Пример #1
0
def point_2(fit, fit_summary):
    posterior_tau_task_6 = fit.extract('tau')['tau']
    task_6_mean = np.mean(posterior_tau_task_6)
    task_6_hdi = hdi(posterior_tau_task_6)

    posterior_tau_task_5 = pickle.load(
        open('05-assignment/tau_posterior_for_assignment_6.pkl', 'rb'))['tau']
    task_5_mean = np.mean(posterior_tau_task_5)
    task_5_hdi = hdi(posterior_tau_task_5)

    tau_diff = posterior_tau_task_6 - posterior_tau_task_5
    diff_mean = np.mean(tau_diff)
    diff_hdi = hdi(tau_diff)
    diff_effect = tau_diff / np.std(tau_diff)

    print(f'τ difference mean: {diff_mean:.2f}, HDI: {diff_hdi}')
    print(
        f'Effect on τ mean: {np.mean(diff_effect):.2f}, HDI: {hdi(diff_effect)}'
    )

    plt.figure()
    plot_dist_mean_hdi(posterior_tau_task_6, color='b', label='Task 6')
    plot_dist_mean_hdi(posterior_tau_task_5, color='r', label='Task 5')

    plt.legend()
    sns.despine(left=True)
    plt.xlabel('Posterior τ')
    plt.ylabel('Probability density')
    plt.savefig('06-assignment/normal/posterior_tau_comparison.png')
Пример #2
0
def point_1(fit, fit_summary):
    adult_posterior_mu = fit.extract('mu[1]')['mu[1]']
    child_posterior_correction = fit.extract('mu[2]')['mu[2]']
    child_posterior_mu = adult_posterior_mu + child_posterior_correction

    adult_mean = np.mean(adult_posterior_mu)
    child_mean = np.mean(child_posterior_mu)
    diff_mean = np.mean(child_posterior_correction)

    adult_hdi = hdi(adult_posterior_mu, 0.95)
    child_hdi = hdi(child_posterior_mu, 0.95)
    diff_hdi = hdi(child_posterior_correction, 0.95)

    child_correction_effect_size = child_posterior_correction / np.std(child_posterior_correction)

    print(f'Adult HDI: {adult_hdi}')
    print(f'Child HDI: {child_hdi}')
    print(f'Difference HDI: {diff_hdi}')

    plt.figure()
    sns.distplot(adult_posterior_mu, bins=20, norm_hist=True, label='Adult log posterior μ')
    sns.distplot(child_posterior_mu, bins=20, norm_hist=True, label='Child log posterior μ')
    plt.axvline(adult_mean, color='b', lw=2, label='Adult mean')
    plt.axvline(adult_hdi[0], color='b', lw=2, linestyle='--', label='Adult 95% HDI')
    plt.axvline(adult_hdi[1], color='b', lw=2, linestyle='--')
    plt.axvline(child_mean, color='r', lw=2, label='Child mean')
    plt.axvline(child_hdi[0], color='r', lw=2, linestyle='--', label='Child 95% HDI')
    plt.axvline(child_hdi[1], color='r', lw=2, linestyle='--')

    plt.legend()
    sns.despine(left=True)
    plt.xlabel('Posterior log reaction time')
    plt.ylabel('Probability density')
    plt.xlim(5.4, 6.4)
    plt.savefig('06-assignment/student/posterior_log_reaction_times.png')

    plt.figure()
    sns.distplot(child_posterior_correction, bins=20, norm_hist=True, label='Posterior difference')
    plt.axvline(diff_mean, color='b', lw=2, label='Difference mean')
    plt.axvline(diff_hdi[0], color='b', lw=2, linestyle='--', label='Difference 95% HDI')
    plt.axvline(diff_hdi[1], color='b', lw=2, linestyle='--')

    plt.legend()
    sns.despine(left=True)
    plt.xlabel('Difference in posterior log reaction times')
    plt.ylabel('Probability density')
    plt.xlim(-0.1, 0.9)
    plt.savefig('06-assignment/student/posterior_log_reaction_difference.png')

    plt.figure()
    plot_dist_mean_hdi(child_correction_effect_size, color='b', label='Effect size')

    plt.legend()
    sns.despine(left=True)
    plt.xlabel('Effect size')
    plt.ylabel('Probability density')
    plt.xlim(-0.5, 9)
    plt.savefig('06-assignment/student/effect_size.png')
Пример #3
0
def point_2(fit, summary, fit_model):
    num_posterior_samples = (fit.sim['iter'] -
                             fit.sim['warmup']) * fit.sim['chains']
    #random_new_person_index = np.random.randint(num_posterior_samples)

    num_new_people = 10000
    random_person_samples = np.zeros((num_new_people, ))
    for i in range(num_new_people):
        new_person_mu = fit.extract('mu')['mu'][np.random.randint(
            num_posterior_samples)]
        new_person_tau = fit.extract('tau')['tau'][np.random.randint(
            num_posterior_samples)]
        new_person_sigma = fit.extract('sigma')['sigma'][np.random.randint(
            num_posterior_samples)]

        new_person_theta = np.random.normal(new_person_mu, new_person_tau)
        sample_log_reaction_times = np.random.normal(new_person_theta,
                                                     new_person_sigma, (1, ))
        #sample_reaction_times = np.exp(sample_log_reaction_times)
        random_person_samples[i] = np.exp(sample_log_reaction_times)

    random_person_hdi = hdi(random_person_samples, 0.95)
    print(
        f'Expected value of randomly drawn people: {np.mean(random_person_samples):.2f}'
    )
    print(f'HDI of randomly drawn people samples: {random_person_hdi}')

    plt.figure()
    sns.distplot(random_person_samples, bins=20, norm_hist=True)
    plt.plot(random_person_hdi, [0, 0], 'k', linewidth=5)
    plt.savefig('05-assignment/point_2.png')

    pickle.dump(np.log(random_person_samples),
                open('05-assignment/random_person_samples.pkl', 'wb'))
Пример #4
0
def plot_dist_mean_hdi(data, label='', color='k'):
    data_hdi = hdi(data)
    sns.distplot(data, bins=20, norm_hist=True, label=f'{label} posterior')
    plt.axvline(np.mean(data), color=color, lw=2, label=f'{label} mean')
    plt.axvline(data_hdi[0],
                color=color,
                lw=2,
                linestyle='--',
                label=f'{label} 95% HDI')
    plt.axvline(data_hdi[1], color=color, lw=2, linestyle='--')
Пример #5
0
def point_1(data):
    model = load_stan_model('05-assignment/hierarchical_model.stan', True)

    fit, summary, fit_model = fit_stan_model(model,
                                             data,
                                             iter=10000,
                                             warmup=1000)
    the_dude_posterior = fit.extract('exp_theta')['exp_theta'][:, 3]
    mu_posterior = fit.extract('exp_mu')['exp_mu']
    random_posteriors = fit.extract('exp_theta')['exp_theta'][:, [10, 1]]
    sns.distplot(the_dude_posterior,
                 bins=30,
                 norm_hist=True,
                 label='The Dude θ')
    sns.distplot(mu_posterior, bins=30, norm_hist=True, label='Group θ')
    sns.distplot(random_posteriors[:, 0], bins=30, norm_hist=True)
    sns.distplot(random_posteriors[:, 1], bins=30, norm_hist=True)
    print(f'The Dude\'s mean: {np.mean(the_dude_posterior):.2f}')
    print(f'The group mean: {np.mean(mu_posterior):.2f}')
    plt.axvline(np.mean(the_dude_posterior),
                color='b',
                lw=2,
                linestyle='--',
                label='The Dude mean')
    plt.axvline(np.mean(mu_posterior),
                color='r',
                lw=2,
                linestyle='--',
                label='Group mean')
    the_dude_hdi = hdi(the_dude_posterior, 0.95)
    mu_hdi = hdi(mu_posterior, 0.95)
    print(f'The Dude\'s HDI: {the_dude_hdi}')
    print(f'The group HDI: {mu_hdi}')
    plt.legend()
    sns.despine()
    plt.savefig('05-assignment/point_1.png')

    pickle.dump(fit.extract('tau'),
                open('05-assignment/tau_posterior_for_assignment_6.pkl', 'wb'))

    return fit, summary, fit_model
Пример #6
0
def point_2(fit, fit_summary):
    posterior_tau_task_6 = fit.extract('tau')['tau']
    task_6_mean = np.mean(posterior_tau_task_6)
    task_6_hdi = hdi(posterior_tau_task_6)

    posterior_tau_task_5 = pickle.load(open('05-assignment/tau_posterior_for_assignment_6.pkl', 'rb'))['tau']
    task_5_mean = np.mean(posterior_tau_task_5)
    task_5_hdi = hdi(posterior_tau_task_5)

    tau_diff = posterior_tau_task_6 - posterior_tau_task_5
    diff_mean = np.mean(tau_diff)
    diff_hdi = hdi(tau_diff)

    plt.figure()
    plot_dist_mean_hdi(posterior_tau_task_6, color='b', label='Task 6')
    plot_dist_mean_hdi(posterior_tau_task_5, color='r', label='Task 5')

    plt.legend()
    sns.despine(left=True)
    plt.xlabel('Posterior τ')
    plt.ylabel('Probability density')
    plt.savefig('06-assignment/student/posterior_tau_comparison.png')
Пример #7
0
def point_2():
    model = load_stan_model('04-assignment/model_3.stan')

    y = [1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1]
    z = [1, 0, 0, 0, 0, 0, 0, 1, 1, 0]

    data_y = {'N': len(y), 'y': y}
    data_z = {'N': len(z), 'y': z}

    fit_y, summary_y, _ = fit_stan_model(model,
                                         data_y,
                                         iter=iterations,
                                         seed=random_seed)
    fit_z, summary_z, _ = fit_stan_model(model,
                                         data_z,
                                         iter=iterations,
                                         seed=random_seed)

    hdi_y = hdi(fit_y['theta'])
    hdi_z = hdi(fit_z['theta'])
    print(
        f'Expected probability for getting heads with data y: {summary_y.loc["theta", "mean"]:.2f}'
    )
    print(f'HDI of y: {hdi_y[0]:.2f} - {hdi_y[1]:.2f}')
    print(f'Probability of θ > 0.5: {np.mean(fit_y["theta"] > 0.5)}')

    d_theta = fit_y['theta'] - fit_z['theta']
    hdi_d_theta = hdi(d_theta)

    probability_higher, point_of_even = compare_distributions(
        fit_y['theta'], fit_z['theta'])
    plt.figure()
    sns.distplot(fit_y['theta'], bins=60, hist=True, label='θ_y')
    sns.distplot(fit_z['theta'], bins=60, hist=True, label='θ_z')
    plt.plot(hdi_y, [0, 0], 'b', alpha=0.5, linewidth=5, label='y 95% HDI')
    plt.plot(hdi_z, [0, 0], 'r', alpha=0.5, linewidth=5, label='z 95% HDI')
    plt.axvline(point_of_even, color='r', linestyle='--', alpha=0.5)
    plt.xlabel('θ')
    plt.ylabel('Density')
    plt.legend()
    plt.tight_layout()
    sns.despine()
    plt.savefig('04-assignment/comparison.png')

    print(
        f'Expected probability that y and z are drawn from the same coin: {1 - np.mean(d_theta > 0):.2f}'
    )
    print(
        f'True positive rate of choosing coin y: {1 - probability_higher:.2f}')
    print(
        f'HDI of difference between y and z: {hdi_d_theta[0]:.2f} - {hdi_d_theta[1]:.2f}'
    )

    plt.figure()
    sns.distplot(d_theta, hist=True)
    plt.plot(hdi_d_theta, [0, 0], 'k', linewidth=5, label='95% HDI')
    plt.xlabel('dθ')
    plt.ylabel('Density')
    plt.legend()
    plt.tight_layout()
    sns.despine()
    plt.savefig('04-assignment/figure-point-2.png')

    plt.show()