in k for x in freeze):
            print('freezing %s' % k)
            v.requires_grad = False

    if opt.reg_lambda != 0:
        # the regularization is based on Synaptic Intelligence as described in the
        # paper. ewcData is a list of two elements (best parametes, importance)
        # while synData is a dictionary with all the trajectory data needed by SI
        model.ewcData, model.synData = create_syn_data(model)

    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / total_batch_size),
                     1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= total_batch_size * accumulate / nbs  # scale weight_decay

    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_modules():
        if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
            pg2.append(v.bias)  # biases
        if isinstance(v, nn.BatchNorm2d):
            pg0.append(v.weight)  # no decay
        elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
            pg1.append(v.weight)  # apply decay

    optimizer = optim.SGD(pg0,
                          lr=hyp['lr0'],
                          momentum=hyp['momentum'],
                          nesterov=True)

    optimizer.add_param_group({
        'params': pg1,
        'weight_decay': hyp['weight_decay']
    })  # add pg1 with weight_decay
    optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
    logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' %
                (len(pg2), len(pg1), len(pg0)))
    del pg0, pg1, pg2

    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
    lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - hyp[
        'lrf']) + hyp['lrf']  # cosine
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    # plot_lr_scheduler(optimizer, scheduler, epochs)

    # Logging
    if wandb and wandb.run is None:
        id = ckpt.get('wandb_id') if 'ckpt' in locals() else None
        wandb_run = wandb.init(config=opt,
                               resume="allow",
                               project="YOLOv5",
                               name=os.path.basename(log_dir),
                               id=id)

    # Resume
    start_epoch, best_fitness = 0, 0.0
    if pretrained:
        # Optimizer
        if ckpt['optimizer'] is not None:
            optimizer.load_state_dict(ckpt['optimizer'])
            best_fitness = ckpt['best_fitness']

        # Results
        if ckpt.get('training_results') is not None:
            with open(results_file, 'w') as file:
                file.write(ckpt['training_results'])  # write results.txt

        # Epochs
        start_epoch = ckpt['epoch'] + 1
        if opt.resume:
            assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (
                weights, epochs)
            shutil.copytree(wdir, wdir.parent /
                            f'weights_backup_epoch{start_epoch - 1}'
                            )  # save previous weights
        if epochs < start_epoch:
            logger.info(
                '%s has been trained for %g epochs. Fine-tuning for %g additional epochs.'
                % (weights, ckpt['epoch'], epochs))
            epochs += ckpt['epoch']  # finetune additional epochs

        del ckpt, state_dict

    # Image sizes
    gs = int(max(model.stride))  # grid size (max stride)
    imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size
                         ]  # verify imgsz are gs-multiples

    # Model parameters
    hyp['cls'] *= nc / 80.  # scale coco-tuned hyp['cls'] to current dataset
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # iou loss ratio (obj_loss = 1.0 or iou)

    all_test_dataloader = create_dataloader(test_path,
                                            imgsz_test,
                                            total_batch_size,
                                            gs,
                                            opt,
                                            hyp=hyp,
                                            augment=False,
                                            cache=opt.cache_images
                                            and not opt.notest,
                                            rect=True,
                                            rank=-1,
                                            world_size=opt.world_size,
                                            workers=opt.workers,
                                            n_batch=-1)[0]

    root = 'G:/projects/core50_350_1f/batches/'
    paths = os.listdir(root)
    train_paths = []
    valid_paths = []

    for p in paths:
        if 'train' in p:
            train_paths.append(root + p)
        elif 'val' in p:
            valid_paths.append(root + p)
        else:
            print(p)

        # external_memory = ext_memory()
    extMem = externalMemory()
    for core_batch in range(11):
        # Trainloader

        if opt.reg_lambda != 0:
            init_batch(model, model.ewcData, model.synData)

        print(f'------------CORE50 itertaion №:{core_batch}------------')

        external_files_path = extMem.file
        if core_batch > 0:
            train_path = [train_paths[core_batch], external_files_path]
        else:
            train_path = train_paths[core_batch]

        extMem.update_memory(train_paths[core_batch],
                             update_iters=10 if core_batch == 0 else 1)

        dataloader, dataset = create_dataloader(
            train_path,
            imgsz,
            batch_size,
            gs,
            opt,
            hyp=hyp,
            augment=True,
            cache=opt.cache_images,
            rect=opt.rect,
            rank=rank,
            world_size=opt.world_size,
            workers=opt.workers,
        )

        mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
        nb = len(dataloader)  # number of batches
        assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (
            mlc, nc, opt.data, nc - 1)

        testloader = create_dataloader(valid_paths[core_batch],
                                       imgsz_test,
                                       total_batch_size,
                                       gs,
                                       opt,
                                       hyp=hyp,
                                       augment=False,
                                       cache=opt.cache_images
                                       and not opt.notest,
                                       rect=True,
                                       rank=-1,
                                       world_size=opt.world_size,
                                       workers=opt.workers)[0]  # testloader

        #if not opt.resume:
        labels = np.concatenate(dataset.labels, 0)
        c = torch.IntTensor(labels[:, 0])  # classes
        plot_labels(labels, save_dir=log_dir)
        print(torch.bincount(c))
        if tb_writer:
            # tb_writer.add_hparams(hyp, {})  # causes duplicate https://github.com/ultralytics/yolov5/pull/384
            tb_writer.add_histogram('classes', c, core_batch)

            # Anchors
            if not opt.noautoanchor:
                check_anchors(dataset,
                              model=model,
                              thr=hyp['anchor_t'],
                              imgsz=imgsz)

        # model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device)  # attach class weights
        model.names = names

        # Start training
        t0 = time.time()
        nw = max(
            round(hyp['warmup_epochs'] * nb),
            1e3)  # number of warmup iterations, max(3 epochs, 1k iterations)
        # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
        maps = np.zeros(nc)  # mAP per class
        results = (0, 0, 0, 0, 0, 0, 0
                   )  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
        scheduler.last_epoch = start_epoch - 1  # do not move
        scaler = amp.GradScaler(enabled=cuda)
        logger.info(
            'Image sizes %g train, %g test\n'
            'Using %g dataloader workers\nLogging results to %s\n'
            'Starting training for %g epochs...' %
            (imgsz, imgsz_test, dataloader.num_workers, log_dir, epochs))
        # update number of epochs to iterative training
        if core_batch != 0:
            epochs = opt.epochs_iter

        # x_train, y_train = dataset.get_all_data()

        for epoch in range(
                start_epoch, epochs
        ):  # epoch ------------------------------------------------------------------
            model.train()

            mloss = torch.zeros(4, device=device)  # mean losses
            logger.info(
                ('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls',
                                       'total', 'targets', 'img_size'))

            # x_train_splitted = torch.split(x_train, 4)
            # y_train_splitted = torch.split(y_train, 4)
            # pbar = enumerate(zip(x_train_splitted, y_train_splitted))
            pbar = enumerate(dataloader)
            pbar = tqdm(pbar, total=nb)  # progress bar
            optimizer.zero_grad()
            for i, (
                    imgs, targets, _, _
            ) in pbar:  # batch -------------------------------------------------------------

                # imgs = x_train[i * batch_size:(i + 1) * batch_size]
                # targets = y_train[i * batch_size:(i + 1) * batch_size]
                #
                # # preprocess tensor to proper form
                # # img, label = zip(imgs, targets)  # transposed
                # for i, l in enumerate(targets):
                #     l[:, 0] = i  # add target image index for build_targets()
                #
                # imgs = torch.stack(imgs)
                # targets = torch.cat(targets)

                ni = i + nb * epoch  # number integrated batches (since train start)
                imgs = imgs.to(device, non_blocking=True).float(
                ) / 255.0  # uint8 to float32, 0-255 to 0.0-1.0

                if opt.reg_lambda != 0:
                    pre_update(model, model.synData)

                # Warmup
                if ni <= nw:
                    xi = [0, nw]  # x interp
                    # model.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
                    accumulate = max(
                        1,
                        np.interp(ni, xi, [1, nbs / total_batch_size]).round())
                    for j, x in enumerate(optimizer.param_groups):
                        # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                        x['lr'] = np.interp(ni, xi, [
                            hyp['warmup_bias_lr'] if j == 2 else 0.0,
                            x['initial_lr'] * lf(epoch)
                        ])
                        if 'momentum' in x:
                            x['momentum'] = np.interp(
                                ni, xi,
                                [hyp['warmup_momentum'], hyp['momentum']])

                # # Multi-scale
                # if opt.multi_scale:
                #     sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs  # size
                #     sf = sz / max(imgs.shape[2:])  # scale factor
                #     if sf != 1:
                #         ns = [math.ceil(x * sf / gs) * gs for x in
                #               imgs.shape[2:]]  # new shape (stretched to gs-multiple)
                #         imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)

                # Forward
                with amp.autocast(enabled=cuda):
                    pred = model(imgs)  # forward
                    loss, loss_items = compute_loss(
                        pred, targets.to(device),
                        model)  # loss scaled by batch_size
                # Backward
                scaler.scale(loss).backward()

                # Optimize
                if ni % accumulate == 0:
                    scaler.step(optimizer)  # optimizer.step

                    if opt.reg_lambda != 0:
                        post_update(model, model.synData)

                    scaler.update()
                    optimizer.zero_grad()
                    # if ema:
                    #     ema.update(model)

                # Print
                mloss = (mloss * i + loss_items) / (i + 1
                                                    )  # update mean losses
                mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9
                                 if torch.cuda.is_available() else 0)  # (GB)
                s = ('%10s' * 2 +
                     '%10.4g' * 6) % ('%g/%g' % (epoch, epochs - 1), mem,
                                      *mloss, targets.shape[0], imgs.shape[-1])
                pbar.set_description(s)

                # end batch ------------------------------------------------------------------------------------------------

            # Scheduler
            lr = [x['lr'] for x in optimizer.param_groups]  # for tensorboard
            scheduler.step()

            # mAP
            results, maps, times = test.test(
                opt.data,
                batch_size=total_batch_size,
                imgsz=imgsz_test,
                # model=ema.ema,
                model=model,
                single_cls=opt.single_cls,
                dataloader=testloader,
                save_dir=log_dir,
                plots=epoch == 0,  # plot first and last
                log_imgs=opt.log_imgs)

            # wandb.log({'per class/AP per class': maps})

            # Write
            with open(results_file, 'a') as f:
                f.write(
                    s + '%10.4g' * 7 % results +
                    '\n')  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
            if len(opt.name) and opt.bucket:
                os.system('gsutil cp %s gs://%s/results/results%s.txt' %
                          (results_file, opt.bucket, opt.name))

            # Log
            tags = [
                'train/giou_loss',
                'train/obj_loss',
                'train/cls_loss',  # train loss
                'metrics/precision',
                'metrics/recall',
                'metrics/mAP_0.5',
                'metrics/mAP_0.5:0.95',
                'val/giou_loss',
                'val/obj_loss',
                'val/cls_loss',  # val loss
                'x/lr0',
                'x/lr1',
                'x/lr2'
            ]  # params
            for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
                if tb_writer:
                    tb_writer.add_scalar(tag, x, epoch)  # tensorboard
                if wandb:
                    wandb.log({tag: x})  # W&B

            # Update best mAP
            fi = fitness(np.array(results).reshape(
                1, -1))  # weighted combination of [P, R, [email protected], [email protected]]
            if fi > best_fitness:
                best_fitness = fi

            # Save model
            save = not opt.nosave
            if save:
                with open(results_file, 'r') as f:  # create checkpoint
                    ckpt = {
                        'epoch': epoch,
                        'best_fitness': best_fitness,
                        'training_results': f.read(),
                        # 'model': ema.ema,
                        'model': model,
                        'optimizer': optimizer.state_dict(),
                        'wandb_id': wandb_run.id if wandb else None
                    }

                # Save last, best and delete
                torch.save(ckpt, last)
                if best_fitness == fi:
                    torch.save(ckpt, best)
                del ckpt
        # end epoch ----------------------------------------------------------------------------------------------------
        # end training

        #consolidate_weights(model, cur_class)
        if opt.reg_lambda != 0:
            update_ewc_data(model, model.ewcData, model.synData, 0.001, 1)

        if rank in [-1, 0]:
            # Strip optimizers
            n = opt.name if opt.name.isnumeric() else ''
            fresults, flast, fbest = log_dir / f'results{n}.txt', wdir / f'last{n}.pt', wdir / f'best{n}.pt'
            for f1, f2 in zip(
                [wdir / 'last.pt', wdir / 'best.pt', results_file],
                [flast, fbest, fresults]):
                if os.path.exists(f1):
                    os.rename(f1, f2)  # rename
                    if str(f2).endswith('.pt'):  # is *.pt
                        strip_optimizer(f2)  # strip optimizer
                        os.system(
                            'gsutil cp %s gs://%s/weights' %
                            (f2, opt.bucket)) if opt.bucket else None  # upload
            # Finish
            plot_results(save_dir=log_dir)  # save as results.png
            logger.info('%g epochs completed in %.3f hours.\n' %
                        (epoch - start_epoch + 1, (time.time() - t0) / 3600))

        dist.destroy_process_group() if rank not in [-1, 0] else None
        torch.cuda.empty_cache()
        results, maps, times = test.test(
            opt.data,
            batch_size=total_batch_size,
            imgsz=imgsz_test,
            #model=ema.ema,
            model=model,
            single_cls=opt.single_cls,
            dataloader=all_test_dataloader,
            save_dir=log_dir,
            #plots=epoch == 0 or final_epoch,  # plot first and last
            log_imgs=opt.log_imgs,
            verbose=True)

        #wandb.log({'per class/AP per class All': maps[0]})
        #tb_writer.add_scalar('per class/AP per class All', maps[0])

        # Log
        tags = [  # train loss
            'test/precision', 'test/recall', 'test/mAP_0.5',
            'test/mAP_0.5:0.95', 'test/giou_loss', 'test/obj_loss',
            'test/cls_loss'
        ]  # params
        for x, tag in zip(list(results), tags):
            if tb_writer:
                tb_writer.add_scalar(tag, x, core_batch)  # tensorboard
            if wandb:
                wandb.log({tag: x})  # W&B

    return results
Пример #21
0
def test(data,
         weights=None,
         batch_size=16,
         imgsz=640,
         conf_thres=0.001,
         iou_thres=0.6,  # for NMS
         save_json=False,
         single_cls=False,
         augment=False,
         verbose=False,
         model=None,
         dataloader=None,
         merge=False):
    # Initialize/load model and set device
    if model is None:
        training = False
        device = torch_utils.select_device(opt.device, batch_size=batch_size)
        half = device.type != 'cpu'  # half precision only supported on CUDA

        # Remove previous
        for f in glob.glob('test_batch*.jpg'):
            os.remove(f)

        # Load model
        google_utils.attempt_download(weights)
        model = torch.load(weights, map_location=device)['model'].float()  # load to FP32
        torch_utils.model_info(model)
        model.fuse()
        model.to(device)
        if half:
            model.half()  # to FP16

        # Multi-GPU disabled, incompatible with .half()
        # if device.type != 'cpu' and torch.cuda.device_count() > 1:
        #     model = nn.DataParallel(model)

    else:  # called by train.py
        training = True
        device = next(model.parameters()).device  # get model device
        # half disabled https://github.com/ultralytics/yolov5/issues/99
        half = False  # device.type != 'cpu' and torch.cuda.device_count() == 1
        if half:
            model.half()  # to FP16

    # Configure
    model.eval()
    with open(data) as f:
        data = yaml.load(f, Loader=yaml.FullLoader)  # model dict
    nc = 1 if single_cls else int(data['nc'])  # number of classes
    iouv = torch.linspace(0.5, 0.95, 10).to(device)  # iou vector for [email protected]:0.95
    # iouv = iouv[0].view(1)  # comment for [email protected]:0.95
    niou = iouv.numel()

    # Dataloader
    if dataloader is None:  # not training
        img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
        _ = model(img.half() if half else img) if device.type != 'cpu' else None  # run once

        merge = opt.merge  # use Merge NMS
        path = data['test'] if opt.task == 'test' else data['val']  # path to val/test images
        dataset = LoadImagesAndLabels(path,
                                      imgsz,
                                      batch_size,
                                      rect=True,  # rectangular inference
                                      single_cls=opt.single_cls,  # single class mode
                                      pad=0.5)  # padding
        batch_size = min(batch_size, len(dataset))
        nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8])  # number of workers
        dataloader = DataLoader(dataset,
                                batch_size=batch_size,
                                num_workers=nw,
                                pin_memory=True,
                                collate_fn=dataset.collate_fn)

    seen = 0
    names = model.names if hasattr(model, 'names') else model.module.names
    coco91class = coco80_to_coco91_class()
    s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R', '[email protected]', '[email protected]:.95')
    p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
    loss = torch.zeros(3, device=device)
    jdict, stats, ap, ap_class = [], [], [], []
    for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
        img = img.to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        targets = targets.to(device)
        nb, _, height, width = img.shape  # batch size, channels, height, width
        whwh = torch.Tensor([width, height, width, height]).to(device)

        # Disable gradients
        with torch.no_grad():
            # Run model
            t = torch_utils.time_synchronized()
            inf_out, train_out = model(img, augment=augment)  # inference and training outputs
            t0 += torch_utils.time_synchronized() - t

            # Compute loss
            if training:  # if model has loss hyperparameters
                loss += compute_loss([x.float() for x in train_out], targets, model)[1][:3]  # GIoU, obj, cls

            # Run NMS
            t = torch_utils.time_synchronized()
            output = non_max_suppression(inf_out, conf_thres=conf_thres, iou_thres=iou_thres, merge=merge)
            t1 += torch_utils.time_synchronized() - t

        # Statistics per image
        for si, pred in enumerate(output):
            labels = targets[targets[:, 0] == si, 1:]
            nl = len(labels)
            tcls = labels[:, 0].tolist() if nl else []  # target class
            seen += 1

            if pred is None:
                if nl:
                    stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
                continue

            # Append to text file
            # with open('test.txt', 'a') as file:
            #    [file.write('%11.5g' * 7 % tuple(x) + '\n') for x in pred]

            # Clip boxes to image bounds
            clip_coords(pred, (height, width))

            # Append to pycocotools JSON dictionary
            if save_json:
                # [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
                image_id = int(Path(paths[si]).stem.split('_')[-1])
                box = pred[:, :4].clone()  # xyxy
                scale_coords(img[si].shape[1:], box, shapes[si][0], shapes[si][1])  # to original shape
                box = xyxy2xywh(box)  # xywh
                box[:, :2] -= box[:, 2:] / 2  # xy center to top-left corner
                for p, b in zip(pred.tolist(), box.tolist()):
                    jdict.append({'image_id': image_id,
                                  'category_id': coco91class[int(p[5])],
                                  'bbox': [round(x, 3) for x in b],
                                  'score': round(p[4], 5)})

            # Assign all predictions as incorrect
            correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device)
            if nl:
                detected = []  # target indices
                tcls_tensor = labels[:, 0]

                # target boxes
                tbox = xywh2xyxy(labels[:, 1:5]) * whwh

                # Per target class
                for cls in torch.unique(tcls_tensor):
                    ti = (cls == tcls_tensor).nonzero().view(-1)  # prediction indices
                    pi = (cls == pred[:, 5]).nonzero().view(-1)  # target indices

                    # Search for detections
                    if pi.shape[0]:
                        # Prediction to target ious
                        ious, i = box_iou(pred[pi, :4], tbox[ti]).max(1)  # best ious, indices

                        # Append detections
                        for j in (ious > iouv[0]).nonzero():
                            d = ti[i[j]]  # detected target
                            if d not in detected:
                                detected.append(d)
                                correct[pi[j]] = ious[j] > iouv  # iou_thres is 1xn
                                if len(detected) == nl:  # all targets already located in image
                                    break

            # Append statistics (correct, conf, pcls, tcls)
            stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))

        # Plot images
        if batch_i < 1:
            f = 'test_batch%g_gt.jpg' % batch_i  # filename
            plot_images(img, targets, paths, f, names)  # ground truth
            f = 'test_batch%g_pred.jpg' % batch_i
            plot_images(img, output_to_target(output, width, height), paths, f, names)  # predictions

    # Compute statistics
    stats = [np.concatenate(x, 0) for x in zip(*stats)]  # to numpy
    if len(stats):
        p, r, ap, f1, ap_class = ap_per_class(*stats)
        p, r, ap50, ap = p[:, 0], r[:, 0], ap[:, 0], ap.mean(1)  # [P, R, [email protected], [email protected]:0.95]
        mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
        nt = np.bincount(stats[3].astype(np.int64), minlength=nc)  # number of targets per class
    else:
        nt = torch.zeros(1)

    # Print results
    pf = '%20s' + '%12.3g' * 6  # print format
    print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))

    # Print results per class
    if verbose and nc > 1 and len(stats):
        for i, c in enumerate(ap_class):
            print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))

    # Print speeds
    t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size)  # tuple
    if not training:
        print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t)

    # Save JSON
    if save_json and map50 and len(jdict):
        imgIds = [int(Path(x).stem.split('_')[-1]) for x in dataloader.dataset.img_files]
        f = 'detections_val2017_%s_results.json' % \
            (weights.split(os.sep)[-1].replace('.pt', '') if weights else '')  # filename
        print('\nCOCO mAP with pycocotools... saving %s...' % f)
        with open(f, 'w') as file:
            json.dump(jdict, file)

        try:
            from pycocotools.coco import COCO
            from pycocotools.cocoeval import COCOeval

            # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
            cocoGt = COCO(glob.glob('../coco/annotations/instances_val*.json')[0])  # initialize COCO ground truth api
            cocoDt = cocoGt.loadRes(f)  # initialize COCO pred api

            cocoEval = COCOeval(cocoGt, cocoDt, 'bbox')
            cocoEval.params.imgIds = imgIds  # image IDs to evaluate
            cocoEval.evaluate()
            cocoEval.accumulate()
            cocoEval.summarize()
            map, map50 = cocoEval.stats[:2]  # update results ([email protected]:0.95, [email protected])
        except:
            print('WARNING: pycocotools must be installed with numpy==1.17 to run correctly. '
                  'See https://github.com/cocodataset/cocoapi/issues/356')

    # Return results
    maps = np.zeros(nc) + map
    for i, c in enumerate(ap_class):
        maps[c] = ap[i]
    return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
Пример #22
0
def detect_json(options, save_img=False):
    """
    Returns a json file which includes the results of the inference:
    Form of the json
    Video: {0: [{},{}]}:

    Image: 
    """
    opt = options
    out, source, weights, view_img, save_txt, imgsz = \
        opt["output"], opt["source"], opt["weights"], opt["view_img"], opt["save_txt"], opt["img_size"]
    webcam = source == '0' or source.startswith('rtsp') or source.startswith(
        'http') or source.endswith('.txt')

    # Initialize
    device = torch_utils.select_device(opt["device"])
    if os.path.exists(out):
        shutil.rmtree(out)  # delete output folder
    os.makedirs(out)  # make new output folder
    half = device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    google_utils.attempt_download(weights)
    model = torch.load(weights,
                       map_location=device)['model'].float()  # load to FP32
    # torch.save(torch.load(weights, map_location=device), weights)  # update model if SourceChangeWarning
    # model.fuse()
    model.to(device).eval()
    if half:
        model.half()  # to FP16

    # Second-stage classifier
    classify = False
    if classify:
        modelc = torch_utils.load_classifier(name='resnet101',
                                             n=2)  # initialize
        modelc.load_state_dict(
            torch.load('weights/resnet101.pt',
                       map_location=device)['model'])  # load weights
        modelc.to(device).eval()

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = True
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz)
    else:
        save_img = True
        dataset = LoadImages(source, img_size=imgsz)

    # Get names and colors
    names = model.names if hasattr(model, 'names') else model.modules.names
    colors = [[random.randint(0, 255) for _ in range(3)]
              for _ in range(len(names))]
    colors[0] = (255, 0, 0)
    colors[1] = (0, 255, 0)

    # Run inference

    t0 = time.time()
    img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
    _ = model(img.half() if half else img
              ) if device.type != 'cpu' else None  # run once

    result_dic = dict()
    img_counter = 0
    for path, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        t1 = torch_utils.time_synchronized()
        pred = model(img, augment=opt["augment"])[0]

        # Apply NMS
        pred = non_max_suppression(pred,
                                   opt["conf_thres"],
                                   opt["iou_thres"],
                                   classes=opt["classes"],
                                   agnostic=opt["agnostic_nms"])
        t2 = torch_utils.time_synchronized()

        # Apply Classifier
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)

        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
            else:
                p, s, im0 = path, '', im0s

            save_path = str(Path(out) / Path(p).name)
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1,
                                          0]]  #  normalization gain whwh
            if det is not None and len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                          im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += '%g %ss, ' % (n, names[int(c)])  # add to string

                #No we create the result dict
                result_list_one_frame = []
                for *xyxy, conf, cls in det:
                    single_inference_dic = {}
                    if int(cls) == 0:
                        label = "mask"
                    elif int(cls) == 1:
                        label = "no mask"
                    else:
                        sys.exit("Label not known")
                    single_inference_dic["xywh"] = (
                        xyxy2xywh(torch.tensor(xyxy).view(1, 4)) /
                        gn).view(-1).tolist()  # normalized xywh
                    single_inference_dic["xywh"] = [
                        float(i) for i in single_inference_dic["xywh"]
                    ]
                    single_inference_dic["xyxy"] = ((float(xyxy[0]),
                                                     float(xyxy[1])),
                                                    (float(xyxy[2]),
                                                     float(xyxy[3])))
                    single_inference_dic["map"] = float(conf)
                    single_inference_dic["label"] = str(label)
                    result_list_one_frame.append(single_inference_dic)

            # Print time (inference + NMS)
            print('%sDone. (%.3fs)' % (s, t2 - t1))
        img_counter += 1
        result_dic[img_counter] = result_list_one_frame

    print(result_dic)
    print('Done. (%.3fs)' % (time.time() - t0))
    return result_dic
Пример #23
0
def train(hyp):
    epochs = opt.epochs  # 300
    batch_size = opt.batch_size  # 64
    weights = opt.weights  # initial training weights

    # Configure
    init_seeds(1)
    with open(opt.data) as f:
        data_dict = yaml.load(f, Loader=yaml.FullLoader)  # model dict
    train_path = data_dict['train']
    test_path = data_dict['val']
    nc = 1 if opt.single_cls else int(data_dict['nc'])  # number of classes

    # Remove previous results
    for f in glob.glob('*_batch*.jpg') + glob.glob(results_file):
        os.remove(f)

    # Create model
    model = Model(opt.cfg, nc=data_dict['nc']).to(device)

    # Image sizes
    gs = int(max(model.stride))  # grid size (max stride)
    imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size]  # verify imgsz are gs-multiples

    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / batch_size), 1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= batch_size * accumulate / nbs  # scale weight_decay
    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_parameters():
        if v.requires_grad:
            if '.bias' in k:
                pg2.append(v)  # biases
            elif '.weight' in k and '.bn' not in k:
                pg1.append(v)  # apply weight decay
            else:
                pg0.append(v)  # all else

    optimizer = optim.Adam(pg0, lr=hyp['lr0']) if opt.adam else \
        optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
    optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']})  # add pg1 with weight_decay
    optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    lf = lambda x: (((1 + math.cos(x * math.pi / epochs)) / 2) ** 1.0) * 0.9 + 0.1  # cosine
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    print('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
    del pg0, pg1, pg2

    # Load Model
    google_utils.attempt_download(weights)
    start_epoch, best_fitness = 0, 0.0
    if weights.endswith('.pt'):  # pytorch format
        ckpt = torch.load(weights, map_location=device)  # load checkpoint

        # load model
        try:
            ckpt['model'] = {k: v for k, v in ckpt['model'].float().state_dict().items()
                             if model.state_dict()[k].shape == v.shape}  # to FP32, filter
            model.load_state_dict(ckpt['model'], strict=False)
        except KeyError as e:
            s = "%s is not compatible with %s. This may be due to model differences or %s may be out of date. " \
                "Please delete or update %s and try again, or use --weights '' to train from scratch." \
                % (opt.weights, opt.cfg, opt.weights, opt.weights)
            raise KeyError(s) from e

        # load optimizer
        if ckpt['optimizer'] is not None:
            optimizer.load_state_dict(ckpt['optimizer'])
            best_fitness = ckpt['best_fitness']

        # load results
        if ckpt.get('training_results') is not None:
            with open(results_file, 'w') as file:
                file.write(ckpt['training_results'])  # write results.txt

        # epochs
        start_epoch = ckpt['epoch'] + 1
        if epochs < start_epoch:
            print('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
                  (opt.weights, ckpt['epoch'], epochs))
            epochs += ckpt['epoch']  # finetune additional epochs

        del ckpt

    # Mixed precision training https://github.com/NVIDIA/apex
    if mixed_precision:
        model, optimizer = amp.initialize(model, optimizer, opt_level='O1', verbosity=0)


    scheduler.last_epoch = start_epoch - 1  # do not move
    # https://discuss.pytorch.org/t/a-problem-occured-when-resuming-an-optimizer/28822
    # plot_lr_scheduler(optimizer, scheduler, epochs)

    # Initialize distributed training
    if device.type != 'cpu' and torch.cuda.device_count() > 1 and torch.distributed.is_available():
        dist.init_process_group(backend='nccl',  # distributed backend
                                init_method='tcp://127.0.0.1:9999',  # init method
                                world_size=1,  # number of nodes
                                rank=0)  # node rank
        model = torch.nn.parallel.DistributedDataParallel(model)
        # pip install torch==1.4.0+cu100 torchvision==0.5.0+cu100 -f https://download.pytorch.org/whl/torch_stable.html

    # Trainloader
    dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt,
                                            hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect)
    mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
    assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Correct your labels or your model.' % (mlc, nc, opt.cfg)

    # Testloader
    testloader = create_dataloader(test_path, imgsz_test, batch_size, gs, opt,
                                   hyp=hyp, augment=False, cache=opt.cache_images, rect=True)[0]

    # Model parameters
    hyp['cls'] *= nc / 80.  # scale coco-tuned hyp['cls'] to current dataset
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # giou loss ratio (obj_loss = 1.0 or giou)
    model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device)  # attach class weights
    model.names = data_dict['names']

    # Class frequency
    labels = np.concatenate(dataset.labels, 0)
    c = torch.tensor(labels[:, 0])  # classes
    # cf = torch.bincount(c.long(), minlength=nc) + 1.
    # model._initialize_biases(cf.to(device))
    if tb_writer:
        plot_labels(labels)
        tb_writer.add_histogram('classes', c, 0)

    # Check anchors
    if not opt.noautoanchor:
        check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)

    # Exponential moving average
    ema = torch_utils.ModelEMA(model)

    # Start training
    t0 = time.time()
    nb = len(dataloader)  # number of batches
    n_burn = max(3 * nb, 1e3)  # burn-in iterations, max(3 epochs, 1k iterations)
    maps = np.zeros(nc)  # mAP per class
    results = (0, 0, 0, 0, 0, 0, 0)  # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'
    print('Image sizes %g train, %g test' % (imgsz, imgsz_test))
    print('Using %g dataloader workers' % dataloader.num_workers)
    print('Starting training for %g epochs...' % epochs)
    # torch.autograd.set_detect_anomaly(True)
    for epoch in range(start_epoch, epochs):  # epoch ------------------------------------------------------------------
        model.train()

        # Update image weights (optional)
        if dataset.image_weights:
            w = model.class_weights.cpu().numpy() * (1 - maps) ** 2  # class weights
            image_weights = labels_to_image_weights(dataset.labels, nc=nc, class_weights=w)
            dataset.indices = random.choices(range(dataset.n), weights=image_weights, k=dataset.n)  # rand weighted idx

        # Update mosaic border
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = torch.zeros(4, device=device)  # mean losses
        print(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls', 'total', 'targets', 'img_size'))
        pbar = tqdm(enumerate(dataloader), total=nb)  # progress bar
        for i, (imgs, targets, paths, _) in pbar:  # batch -------------------------------------------------------------
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device).float() / 255.0  # uint8 to float32, 0 - 255 to 0.0 - 1.0

            # Burn-in
            if ni <= n_burn:
                xi = [0, n_burn]  # x interp
                # model.gr = np.interp(ni, xi, [0.0, 1.0])  # giou loss ratio (obj_loss = 1.0 or giou)
                accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x['lr'] = np.interp(ni, xi, [0.1 if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(ni, xi, [0.9, hyp['momentum']])

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]]  # new shape (stretched to gs-multiple)
                    imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)

            # Forward
            pred = model(imgs)

            # Loss
            loss, loss_items = compute_loss(pred, targets.to(device), model)
            if not torch.isfinite(loss):
                print('WARNING: non-finite loss, ending training ', loss_items)
                return results

            # Backward
            if mixed_precision:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            # Optimize
            if ni % accumulate == 0:
                optimizer.step()
                optimizer.zero_grad()
                ema.update(model)

            # Print
            mloss = (mloss * i + loss_items) / (i + 1)  # update mean losses
            mem = '%.3gG' % (torch.cuda.memory_cached() / 1E9 if torch.cuda.is_available() else 0)  # (GB)
            s = ('%10s' * 2 + '%10.4g' * 6) % (
                '%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1])
            pbar.set_description(s)

            # Plot
            if ni < 3:
                f = 'train_batch%g.jpg' % ni  # filename
                result = plot_images(images=imgs, targets=targets, paths=paths, fname=f)
                if tb_writer and result is not None:
                    tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
                    # tb_writer.add_graph(model, imgs)  # add model to tensorboard

            # end batch ------------------------------------------------------------------------------------------------

        # Scheduler
        scheduler.step()

        # mAP
        ema.update_attr(model)
        final_epoch = epoch + 1 == epochs
        if not opt.notest or final_epoch:  # Calculate mAP
            results, maps, times = test.test(opt.data,
                                             batch_size=batch_size,
                                             imgsz=imgsz_test,
                                             save_json=final_epoch and opt.data.endswith(os.sep + 'coco.yaml'),
                                             model=ema.ema,
                                             single_cls=opt.single_cls,
                                             dataloader=testloader)

        # Write
        with open(results_file, 'a') as f:
            f.write(s + '%10.4g' * 7 % results + '\n')  # P, R, mAP, F1, test_losses=(GIoU, obj, cls)
        if len(opt.name) and opt.bucket:
            os.system('gsutil cp results.txt gs://%s/results/results%s.txt' % (opt.bucket, opt.name))

        # Tensorboard
        if tb_writer:
            tags = ['train/giou_loss', 'train/obj_loss', 'train/cls_loss',
                    'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/F1',
                    'val/giou_loss', 'val/obj_loss', 'val/cls_loss']
            for x, tag in zip(list(mloss[:-1]) + list(results), tags):
                tb_writer.add_scalar(tag, x, epoch)

        # Update best mAP
        fi = fitness(np.array(results).reshape(1, -1))  # fitness_i = weighted combination of [P, R, mAP, F1]
        if fi > best_fitness:
            best_fitness = fi

        # Save model
        save = (not opt.nosave) or (final_epoch and not opt.evolve)
        if save:
            with open(results_file, 'r') as f:  # create checkpoint
                ckpt = {'epoch': epoch,
                        'best_fitness': best_fitness,
                        'training_results': f.read(),
                        'model': ema.ema,
                        'optimizer': None if final_epoch else optimizer.state_dict()}

            # Save last, best and delete
            torch.save(ckpt, last)
            if (best_fitness == fi) and not final_epoch:
                torch.save(ckpt, best)
            del ckpt

        # end epoch ----------------------------------------------------------------------------------------------------
    # end training

    # Strip optimizers
    n = ('_' if len(opt.name) and not opt.name.isnumeric() else '') + opt.name
    fresults, flast, fbest = 'results%s.txt' % n, wdir + 'last%s.pt' % n, wdir + 'best%s.pt' % n
    for f1, f2 in zip([wdir + 'last.pt', wdir + 'best.pt', 'results.txt'], [flast, fbest, fresults]):
        if os.path.exists(f1):
            os.rename(f1, f2)  # rename
            ispt = f2.endswith('.pt')  # is *.pt
            strip_optimizer(f2) if ispt else None  # strip optimizer
            os.system('gsutil cp %s gs://%s/weights' % (f2, opt.bucket)) if opt.bucket and ispt else None  # upload

    # Finish
    if not opt.evolve:
        plot_results()  # save as results.png
    print('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
    dist.destroy_process_group() if device.type != 'cpu' and torch.cuda.device_count() > 1 else None
    torch.cuda.empty_cache()
    return results
Пример #24
0
def detect_demo(options, save_img=False):
    opt = options
    out, source, weights, view_img, save_txt, imgsz = \
        opt["output"], opt["source"], opt["weights"], opt["view_img"], opt["save_txt"], opt["img_size"]
    webcam = source == '0' or source.startswith('rtsp') or source.startswith(
        'http') or source.endswith('.txt')

    # Initialize
    device = torch_utils.select_device(opt["device"])
    half = device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    google_utils.attempt_download(weights)
    model = torch.load(weights,
                       map_location=device)['model'].float()  # load to FP32
    # torch.save(torch.load(weights, map_location=device), weights)  # update model if SourceChangeWarning
    # model.fuse()
    model.to(device).eval()
    if half:
        model.half()  # to FP16

    # Second-stage classifier
    classify = False
    if classify:
        modelc = torch_utils.load_classifier(name='resnet101',
                                             n=2)  # initialize
        modelc.load_state_dict(
            torch.load('weights/resnet101.pt',
                       map_location=device)['model'])  # load weights
        modelc.to(device).eval()

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = True
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz)
    else:
        save_img = True
        dataset = LoadImages(source, img_size=imgsz)

    # Get names and colors
    names = model.names if hasattr(model, 'names') else model.modules.names
    colors = [[random.randint(0, 255) for _ in range(3)]
              for _ in range(len(names))]

    # Run inference
    t0 = time.time()
    img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
    _ = model(img.half() if half else img
              ) if device.type != 'cpu' else None  # run once

    keep_overlay = False
    overlay_to_use = None
    overlay_to_use_old = None
    iteration_subcounter = 0
    for path, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        t1 = torch_utils.time_synchronized()
        pred = model(img, augment=opt["augment"])[0]

        # Apply NMS
        pred = non_max_suppression(pred,
                                   opt["conf_thres"],
                                   opt["iou_thres"],
                                   classes=opt["classes"],
                                   agnostic=opt["agnostic_nms"])
        t2 = torch_utils.time_synchronized()

        # Apply Classifier
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)

        #Initial load of the diffent overlays
        path_to_ok = "demo_files/ok_sign_final.png"
        overlay_ok = cv2.imread(path_to_ok)
        overlay_ok = cv2.resize(overlay_ok, (1920, 1080))

        path_to_stop = "demo_files/stop_sign_final.png"
        overlay = cv2.imread(path_to_stop)
        trans_mask = overlay[:, :, 2] == 0
        overlay[trans_mask] = [255, 255, 255]
        overlay_not_ok = cv2.cvtColor(overlay, cv2.COLOR_BGRA2BGR)
        overlay_not_ok = cv2.resize(overlay_not_ok, (1920, 1080))

        path_to_attention = "demo_files/attention_sign_final.png"
        overlay_attention = cv2.imread(path_to_attention)
        overlay_attention = cv2.resize(overlay_attention, (1920, 1080))

        # Process detections
        for i, det in enumerate(pred):  # detections per image
            print("tetes")
            if webcam:  # batch_size >= 1
                p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
            else:
                p, s, im0 = path, '', im0s

            save_path = str(Path(out) / Path(p).name)
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1,
                                          0]]  #  normalization gain whwh

            no_mask_true = False
            mask_true = False

            if det is not None and len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                          im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += '%g %ss, ' % (n, names[int(c)])  # add to string

                # Write results
                for *xyxy, conf, cls in det:
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) /
                                gn).view(-1).tolist()  # normalized xywh
                        with open(save_path[:save_path.rfind('.')] + '.txt',
                                  'a') as file:
                            file.write(('%g ' * 5 + '\n') %
                                       (cls, *xywh))  # label format

                    if int(cls) == 0:
                        mask_true = True
                    elif int(cls) == 1:
                        no_mask_true = True
                    else:
                        sys.exit("Label not known")

                    if save_img or view_img:  # Add bbox to image
                        label = None
                        if int(cls) == 0:
                            label = "mask"
                            color = (0, 255, 0)
                        elif int(cls) == 1:
                            label = "No mask"
                            color = (0, 0, 255)
                        else:
                            sys.exit("Label not known")

                        plot_one_box(xyxy,
                                     im0,
                                     label=label,
                                     color=color,
                                     line_thickness=3)

            print(keep_overlay, iteration_subcounter, overlay_to_use,
                  overlay_to_use_old)
            frame_to_wait = 100
            if (keep_overlay
                    == True) and (iteration_subcounter < frame_to_wait):
                overlay_to_use = overlay_to_use_old
                iteration_subcounter += 1
            elif (keep_overlay
                  == True) and (iteration_subcounter >= frame_to_wait):
                iteration_subcounter = 0
                keep_overlay = False

            if (mask_true == True) and (no_mask_true
                                        == False) and (keep_overlay == False):
                overlay_to_use = "ok"
            elif (no_mask_true == True) and (keep_overlay == False):
                overlay_to_use = "not_ok"
            elif (mask_true == False) and (no_mask_true
                                           == False) and (keep_overlay
                                                          == False):
                overlay_to_use = "attention"
            else:
                pass

            #
            if overlay_to_use != overlay_to_use_old:
                keep_overlay = True
                iteration_subcounter = 0
                overlay_to_use_old = overlay_to_use
            else:
                overlay_to_use_old = overlay_to_use

            if overlay_to_use == "ok":
                overlay = overlay_ok
            elif overlay_to_use == "not_ok":
                overlay = overlay_not_ok
            elif overlay_to_use == "attention":
                overlay = overlay_attention
            else:
                print(f"Overlay not known {overlay_to_use}")

            #Including the current images
            im0 = cv2.resize(im0, (1920, 1080))

            #include_small_image = True
            #info_screen_small = False
            if options["info_screen_small"] == False:
                s_img = im0.copy()
                s_img = cv2.resize(s_img, (1080, 1920))
                print(s_img.shape, overlay.shape)
                s_img = cv2.resize(s_img, (480, 360))
                print(s_img.shape, overlay.shape)
                x_offset = 10
                y_offset = 10
                if options["include_small_image"] == True:
                    overlay[y_offset:y_offset + s_img.shape[0],
                            x_offset:x_offset + s_img.shape[1]] = s_img
                im0 = overlay
            else:
                s_img = overlay.copy()
                s_img = cv2.resize(s_img, (1080, 1920))
                print(s_img.shape, overlay.shape)
                s_img = cv2.resize(s_img, (480, 360))
                print(s_img.shape, im0.shape)
                x_offset = 10
                y_offset = 10
                if options["include_small_image"] == True:
                    im0[y_offset:y_offset + s_img.shape[0],
                        x_offset:x_offset + s_img.shape[1]] = s_img
                im0 = im0

            # Print time (inference + NMS)
            print('%sDone. (%.3fs)' % (s, t2 - t1))

            # Stream results
            if view_img:
                cv2.namedWindow("window", cv2.WND_PROP_FULLSCREEN)
                cv2.setWindowProperty("window", cv2.WND_PROP_FULLSCREEN,
                                      cv2.WINDOW_FULLSCREEN)
                #im0 = cv2.resize(im0,(1920,1080))
                cv2.imshow("window", im0)
                if cv2.waitKey(1) == ord('q'):  # q to quit
                    raise StopIteration

            # Save results (image with detections)
            save_img = True
            if save_img:
                if dataset.mode == 'images':
                    cv2.imwrite(save_path, im0)
                else:
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release(
                            )  # release previous video writer

                        fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        vid_writer = cv2.VideoWriter(
                            save_path, cv2.VideoWriter_fourcc(*opt["fourcc"]),
                            fps, (w, h))
                    vid_writer.write(im0)

    if save_txt or save_img:
        print('Results saved to %s' % save_path)
        if platform == 'darwin':  # MacOS
            os.system('open ' + save_path)

    print('Done. (%.3fs)' % (time.time() - t0))
Пример #25
0
from utils import google_utils

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path')
    parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size')
    parser.add_argument('--batch-size', type=int, default=1, help='batch size')
    opt = parser.parse_args()
    opt.img_size *= 2 if len(opt.img_size) == 1 else 1  # expand
    print(opt)

    # Input
    img = torch.zeros((opt.batch_size, 3, *opt.img_size))  # image size(1,3,320,192) iDetection

    # Load PyTorch model
    google_utils.attempt_download(opt.weights)
    model = torch.load(opt.weights, map_location=torch.device('cpu'))['model'].float()
    model.eval()
    model.model[-1].export = True  # set Detect() layer export=True
    _ = model(img)  # dry run

    # TorchScript export
    try:
        f = opt.weights.replace('.pt', '.torchscript')  # filename
        ts = torch.jit.trace(model, img)
        ts.save(f)
        print('TorchScript export success, saved as %s' % f)
    except Exception as e:
        print('TorchScript export failed: %s' % e)

    # ONNX export
Пример #26
0
def detect(save_img=True, view_img=False):
    logging.info('##################### start detecting #####################')
    try:
        out, source, weights, save_txt, imgsz = \
            opt.output, opt.source, opt.weights, opt.save_txt, opt.img_size
        webcam = source == '0' or source.startswith(
            'rtsp') or source.startswith('http') or source.endswith('.txt')

        # Initialize
        device = torch_utils.select_device(opt.device)
        if not os.path.exists(out):
            os.makedirs(out)  # make new output folder
        half = device.type != 'cpu'  # half precision only supported on CUDA

        # Load model
        google_utils.attempt_download(weights)
        model = torch.load(
            weights, map_location=device)['model'].float()  # load to FP32
        model.to(device).eval()
        if half:
            model.half()  # to FP16
        # Set Dataloader
        if webcam:
            # view_img = True
            cudnn.benchmark = True  # set True to speed up constant image size inference
            dataset = LoadStreams(source, img_size=imgsz)
        else:
            save_img = True
            dataset = LoadImages(source, img_size=imgsz)

        # Get names and colors
        names = model.module.names if hasattr(model, 'module') else model.names
        colors = [[random.randint(0, 255) for _ in range(3)]
                  for _ in range(len(names))]

        # Run inference
        t0 = time.time()
        img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
        _ = model(img.half() if half else img
                  ) if device.type != 'cpu' else None  # run once

        init_x = [None] * len(names)
        end_x = [None] * len(names)
        for path, img, im0s, vid_cap in dataset:
            torch.cuda.empty_cache()
            output = out + '/' + time.strftime('%Y-%m-%d', time.localtime())
            if not os.path.exists(output):
                os.makedirs(output)
            img = torch.from_numpy(img).to(device)
            img = img.half() if half else img.float()  # uint8 to fp16/32
            img /= 255.0  # 0 - 255 to 0.0 - 1.0
            if img.ndimension() == 3:
                img = img.unsqueeze(0)
            # Inference
            t1 = torch_utils.time_synchronized()
            pred = model(img, augment=opt.augment)[0]

            # Apply NMS
            pred = non_max_suppression(pred,
                                       opt.conf_thres,
                                       opt.iou_thres,
                                       classes=opt.classes,
                                       agnostic=opt.agnostic_nms)
            t2 = torch_utils.time_synchronized()
            print('pred:', pred)

            # Process detections
            for i, det in enumerate(pred):  # detections per image
                if webcam:  # batch_size >= 1
                    p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
                else:
                    p, s, im0 = path, '', im0s
                s += '%gx%g ' % img.shape[2:]  # print string
                gn = torch.tensor(im0.shape)[[1, 0, 1,
                                              0]]  #  normalization gain whwh
                if det is not None and len(det):
                    # Rescale boxes from img_size to im0 size
                    det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                              im0.shape).round()

                    logging.info(
                        '-------------------------------------------------\n%s'
                        % det)

                    now = time.strftime('%Y-%m-%d %H.%M.%S', time.localtime())
                    # Print results
                    for c in det[:, -1].unique():
                        n = (det[:, -1] == c).sum()  # detections per class
                        s += '%g %ss, ' % (n, names[int(c)])  # add to string
                        c = int(c.cpu().detach().numpy())
                        if init_x[c] is None:
                            init_x[c] = end_x[c] = det[det[:,
                                                           -1] == c][:,
                                                                     0].min()
                        else:
                            # Write results
                            end_x[c] = det[det[:, -1] == c][:, 0].min()
                            if end_x[c] <= init_x[c] and end_x[c] < 1100:
                                retval, buffer = cv2.imencode('.jpeg', im0)
                                pic_str = base64.b64encode(buffer).decode()
                                status, timestamp, result = is_open(
                                    cls, pic_str)
                                if result is not None:
                                    logging.info(
                                        'result: %s' %
                                        json.dumps(result, ensure_ascii=False))
                                if status:
                                    logging.info('************ 开门 ***********')
                                    res_data = send_command(
                                        server_url,
                                        'open',
                                        number=result['words_result']['number']
                                        if c == 2 else None)
                                    logging.info(
                                        'status code: %s' % json.dumps(
                                            res_data, ensure_ascii=False))
                                    init_x[c] = end_x[c] = None
                                    time.sleep(10)
                            elif end_x[c] > init_x[c]:
                                if init_x[c] < 700 and end_x[c] - init_x[
                                        c] > 300:
                                    logging.info(
                                        '************ 关门 ************')
                                    res_data = send_command(
                                        server_url, 'close')
                                    logging.info(
                                        'status code: %s' % json.dumps(
                                            res_data, ensure_ascii=False))
                                    logging.info(
                                        'init_x: %.3f, end_x: %.3f' %
                                        (init_x[c].cpu().detach().numpy(),
                                         end_x[c].cpu().detach().numpy()))
                                    init_x[c] = end_x[c] = None
                                    time.sleep(10)
                        for *xyxy, conf, cls in det[det[:, -1] == c]:
                            cls = int(cls.cpu().detach().numpy())
                            # # xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                            # if xyxy[0] <= init_x[cls] and xyxy[0] < 1100:
                            #     end_x[cls] = xyxy[0]
                            #     retval, buffer = cv2.imencode('.jpeg', im0)
                            #     pic_str = base64.b64encode(buffer).decode()
                            #     status, timestamp, result = is_open(cls, pic_str)
                            #     if result is not None:
                            #         logging.info('result: %s' % json.dumps(result, ensure_ascii=False))
                            #     if status:
                            #         logging.info('************ 开门 ***********')
                            #         res_data = send_command(
                            #             server_url,
                            #             'open',
                            #             number=result['words_result']['number'] if cls == 2 else None)
                            #         logging.info('status code: %s' % json.dumps(res_data, ensure_ascii=False))
                            #         init_x[cls] = end_x[cls] = None
                            #         time.sleep(10)
                            # elif xyxy[0] > init_x[cls]:
                            #     end_x[cls] = xyxy[0]
                            #     if init_x[cls] < 700 and end_x[cls] - init_x[cls] > 300:
                            #         logging.info('************ 关门 ************')
                            #         res_data = send_command(server_url, 'close')
                            #         logging.info('status code: %s' % json.dumps(res_data, ensure_ascii=False))
                            #         logging.info(
                            #             'init_x: %.3f, end_x: %.3f' % (init_x[cls].cpu().detach().numpy(), end_x[cls].cpu().detach().numpy()))
                            #         init_x[cls] = end_x[cls] = None
                            #         time.sleep(10)
                            # xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                            # with open(txt_path + '.txt', 'a') as f:
                            #             f.write(('%g ' * 5 + '\n') % (cls, *xywh))  # label format
                            if save_img or view_img:  # Add bbox to image
                                label = '%s %.2f' % (names[cls], conf)
                                plot_one_box(xyxy,
                                             im0,
                                             label=label,
                                             color=colors[int(cls)],
                                             line_thickness=3)
                    if save_img:
                        save_path = os.path.join(output, now + '.jpg')
                        logging.info('保存图片至:%s' % save_path)
                        cv2.imencode('.jpg', im0)[1].tofile(save_path)
                else:
                    for cls in opt.classes:
                        if end_x[cls] is not None and init_x[
                                cls] is not None and end_x[cls] > init_x[
                                    cls] and init_x[cls] < 700 and (
                                        end_x[cls] - init_x[cls] > 300
                                        or end_x[cls] > 1200):
                            logging.info(
                                '*********** 首次从有物体转换为无物体,识别关门 ***********')
                            res_data = send_command(server_url, 'close')
                            logging.info(
                                'status code: %s' %
                                json.dumps(res_data, ensure_ascii=False))
                            logging.info('init_x: %.3f, end_x: %.3f' %
                                         (init_x[cls].cpu().detach().numpy(),
                                          end_x[cls].cpu().detach().numpy()))
                            time.sleep(5)
                        else:
                            time.sleep(0.5)
                        init_x[cls] = end_x[cls] = None

                # Print time (inference + NMS)
                print('%sDone. (%.3fs)' % (s, t2 - t1))

                # Stream results
                if view_img:
                    # cv2.namedWindow("result", cv2.WINDOW_NORMAL)
                    cv2.imshow(p, im0)
                    if cv2.waitKey(300) & 0xFF == ord('q'):  # q to quit
                        raise StopIteration

                # Save results (image with detections)
                # if save_img:
                # if dataset.mode == 'images':
                #     cv2.imwrite(save_path, im0)
                # else:
                #     if vid_path != save_path:  # new video
                #         vid_path = save_path
                #         if isinstance(vid_writer, cv2.VideoWriter):
                #             vid_writer.release()  # release previous video writer
                #
                #         fps = vid_cap.get(cv2.CAP_PROP_FPS)
                #         w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                #         h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                #         vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*opt.fourcc), fps, (w, h))
                #     vid_writer.write(im0)

        # if save_txt or save_img:
        #     print('Results saved to %s' % os.getcwd() + os.sep + out)
        #     if platform == 'darwin':  # MacOS
        #         os.system('open ' + save_path)
        print('Done. (%.3fs)' % (time.time() - t0))
        detect()
    except RuntimeError:
        logging.exception('detect 报错')
        return
    except Exception:
        # traceback.print_exc()
        logging.exception('detect 报错')
        torch.cuda.empty_cache()
        time.sleep(5)
        detect()
Пример #27
0
def train(hyp, opt, device, tb_writer=None, wandb=None):
    logger.info(f"Hyperparameters {hyp}")
    save_dir, epochs, batch_size, total_batch_size, weights, rank = (
        Path(opt.save_dir),
        opt.epochs,
        opt.batch_size,
        opt.total_batch_size,
        opt.weights,
        opt.global_rank,
    )

    # Directories
    wdir = save_dir / "weights"
    wdir.mkdir(parents=True, exist_ok=True)  # make dir
    last = wdir / "last.pt"
    best = wdir / "best.pt"
    results_file = save_dir / "results.txt"

    # Save run settings
    with open(save_dir / "hyp.yaml", "w") as f:
        yaml.dump(hyp, f, sort_keys=False)
    with open(save_dir / "opt.yaml", "w") as f:
        yaml.dump(vars(opt), f, sort_keys=False)

    # Configure
    plots = not opt.evolve  # create plots
    cuda = device.type != "cpu"
    init_seeds(2 + rank)
    with open(opt.data) as f:
        data_dict = yaml.load(f, Loader=yaml.FullLoader)  # data dict
    with torch_distributed_zero_first(rank):
        check_dataset(data_dict)  # check
    train_path = data_dict["train"]
    test_path = data_dict["val"]
    nc, names = (
        (1, ["item"]) if opt.single_cls else (int(data_dict["nc"]), data_dict["names"])
    )  # number classes, names
    assert len(names) == nc, "%g names found for nc=%g dataset in %s" % (
        len(names),
        nc,
        opt.data,
    )  # check

    # Model
    pretrained = weights.endswith(".pt")
    if pretrained:
        with torch_distributed_zero_first(rank):
            attempt_download(weights)  # download if not found locally
        ckpt = torch.load(weights, map_location=device)  # load checkpoint
        if hyp.get("anchors"):
            ckpt["model"].yaml["anchors"] = round(hyp["anchors"])  # force autoanchor
        model = Model(opt.cfg or ckpt["model"].yaml, ch=3, nc=nc).to(device)  # create
        exclude = ["anchor"] if opt.cfg or hyp.get("anchors") else []  # exclude keys
        state_dict = ckpt["model"].float().state_dict()  # to FP32
        state_dict = intersect_dicts(
            state_dict, model.state_dict(), exclude=exclude
        )  # intersect
        model.load_state_dict(state_dict, strict=False)  # load
        logger.info(
            "Transferred %g/%g items from %s"
            % (len(state_dict), len(model.state_dict()), weights)
        )  # report
    else:
        model = Model(opt.cfg, ch=3, nc=nc).to(device)  # create

    # Freeze
    freeze = []  # parameter names to freeze (full or partial)
    for k, v in model.named_parameters():
        v.requires_grad = True  # train all layers
        if any(x in k for x in freeze):
            print("freezing %s" % k)
            v.requires_grad = False

    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(
        round(nbs / total_batch_size), 1
    )  # accumulate loss before optimizing
    hyp["weight_decay"] *= total_batch_size * accumulate / nbs  # scale weight_decay

    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_modules():
        if hasattr(v, "bias") and isinstance(v.bias, nn.Parameter):
            pg2.append(v.bias)  # biases
        if isinstance(v, nn.BatchNorm2d):
            pg0.append(v.weight)  # no decay
        elif hasattr(v, "weight") and isinstance(v.weight, nn.Parameter):
            pg1.append(v.weight)  # apply decay

    if opt.adam:
        optimizer = optim.Adam(
            pg0, lr=hyp["lr0"], betas=(hyp["momentum"], 0.999)
        )  # adjust beta1 to momentum
    else:
        optimizer = optim.SGD(
            pg0, lr=hyp["lr0"], momentum=hyp["momentum"], nesterov=True
        )

    optimizer.add_param_group(
        {"params": pg1, "weight_decay": hyp["weight_decay"]}
    )  # add pg1 with weight_decay
    optimizer.add_param_group({"params": pg2})  # add pg2 (biases)
    logger.info(
        "Optimizer groups: %g .bias, %g conv.weight, %g other"
        % (len(pg2), len(pg1), len(pg0))
    )
    del pg0, pg1, pg2

    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
    lf = (
        lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - hyp["lrf"])
        + hyp["lrf"]
    )  # cosine
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    # plot_lr_scheduler(optimizer, scheduler, epochs)

    # Logging
    if wandb and wandb.run is None:
        opt.hyp = hyp  # add hyperparameters
        wandb_run = wandb.init(
            config=opt,
            resume="allow",
            project="YOLOv5" if opt.project == "runs/train" else Path(opt.project).stem,
            name=save_dir.stem,
            id=ckpt.get("wandb_id") if "ckpt" in locals() else None,
        )

    # Resume
    start_epoch, best_fitness = 0, 0.0
    if pretrained:
        # Optimizer
        if ckpt["optimizer"] is not None:
            optimizer.load_state_dict(ckpt["optimizer"])
            best_fitness = ckpt["best_fitness"]

        # Results
        if ckpt.get("training_results") is not None:
            with open(results_file, "w") as file:
                file.write(ckpt["training_results"])  # write results.txt

        # Epochs
        start_epoch = ckpt["epoch"] + 1
        if opt.resume:
            assert (
                start_epoch > 0
            ), "%s training to %g epochs is finished, nothing to resume." % (
                weights,
                epochs,
            )
        if epochs < start_epoch:
            logger.info(
                "%s has been trained for %g epochs. Fine-tuning for %g additional epochs."
                % (weights, ckpt["epoch"], epochs)
            )
            epochs += ckpt["epoch"]  # finetune additional epochs

        del ckpt, state_dict

    # Image sizes
    gs = int(max(model.stride))  # grid size (max stride)
    imgsz, imgsz_test = [
        check_img_size(x, gs) for x in opt.img_size
    ]  # verify imgsz are gs-multiples

    # DP mode
    if cuda and rank == -1 and torch.cuda.device_count() > 1:
        model = torch.nn.DataParallel(model)

    # SyncBatchNorm
    if opt.sync_bn and cuda and rank != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        logger.info("Using SyncBatchNorm()")

    # EMA
    ema = ModelEMA(model) if rank in [-1, 0] else None

    # DDP mode
    if cuda and rank != -1:
        model = DDP(model, device_ids=[opt.local_rank], output_device=opt.local_rank)

    # Trainloader
    dataloader, dataset = create_dataloader(
        train_path,
        imgsz,
        batch_size,
        gs,
        opt,
        hyp=hyp,
        augment=True,
        cache=opt.cache_images,
        rect=opt.rect,
        rank=rank,
        world_size=opt.world_size,
        workers=opt.workers,
    )
    mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
    nb = len(dataloader)  # number of batches
    assert (
        mlc < nc
    ), "Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g" % (
        mlc,
        nc,
        opt.data,
        nc - 1,
    )

    # Process 0
    if rank in [-1, 0]:
        ema.updates = start_epoch * nb // accumulate  # set EMA updates
        testloader = create_dataloader(
            test_path,
            imgsz_test,
            total_batch_size,
            gs,
            opt,
            hyp=hyp,
            cache=opt.cache_images and not opt.notest,
            rect=True,
            rank=-1,
            world_size=opt.world_size,
            workers=opt.workers,
        )[
            0
        ]  # testloader

        if not opt.resume:
            labels = np.concatenate(dataset.labels, 0)
            c = torch.tensor(labels[:, 0])  # classes
            # cf = torch.bincount(c.long(), minlength=nc) + 1.  # frequency
            # model._initialize_biases(cf.to(device))
            if plots:
                plot_labels(labels, save_dir=save_dir)
                if tb_writer:
                    tb_writer.add_histogram("classes", c, 0)
                if wandb:
                    wandb.log(
                        {
                            "Labels": [
                                wandb.Image(str(x), caption=x.name)
                                for x in save_dir.glob("*labels*.png")
                            ]
                        }
                    )

            # Anchors
            if not opt.noautoanchor:
                check_anchors(dataset, model=model, thr=hyp["anchor_t"], imgsz=imgsz)

    # Model parameters
    hyp["cls"] *= nc / 80.0  # scale coco-tuned hyp['cls'] to current dataset
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # iou loss ratio (obj_loss = 1.0 or iou)
    model.class_weights = labels_to_class_weights(dataset.labels, nc).to(
        device
    )  # attach class weights
    model.names = names

    # Start training
    t0 = time.time()
    nw = max(
        round(hyp["warmup_epochs"] * nb), 1000
    )  # number of warmup iterations, max(3 epochs, 1k iterations)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    maps = np.zeros(nc)  # mAP per class
    results = (0, 0, 0, 0, 0, 0, 0)  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
    scheduler.last_epoch = start_epoch - 1  # do not move
    scaler = amp.GradScaler(enabled=cuda)
    logger.info(
        "Image sizes %g train, %g test\n"
        "Using %g dataloader workers\nLogging results to %s\n"
        "Starting training for %g epochs..."
        % (imgsz, imgsz_test, dataloader.num_workers, save_dir, epochs)
    )
    for epoch in range(
        start_epoch, epochs
    ):  # epoch ------------------------------------------------------------------
        model.train()

        # Update image weights (optional)
        if opt.image_weights:
            # Generate indices
            if rank in [-1, 0]:
                cw = (
                    model.class_weights.cpu().numpy() * (1 - maps) ** 2
                )  # class weights
                iw = labels_to_image_weights(
                    dataset.labels, nc=nc, class_weights=cw
                )  # image weights
                dataset.indices = random.choices(
                    range(dataset.n), weights=iw, k=dataset.n
                )  # rand weighted idx
            # Broadcast if DDP
            if rank != -1:
                indices = (
                    torch.tensor(dataset.indices)
                    if rank == 0
                    else torch.zeros(dataset.n)
                ).int()
                dist.broadcast(indices, 0)
                if rank != 0:
                    dataset.indices = indices.cpu().numpy()

        # Update mosaic border
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = torch.zeros(4, device=device)  # mean losses
        if rank != -1:
            dataloader.sampler.set_epoch(epoch)
        pbar = enumerate(dataloader)
        logger.info(
            ("\n" + "%10s" * 8)
            % ("Epoch", "gpu_mem", "box", "obj", "cls", "total", "targets", "img_size")
        )
        if rank in [-1, 0]:
            pbar = tqdm(pbar, total=nb)  # progress bar
        optimizer.zero_grad()
        for i, (
            imgs,
            targets,
            paths,
            _,
        ) in (
            pbar
        ):  # batch -------------------------------------------------------------
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = (
                imgs.to(device, non_blocking=True).float() / 255.0
            )  # uint8 to float32, 0-255 to 0.0-1.0

            # Warmup
            if ni <= nw:
                xi = [0, nw]  # x interp
                # model.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
                accumulate = max(
                    1, np.interp(ni, xi, [1, nbs / total_batch_size]).round()
                )
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x["lr"] = np.interp(
                        ni,
                        xi,
                        [
                            hyp["warmup_bias_lr"] if j == 2 else 0.0,
                            x["initial_lr"] * lf(epoch),
                        ],
                    )
                    if "momentum" in x:
                        x["momentum"] = np.interp(
                            ni, xi, [hyp["warmup_momentum"], hyp["momentum"]]
                        )

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [
                        math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]
                    ]  # new shape (stretched to gs-multiple)
                    imgs = F.interpolate(
                        imgs, size=ns, mode="bilinear", align_corners=False
                    )

            # Forward
            with amp.autocast(enabled=cuda):
                pred = model(imgs)  # forward
                loss, loss_items = compute_loss(
                    pred, targets.to(device), model
                )  # loss scaled by batch_size
                if rank != -1:
                    loss *= (
                        opt.world_size
                    )  # gradient averaged between devices in DDP mode

            # Backward
            scaler.scale(loss).backward()

            # Optimize
            if ni % accumulate == 0:
                scaler.step(optimizer)  # optimizer.step
                scaler.update()
                optimizer.zero_grad()
                if ema:
                    ema.update(model)

            # Print
            if rank in [-1, 0]:
                mloss = (mloss * i + loss_items) / (i + 1)  # update mean losses
                mem = "%.3gG" % (
                    torch.cuda.memory_reserved() / 1e9
                    if torch.cuda.is_available()
                    else 0
                )  # (GB)
                s = ("%10s" * 2 + "%10.4g" * 6) % (
                    "%g/%g" % (epoch, epochs - 1),
                    mem,
                    *mloss,
                    targets.shape[0],
                    imgs.shape[-1],
                )
                pbar.set_description(s)

                # Plot
                if plots and ni < 3:
                    f = save_dir / f"train_batch{ni}.jpg"  # filename
                    plot_images(images=imgs, targets=targets, paths=paths, fname=f)
                    # if tb_writer:
                    #     tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
                    #     tb_writer.add_graph(model, imgs)  # add model to tensorboard
                elif plots and ni == 3 and wandb:
                    wandb.log(
                        {
                            "Mosaics": [
                                wandb.Image(str(x), caption=x.name)
                                for x in save_dir.glob("train*.jpg")
                            ]
                        }
                    )

            # end batch ------------------------------------------------------------------------------------------------
        # end epoch ----------------------------------------------------------------------------------------------------

        # Scheduler
        lr = [x["lr"] for x in optimizer.param_groups]  # for tensorboard
        scheduler.step()

        # DDP process 0 or single-GPU
        if rank in [-1, 0]:
            # mAP
            if ema:
                ema.update_attr(
                    model, include=["yaml", "nc", "hyp", "gr", "names", "stride"]
                )
            final_epoch = epoch + 1 == epochs
            if not opt.notest or final_epoch:  # Calculate mAP
                results, maps, times = test.test(
                    opt.data,
                    batch_size=total_batch_size,
                    imgsz=imgsz_test,
                    model=ema.ema,
                    single_cls=opt.single_cls,
                    dataloader=testloader,
                    save_dir=save_dir,
                    plots=plots and final_epoch,
                    log_imgs=opt.log_imgs if wandb else 0,
                )

            # Write
            with open(results_file, "a") as f:
                f.write(
                    s + "%10.4g" * 7 % results + "\n"
                )  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
            if len(opt.name) and opt.bucket:
                os.system(
                    "gsutil cp %s gs://%s/results/results%s.txt"
                    % (results_file, opt.bucket, opt.name)
                )

            # Log
            tags = [
                "train/box_loss",
                "train/obj_loss",
                "train/cls_loss",  # train loss
                "metrics/precision",
                "metrics/recall",
                "metrics/mAP_0.5",
                "metrics/mAP_0.5:0.95",
                "val/box_loss",
                "val/obj_loss",
                "val/cls_loss",  # val loss
                "x/lr0",
                "x/lr1",
                "x/lr2",
            ]  # params
            for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
                if tb_writer:
                    tb_writer.add_scalar(tag, x, epoch)  # tensorboard
                if wandb:
                    wandb.log({tag: x})  # W&B

            # Update best mAP
            fi = fitness(
                np.array(results).reshape(1, -1)
            )  # weighted combination of [P, R, [email protected], [email protected]]
            if fi > best_fitness:
                best_fitness = fi

            # Save model
            save = (not opt.nosave) or (final_epoch and not opt.evolve)
            if save:
                with open(results_file, "r") as f:  # create checkpoint
                    ckpt = {
                        "epoch": epoch,
                        "best_fitness": best_fitness,
                        "training_results": f.read(),
                        "model": ema.ema,
                        "optimizer": None if final_epoch else optimizer.state_dict(),
                        "wandb_id": wandb_run.id if wandb else None,
                    }

                # Save last, best and delete
                torch.save(ckpt, last)
                if best_fitness == fi:
                    torch.save(ckpt, best)
                del ckpt
        # end epoch ----------------------------------------------------------------------------------------------------
    # end training

    if rank in [-1, 0]:
        # Strip optimizers
        n = opt.name if opt.name.isnumeric() else ""
        fresults, flast, fbest = (
            save_dir / f"results{n}.txt",
            wdir / f"last{n}.pt",
            wdir / f"best{n}.pt",
        )
        for f1, f2 in zip(
            [wdir / "last.pt", wdir / "best.pt", results_file], [flast, fbest, fresults]
        ):
            if f1.exists():
                os.rename(f1, f2)  # rename
                if str(f2).endswith(".pt"):  # is *.pt
                    strip_optimizer(f2)  # strip optimizer
                    os.system(
                        "gsutil cp %s gs://%s/weights" % (f2, opt.bucket)
                    ) if opt.bucket else None  # upload
        # Finish
        if plots:
            plot_results(save_dir=save_dir)  # save as results.png
            if wandb:
                files = [
                    "results.png",
                    "precision_recall_curve.png",
                    "confusion_matrix.png",
                ]
                wandb.log(
                    {
                        "Results": [
                            wandb.Image(str(save_dir / f), caption=f)
                            for f in files
                            if (save_dir / f).exists()
                        ]
                    }
                )
        logger.info(
            "%g epochs completed in %.3f hours.\n"
            % (epoch - start_epoch + 1, (time.time() - t0) / 3600)
        )
    else:
        dist.destroy_process_group()

    wandb.run.finish() if wandb and wandb.run else None
    torch.cuda.empty_cache()
    return results
Пример #28
0
def detect(save_img=False):
    out, source, weights, view_img, save_txt, imgsz = \
        opt.output, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
    webcam = source == '0' or source.startswith('rtsp') or source.startswith(
        'http') or source.endswith('.txt')

    # Initialize
    device = torch_utils.select_device(opt.device)
    if os.path.exists(out):
        shutil.rmtree(out)  # delete output folder
    os.makedirs(out)  # make new output folder
    half = device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    google_utils.attempt_download(weights)
    model = torch.load(weights,
                       map_location=device)['model'].float()  # load to FP32
    # torch.save(torch.load(weights, map_location=device), weights)  # update model if SourceChangeWarning
    # model.fuse()
    model.to(device).eval()
    imgsz = check_img_size(imgsz,
                           s=model.model[-1].stride.max())  # check img_size
    if half:
        model.half()  # to FP16

    # Second-stage classifier
    classify = False
    if classify:
        modelc = torch_utils.load_classifier(name='resnet101',
                                             n=2)  # initialize
        modelc.load_state_dict(
            torch.load('weights/resnet101.pt',
                       map_location=device)['model'])  # load weights
        modelc.to(device).eval()

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = True
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz)
    else:
        save_img = True
        dataset = LoadImages(source, img_size=imgsz)

    # Get names and colors
    names = model.module.names if hasattr(model, 'module') else model.names
    colors = [[random.randint(0, 255) for _ in range(3)]
              for _ in range(len(names))]

    # Run inference
    t0 = time.time()
    img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
    _ = model(img.half() if half else img
              ) if device.type != 'cpu' else None  # run once
    for path, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        t1 = torch_utils.time_synchronized()
        pred = model(img, augment=opt.augment)[0]

        # Apply NMS
        pred = non_max_suppression(pred,
                                   opt.conf_thres,
                                   opt.iou_thres,
                                   classes=opt.classes,
                                   agnostic=opt.agnostic_nms)
        t2 = torch_utils.time_synchronized()

        # Apply Classifier
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)

        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
            else:
                p, s, im0 = path, '', im0s

            save_path = str(Path(out) / Path(p).name)
            txt_path = str(Path(out) / Path(p).stem) + (
                '_%g' % dataset.frame if dataset.mode == 'video' else '')
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1,
                                          0]]  # normalization gain whwh
            if det is not None and len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                          im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += '%g %ss, ' % (n, names[int(c)])  # add to string

                # Write results
                for *xyxy, conf, cls in det:
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) /
                                gn).view(-1).tolist()  # normalized xywh
                        with open(txt_path + '.txt', 'a') as f:
                            f.write(('%g ' * 5 + '\n') %
                                    (cls, *xywh))  # label format

                    if save_img or view_img:  # Add bbox to image
                        label = '%s %.2f' % (names[int(cls)], conf)
                        plot_one_box(xyxy,
                                     im0,
                                     label=label,
                                     color=colors[int(cls)],
                                     line_thickness=3)

            # Print time (inference + NMS)
            print('%sDone. (%.3fs)' % (s, t2 - t1))

            # Stream results
            if view_img:
                cv2.imshow(p, im0)
                if cv2.waitKey(1) == ord('q'):  # q to quit
                    raise StopIteration

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'images':
                    cv2.imwrite(save_path, im0)
                else:
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release(
                            )  # release previous video writer

                        fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        vid_writer = cv2.VideoWriter(
                            save_path, cv2.VideoWriter_fourcc(*opt.fourcc),
                            fps, (w, h))
                    vid_writer.write(im0)

    if save_txt or save_img:
        print('Results saved to %s' % os.getcwd() + os.sep + out)
        if platform == 'darwin':  # MacOS
            os.system('open ' + save_path)

    print('Done. (%.3fs)' % (time.time() - t0))
Пример #29
0
def train(hyp, opt, device, tb_writer=None, wandb=None):
    logger.info(f'Hyperparameters {hyp}')
    save_dir, epochs, batch_size, total_batch_size, weights, rank = \
        Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank

    # Directories
    wdir = save_dir / 'weights'
    wdir.mkdir(parents=True, exist_ok=True)  # make dir
    last = wdir / 'last.pt'
    best = wdir / 'best.pt'
    results_file = save_dir / 'results.txt'

    # Save run settings
    with open(save_dir / 'hyp.yaml', 'w') as f:
        yaml.dump(hyp, f, sort_keys=False)
    with open(save_dir / 'opt.yaml', 'w') as f:
        yaml.dump(vars(opt), f, sort_keys=False)

    # Configure
    plots = not opt.evolve  # create plots
    cuda = device.type != 'cpu'
    init_seeds(2 + rank)
    with open(opt.data) as f:
        data_dict = yaml.load(f, Loader=yaml.FullLoader)  # data dict
    with torch_distributed_zero_first(rank):
        check_dataset(data_dict)  # check
    train_path = data_dict['train']
    test_path = data_dict['val']
    nc = 1 if opt.single_cls else int(data_dict['nc'])  # number of classes
    names = ['item'] if opt.single_cls and len(data_dict['names']) != 1 else data_dict['names']  # class names
    assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data)  # check

    # Model
    pretrained = weights.endswith('.pt')
    if pretrained:
        with torch_distributed_zero_first(rank):
            attempt_download(weights)  # download if not found locally
        ckpt = torch.load(weights, map_location=device)  # load checkpoint
        if hyp.get('anchors'):
            ckpt['model'].yaml['anchors'] = round(hyp['anchors'])  # force autoanchor
        model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc).to(device)  # create
        exclude = ['anchor'] if opt.cfg or hyp.get('anchors') else []  # exclude keys
        state_dict = ckpt['model'].float().state_dict()  # to FP32
        state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude)  # intersect
        model.load_state_dict(state_dict, strict=False)  # load
        logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights))  # report
    else:
        model = Model(opt.cfg, ch=3, nc=nc).to(device)  # create

    # Freeze
    freeze = []  # parameter names to freeze (full or partial)
    for k, v in model.named_parameters():
        v.requires_grad = True  # train all layers
        if any(x in k for x in freeze):
            print('freezing %s' % k)
            v.requires_grad = False

    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / total_batch_size), 1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= total_batch_size * accumulate / nbs  # scale weight_decay

    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_modules():
        if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
            pg2.append(v.bias)  # biases
        if isinstance(v, nn.BatchNorm2d):
            pg0.append(v.weight)  # no decay
        elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
            pg1.append(v.weight)  # apply decay

    if opt.adam:
        optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999))  # adjust beta1 to momentum
    else:
        optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)

    optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']})  # add pg1 with weight_decay
    optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
    logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
    del pg0, pg1, pg2

    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
    lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - hyp['lrf']) + hyp['lrf']  # cosine
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    # plot_lr_scheduler(optimizer, scheduler, epochs)

    # Logging
    if wandb and wandb.run is None:
        opt.hyp = hyp  # add hyperparameters
        wandb_run = wandb.init(config=opt, resume="allow",
                               project='YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem,
                               name=save_dir.stem,
                               id=ckpt.get('wandb_id') if 'ckpt' in locals() else None)
    loggers = {'wandb': wandb}  # loggers dict

    # Resume
    start_epoch, best_fitness = 0, 0.0
    if pretrained:
        # Optimizer
        if ckpt['optimizer'] is not None:
            optimizer.load_state_dict(ckpt['optimizer'])
            best_fitness = ckpt['best_fitness']

        # Results
        if ckpt.get('training_results') is not None:
            with open(results_file, 'w') as file:
                file.write(ckpt['training_results'])  # write results.txt

        # Epochs
        start_epoch = ckpt['epoch'] + 1
        if opt.resume:
            assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs)
        if epochs < start_epoch:
            logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
                        (weights, ckpt['epoch'], epochs))
            epochs += ckpt['epoch']  # finetune additional epochs

        del ckpt, state_dict

    # Image sizes
    gs = int(max(model.stride))  # grid size (max stride)
    imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size]  # verify imgsz are gs-multiples

    # DP mode
    if cuda and rank == -1 and torch.cuda.device_count() > 1:
        model = torch.nn.DataParallel(model)

    # SyncBatchNorm
    if opt.sync_bn and cuda and rank != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        logger.info('Using SyncBatchNorm()')

    # EMA
    ema = ModelEMA(model) if rank in [-1, 0] else None

    # DDP mode
    if cuda and rank != -1:
        model = DDP(model, device_ids=[opt.local_rank], output_device=opt.local_rank)

    # Trainloader
    dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt,
                                            hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=rank,
                                            world_size=opt.world_size, workers=opt.workers,
                                            image_weights=opt.image_weights)
    mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
    nb = len(dataloader)  # number of batches
    assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1)

    # Process 0
    if rank in [-1, 0]:
        ema.updates = start_epoch * nb // accumulate  # set EMA updates
        testloader = create_dataloader(test_path, imgsz_test, total_batch_size, gs, opt,  # testloader
                                       hyp=hyp, cache=opt.cache_images and not opt.notest, rect=True,
                                       rank=-1, world_size=opt.world_size, workers=opt.workers, pad=0.5)[0]

        if not opt.resume:
            labels = np.concatenate(dataset.labels, 0)
            c = torch.tensor(labels[:, 0])  # classes
            # cf = torch.bincount(c.long(), minlength=nc) + 1.  # frequency
            # model._initialize_biases(cf.to(device))
            if plots:
                plot_labels(labels, save_dir, loggers)
                if tb_writer:
                    tb_writer.add_histogram('classes', c, 0)

            # Anchors
            if not opt.noautoanchor:
                check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)

    # Model parameters
    hyp['cls'] *= nc / 80.  # scale coco-tuned hyp['cls'] to current dataset
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # iou loss ratio (obj_loss = 1.0 or iou)
    model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc  # attach class weights
    model.names = names

    # Start training
    t0 = time.time()
    nw = max(round(hyp['warmup_epochs'] * nb), 1000)  # number of warmup iterations, max(3 epochs, 1k iterations)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    maps = np.zeros(nc)  # mAP per class
    results = (0, 0, 0, 0, 0, 0, 0)  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
    scheduler.last_epoch = start_epoch - 1  # do not move
    scaler = amp.GradScaler(enabled=cuda)
    logger.info('Image sizes %g train, %g test\n'
                'Using %g dataloader workers\nLogging results to %s\n'
                'Starting training for %g epochs...' % (imgsz, imgsz_test, dataloader.num_workers, save_dir, epochs))
    for epoch in range(start_epoch, epochs):  # epoch ------------------------------------------------------------------
        model.train()

        # Update image weights (optional)
        if opt.image_weights:
            # Generate indices
            if rank in [-1, 0]:
                cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc  # class weights
                iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw)  # image weights
                dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n)  # rand weighted idx
            # Broadcast if DDP
            if rank != -1:
                indices = (torch.tensor(dataset.indices) if rank == 0 else torch.zeros(dataset.n)).int()
                dist.broadcast(indices, 0)
                if rank != 0:
                    dataset.indices = indices.cpu().numpy()

        # Update mosaic border
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = torch.zeros(4, device=device)  # mean losses
        if rank != -1:
            dataloader.sampler.set_epoch(epoch)
        pbar = enumerate(dataloader)
        logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'targets', 'img_size'))
        if rank in [-1, 0]:
            pbar = tqdm(pbar, total=nb)  # progress bar
        optimizer.zero_grad()
        for i, (imgs, targets, paths, _) in pbar:  # batch -------------------------------------------------------------
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device, non_blocking=True).float() / 255.0  # uint8 to float32, 0-255 to 0.0-1.0

            # Warmup
            if ni <= nw:
                xi = [0, nw]  # x interp
                # model.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
                accumulate = max(1, np.interp(ni, xi, [1, nbs / total_batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]]  # new shape (stretched to gs-multiple)
                    imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)

            # Forward
            with amp.autocast(enabled=cuda):
                pred = model(imgs)  # forward
                loss, loss_items = compute_loss(pred, targets.to(device), model)  # loss scaled by batch_size
                if rank != -1:
                    loss *= opt.world_size  # gradient averaged between devices in DDP mode

            # Backward
            scaler.scale(loss).backward()

            # Optimize
            if ni % accumulate == 0:
                scaler.step(optimizer)  # optimizer.step
                scaler.update()
                optimizer.zero_grad()
                if ema:   
                    ema.update(model)

            # Print
            if rank in [-1, 0]:
                mloss = (mloss * i + loss_items) / (i + 1)  # update mean losses
                mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0)  # (GB)
                s = ('%10s' * 2 + '%10.4g' * 6) % (
                    '%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1])
                pbar.set_description(s)

                # Plot
                if plots and ni < 3:
                    f = save_dir / f'train_batch{ni}.jpg'  # filename
                    Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start()
                    # if tb_writer:
                    #     tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
                    #     tb_writer.add_graph(model, imgs)  # add model to tensorboard
                elif plots and ni == 3 and wandb:
                    wandb.log({"Mosaics": [wandb.Image(str(x), caption=x.name) for x in save_dir.glob('train*.jpg')]})

            # end batch ------------------------------------------------------------------------------------------------
        # end epoch ----------------------------------------------------------------------------------------------------

        # Scheduler
        lr = [x['lr'] for x in optimizer.param_groups]  # for tensorboard
        scheduler.step()

        # DDP process 0 or single-GPU
        if rank in [-1, 0]:
            # mAP
            if ema:
                ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride', 'class_weights'])
            final_epoch = epoch + 1 == epochs
            if not opt.notest or final_epoch:  # Calculate mAP
                results, maps, times = test.test(opt.data,
                                                 batch_size=total_batch_size,
                                                 imgsz=imgsz_test,
                                                 model=ema.ema,
                                                 single_cls=opt.single_cls,
                                                 dataloader=testloader,
                                                 save_dir=save_dir,
                                                 plots=plots and final_epoch,
                                                 log_imgs=opt.log_imgs if wandb else 0)

            # Write
            with open(results_file, 'a') as f:
                f.write(s + '%10.4g' * 7 % results + '\n')  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
            if len(opt.name) and opt.bucket:
                os.system('gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name))

            # Log
            tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss',  # train loss
                    'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
                    'val/box_loss', 'val/obj_loss', 'val/cls_loss',  # val loss
                    'x/lr0', 'x/lr1', 'x/lr2']  # params
            for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
                if tb_writer:
                    tb_writer.add_scalar(tag, x, epoch)  # tensorboard
                if wandb:
                    wandb.log({tag: x})  # W&B

            # Update best mAP
            fi = fitness(np.array(results).reshape(1, -1))  # weighted combination of [P, R, [email protected], [email protected]]
            if fi > best_fitness:
                best_fitness = fi

            # Save model
            save = (not opt.nosave) or (final_epoch and not opt.evolve)
            if save:
                with open(results_file, 'r') as f:  # create checkpoint
                    ckpt = {'epoch': epoch,
                            'best_fitness': best_fitness,
                            'training_results': f.read(),
                            'model': ema.ema,
                            'optimizer': None if final_epoch else optimizer.state_dict(),
                            'wandb_id': wandb_run.id if wandb else None}

                # Save last, best and delete
                torch.save(ckpt, last)
                if best_fitness == fi:
                    torch.save(ckpt, best)
                del ckpt
        # end epoch ----------------------------------------------------------------------------------------------------
    # end training

    if rank in [-1, 0]:
        # Strip optimizers
        final = best if best.exists() else last  # final model
        for f in [last, best]:
            if f.exists():
                strip_optimizer(f)  # strip optimizers
        if opt.bucket:
            os.system(f'gsutil cp {final} gs://{opt.bucket}/weights')  # upload

        # Plots
        if plots:
            plot_results(save_dir=save_dir)  # save as results.png
            if wandb:
                files = ['results.png', 'precision_recall_curve.png', 'confusion_matrix.png']
                wandb.log({"Results": [wandb.Image(str(save_dir / f), caption=f) for f in files
                                       if (save_dir / f).exists()]})
                if opt.log_artifacts:
                    wandb.log_artifact(artifact_or_path=str(final), type='model', name=save_dir.stem)

        # Test best.pt
        logger.info('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
        if opt.data.endswith('coco.yaml') and nc == 80:  # if COCO
            for conf, iou, save_json in ([0.25, 0.45, False], [0.001, 0.65, True]):  # speed, mAP tests
                results, _, _ = test.test(opt.data,
                                          batch_size=total_batch_size,
                                          imgsz=imgsz_test,
                                          conf_thres=conf,
                                          iou_thres=iou,
                                          model=attempt_load(final, device).half(),
                                          single_cls=opt.single_cls,
                                          dataloader=testloader,
                                          save_dir=save_dir,
                                          save_json=save_json,
                                          plots=False)

    else:
        dist.destroy_process_group()

    wandb.run.finish() if wandb and wandb.run else None
    torch.cuda.empty_cache()
    return results
Пример #30
0
def train(
    hyp,  # path/to/hyp.yaml or hyp dictionary
    opt,
    device,
):
    save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, = \
        Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \
        opt.resume, opt.noval, opt.nosave, opt.workers

    # Directories
    w = save_dir / 'weights'  # weights dir
    w.mkdir(parents=True, exist_ok=True)  # make dir
    last, best = w / 'last.pt', w / 'best.pt'

    # Hyperparameters
    if isinstance(hyp, str):
        with open(hyp) as f:
            hyp = yaml.safe_load(f)  # load hyps dict
    LOGGER.info(
        colorstr('hyperparameters: ') + ', '.join(f'{k}={v}'
                                                  for k, v in hyp.items()))

    # Save run settings
    with open(save_dir / 'hyp.yaml', 'w') as f:
        yaml.safe_dump(hyp, f, sort_keys=False)
    with open(save_dir / 'opt.yaml', 'w') as f:
        yaml.safe_dump(vars(opt), f, sort_keys=False)

    # Config
    plots = not evolve  # create plots
    cuda = device.type != 'cpu'
    init_seeds(1 + RANK)
    with open(data) as f:
        data_dict = yaml.safe_load(f)  # data dict
    nc = 1 if single_cls else int(data_dict['nc'])  # number of classes
    names = ['item'] if single_cls and len(
        data_dict['names']) != 1 else data_dict['names']  # class names
    assert len(
        names
    ) == nc, f'{len(names)} names found for nc={nc} dataset in {data}'  # check
    is_coco = data.endswith('coco.yaml') and nc == 80  # COCO dataset

    # Loggers
    if RANK in [-1, 0]:
        loggers = Loggers(save_dir, weights, opt, hyp, data_dict,
                          LOGGER).start()  # loggers dict
        if loggers.wandb and resume:
            weights, epochs, hyp, data_dict = opt.weights, opt.epochs, opt.hyp, loggers.wandb.data_dict

    # Model
    pretrained = weights.endswith('.pt')
    if pretrained:
        with torch_distributed_zero_first(RANK):
            weights = attempt_download(
                weights)  # download if not found locally
        ckpt = torch.load(weights, map_location=device)  # load checkpoint
        model = Model(cfg or ckpt['model'].yaml,
                      ch=3,
                      nc=nc,
                      anchors=hyp.get('anchors')).to(device)  # create
        exclude = [
            'anchor'
        ] if (cfg or hyp.get('anchors')) and not resume else []  # exclude keys
        csd = ckpt['model'].float().state_dict(
        )  # checkpoint state_dict as FP32
        csd = intersect_dicts(csd, model.state_dict(),
                              exclude=exclude)  # intersect
        model.load_state_dict(csd, strict=False)  # load
        LOGGER.info(
            f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}'
        )  # report
    else:
        model = Model(cfg, ch=3, nc=nc,
                      anchors=hyp.get('anchors')).to(device)  # create
    with torch_distributed_zero_first(RANK):
        check_dataset(data_dict)  # check
    train_path, val_path = data_dict['train'], data_dict['val']

    # Freeze
    freeze = []  # parameter names to freeze (full or partial)
    for k, v in model.named_parameters():
        v.requires_grad = True  # train all layers
        if any(x in k for x in freeze):
            print(f'freezing {k}')
            v.requires_grad = False

    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / batch_size),
                     1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= batch_size * accumulate / nbs  # scale weight_decay
    LOGGER.info(f"Scaled weight_decay = {hyp['weight_decay']}")

    g0, g1, g2 = [], [], []  # optimizer parameter groups
    for v in model.modules():
        if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):  # bias
            g2.append(v.bias)
        if isinstance(v, nn.BatchNorm2d):  # weight with decay
            g0.append(v.weight)
        elif hasattr(v, 'weight') and isinstance(
                v.weight, nn.Parameter):  # weight without decay
            g1.append(v.weight)

    if opt.adam:
        optimizer = Adam(g0, lr=hyp['lr0'],
                         betas=(hyp['momentum'],
                                0.999))  # adjust beta1 to momentum
    else:
        optimizer = SGD(g0,
                        lr=hyp['lr0'],
                        momentum=hyp['momentum'],
                        nesterov=True)

    optimizer.add_param_group({
        'params': g1,
        'weight_decay': hyp['weight_decay']
    })  # add g1 with weight_decay
    optimizer.add_param_group({'params': g2})  # add g2 (biases)
    LOGGER.info(
        f"{colorstr('optimizer:')} {type(optimizer).__name__} with parameter groups "
        f"{len(g0)} weight, {len(g1)} weight (no decay), {len(g2)} bias")
    del g0, g1, g2

    # Scheduler
    if opt.linear_lr:
        lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp[
            'lrf']  # linear
    else:
        lf = one_cycle(1, hyp['lrf'], epochs)  # cosine 1->hyp['lrf']
    scheduler = lr_scheduler.LambdaLR(
        optimizer,
        lr_lambda=lf)  # plot_lr_scheduler(optimizer, scheduler, epochs)

    # EMA
    ema = ModelEMA(model) if RANK in [-1, 0] else None

    # Resume
    start_epoch, best_fitness = 0, 0.0
    if pretrained:
        # Optimizer
        if ckpt['optimizer'] is not None:
            optimizer.load_state_dict(ckpt['optimizer'])
            best_fitness = ckpt['best_fitness']

        # EMA
        if ema and ckpt.get('ema'):
            ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
            ema.updates = ckpt['updates']

        # Epochs
        start_epoch = ckpt['epoch'] + 1
        if resume:
            assert start_epoch > 0, f'{weights} training to {epochs} epochs is finished, nothing to resume.'
        if epochs < start_epoch:
            LOGGER.info(
                f"{weights} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {epochs} more epochs."
            )
            epochs += ckpt['epoch']  # finetune additional epochs

        del ckpt, csd

    # Image sizes
    gs = max(int(model.stride.max()), 32)  # grid size (max stride)
    nl = model.model[
        -1].nl  # number of detection layers (used for scaling hyp['obj'])
    imgsz = check_img_size(opt.imgsz, gs,
                           floor=gs * 2)  # verify imgsz is gs-multiple

    # DP mode
    if cuda and RANK == -1 and torch.cuda.device_count() > 1:
        logging.warning(
            'DP not recommended, instead use torch.distributed.run for best DDP Multi-GPU results.\n'
            'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.'
        )
        model = torch.nn.DataParallel(model)

    # SyncBatchNorm
    if opt.sync_bn and cuda and RANK != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        LOGGER.info('Using SyncBatchNorm()')

    # Trainloader
    train_loader, dataset = create_dataloader(train_path,
                                              imgsz,
                                              batch_size // WORLD_SIZE,
                                              gs,
                                              single_cls,
                                              hyp=hyp,
                                              augment=True,
                                              cache=opt.cache_images,
                                              rect=opt.rect,
                                              rank=RANK,
                                              workers=workers,
                                              image_weights=opt.image_weights,
                                              quad=opt.quad,
                                              prefix=colorstr('train: '))
    mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
    nb = len(train_loader)  # number of batches
    assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}'

    # Process 0
    if RANK in [-1, 0]:
        val_loader = create_dataloader(val_path,
                                       imgsz,
                                       batch_size // WORLD_SIZE * 2,
                                       gs,
                                       single_cls,
                                       hyp=hyp,
                                       cache=opt.cache_images and not noval,
                                       rect=True,
                                       rank=-1,
                                       workers=workers,
                                       pad=0.5,
                                       prefix=colorstr('val: '))[0]

        if not resume:
            labels = np.concatenate(dataset.labels, 0)
            # c = torch.tensor(labels[:, 0])  # classes
            # cf = torch.bincount(c.long(), minlength=nc) + 1.  # frequency
            # model._initialize_biases(cf.to(device))
            if plots:
                plot_labels(labels, names, save_dir, loggers)

            # Anchors
            if not opt.noautoanchor:
                check_anchors(dataset,
                              model=model,
                              thr=hyp['anchor_t'],
                              imgsz=imgsz)
            model.half().float()  # pre-reduce anchor precision

    # DDP mode
    if cuda and RANK != -1:
        model = DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK)

    # Model parameters
    hyp['box'] *= 3. / nl  # scale to layers
    hyp['cls'] *= nc / 80. * 3. / nl  # scale to classes and layers
    hyp['obj'] *= (imgsz / 640)**2 * 3. / nl  # scale to image size and layers
    hyp['label_smoothing'] = opt.label_smoothing
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.class_weights = labels_to_class_weights(
        dataset.labels, nc).to(device) * nc  # attach class weights
    model.names = names

    # Start training
    t0 = time.time()
    nw = max(round(hyp['warmup_epochs'] * nb),
             1000)  # number of warmup iterations, max(3 epochs, 1k iterations)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    last_opt_step = -1
    maps = np.zeros(nc)  # mAP per class
    results = (0, 0, 0, 0, 0, 0, 0
               )  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
    scheduler.last_epoch = start_epoch - 1  # do not move
    scaler = amp.GradScaler(enabled=cuda)
    compute_loss = ComputeLoss(model)  # init loss class
    LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n'
                f'Using {train_loader.num_workers} dataloader workers\n'
                f'Logging results to {save_dir}\n'
                f'Starting training for {epochs} epochs...')
    for epoch in range(
            start_epoch, epochs
    ):  # epoch ------------------------------------------------------------------
        model.train()

        # Update image weights (optional)
        if opt.image_weights:
            # Generate indices
            if RANK in [-1, 0]:
                cw = model.class_weights.cpu().numpy() * (
                    1 - maps)**2 / nc  # class weights
                iw = labels_to_image_weights(dataset.labels,
                                             nc=nc,
                                             class_weights=cw)  # image weights
                dataset.indices = random.choices(
                    range(dataset.n), weights=iw,
                    k=dataset.n)  # rand weighted idx
            # Broadcast if DDP
            if RANK != -1:
                indices = (torch.tensor(dataset.indices)
                           if RANK == 0 else torch.zeros(dataset.n)).int()
                dist.broadcast(indices, 0)
                if RANK != 0:
                    dataset.indices = indices.cpu().numpy()

        # Update mosaic border
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = torch.zeros(3, device=device)  # mean losses
        if RANK != -1:
            train_loader.sampler.set_epoch(epoch)
        pbar = enumerate(train_loader)
        LOGGER.info(
            ('\n' + '%10s' * 7) %
            ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'labels', 'img_size'))
        if RANK in [-1, 0]:
            pbar = tqdm(pbar, total=nb)  # progress bar
        optimizer.zero_grad()
        for i, (
                imgs, targets, paths, _
        ) in pbar:  # batch -------------------------------------------------------------
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device, non_blocking=True).float(
            ) / 255.0  # uint8 to float32, 0-255 to 0.0-1.0

            # Warmup
            if ni <= nw:
                xi = [0, nw]  # x interp
                # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
                accumulate = max(
                    1,
                    np.interp(ni, xi, [1, nbs / batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x['lr'] = np.interp(ni, xi, [
                        hyp['warmup_bias_lr'] if j == 2 else 0.0,
                        x['initial_lr'] * lf(epoch)
                    ])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(
                            ni, xi, [hyp['warmup_momentum'], hyp['momentum']])

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5,
                                      imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]
                          ]  # new shape (stretched to gs-multiple)
                    imgs = nn.functional.interpolate(imgs,
                                                     size=ns,
                                                     mode='bilinear',
                                                     align_corners=False)

            # Forward
            with amp.autocast(enabled=cuda):
                pred = model(imgs)  # forward
                loss, loss_items = compute_loss(
                    pred, targets.to(device))  # loss scaled by batch_size
                if RANK != -1:
                    loss *= WORLD_SIZE  # gradient averaged between devices in DDP mode
                if opt.quad:
                    loss *= 4.

            # Backward
            scaler.scale(loss).backward()

            # Optimize
            if ni - last_opt_step >= accumulate:
                scaler.step(optimizer)  # optimizer.step
                scaler.update()
                optimizer.zero_grad()
                if ema:
                    ema.update(model)
                last_opt_step = ni

            # Log
            if RANK in [-1, 0]:
                mloss = (mloss * i + loss_items) / (i + 1
                                                    )  # update mean losses
                mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G'  # (GB)
                pbar.set_description(('%10s' * 2 + '%10.4g' * 5) %
                                     (f'{epoch}/{epochs - 1}', mem, *mloss,
                                      targets.shape[0], imgs.shape[-1]))
                loggers.on_train_batch_end(ni, model, imgs, targets, paths,
                                           plots)

            # end batch ------------------------------------------------------------------------------------------------

        # Scheduler
        lr = [x['lr'] for x in optimizer.param_groups]  # for loggers
        scheduler.step()

        if RANK in [-1, 0]:
            # mAP
            loggers.on_train_epoch_end(epoch)
            ema.update_attr(model,
                            include=[
                                'yaml', 'nc', 'hyp', 'names', 'stride',
                                'class_weights'
                            ])
            final_epoch = epoch + 1 == epochs
            if not noval or final_epoch:  # Calculate mAP
                results, maps, _ = val.run(data_dict,
                                           batch_size=batch_size //
                                           WORLD_SIZE * 2,
                                           imgsz=imgsz,
                                           model=ema.ema,
                                           single_cls=single_cls,
                                           dataloader=val_loader,
                                           save_dir=save_dir,
                                           save_json=is_coco and final_epoch,
                                           verbose=nc < 50 and final_epoch,
                                           plots=plots and final_epoch,
                                           loggers=loggers,
                                           compute_loss=compute_loss)

            # Update best mAP
            fi = fitness(np.array(results).reshape(
                1, -1))  # weighted combination of [P, R, [email protected], [email protected]]
            if fi > best_fitness:
                best_fitness = fi
            loggers.on_train_val_end(mloss, results, lr, epoch, best_fitness,
                                     fi)

            # Save model
            if (not nosave) or (final_epoch and not evolve):  # if save
                ckpt = {
                    'epoch':
                    epoch,
                    'best_fitness':
                    best_fitness,
                    'model':
                    deepcopy(de_parallel(model)).half(),
                    'ema':
                    deepcopy(ema.ema).half(),
                    'updates':
                    ema.updates,
                    'optimizer':
                    optimizer.state_dict(),
                    'wandb_id':
                    loggers.wandb.wandb_run.id if loggers.wandb else None
                }

                # Save last, best and delete
                torch.save(ckpt, last)
                if best_fitness == fi:
                    torch.save(ckpt, best)
                del ckpt
                loggers.on_model_save(last, epoch, final_epoch, best_fitness,
                                      fi)

        # end epoch ----------------------------------------------------------------------------------------------------
    # end training -----------------------------------------------------------------------------------------------------
    if RANK in [-1, 0]:
        LOGGER.info(
            f'{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.\n'
        )
        if not evolve:
            if is_coco:  # COCO dataset
                for m in [last, best
                          ] if best.exists() else [last]:  # speed, mAP tests
                    results, _, _ = val.run(
                        data_dict,
                        batch_size=batch_size // WORLD_SIZE * 2,
                        imgsz=imgsz,
                        model=attempt_load(m, device).half(),
                        iou_thres=
                        0.7,  # NMS IoU threshold for best pycocotools results
                        single_cls=single_cls,
                        dataloader=val_loader,
                        save_dir=save_dir,
                        save_json=True,
                        plots=False)
            # Strip optimizers
            for f in last, best:
                if f.exists():
                    strip_optimizer(f)  # strip optimizers
        loggers.on_train_end(last, best, plots)

    torch.cuda.empty_cache()
    return results