Пример #1
0
    def _apply_gradients_to_shared_memory_vars(self, grads, shared_vars):
        opt_st = self.opt_st
        self.flat_grads = np.empty(shared_vars.size, dtype=ctypes.c_float)

        #Flatten grads
        offset = 0
        for g in grads:
            self.flat_grads[offset:offset + g.size] = g.reshape(-1)
            offset += g.size
        g = self.flat_grads

        shared_vars.step.value += 1
        T = shared_vars.step.value

        if self.optimizer_type == "adam" and self.optimizer_mode == "shared":
            p = np.frombuffer(shared_vars.vars, ctypes.c_float)
            p_size = shared_vars.size
            m = np.frombuffer(opt_st.ms, ctypes.c_float)
            v = np.frombuffer(opt_st.vs, ctypes.c_float)
            opt_st.lr.value = 1.0 * opt_st.lr.value * (1 - self.b2**T)**0.5 / (
                1 - self.b1**T)

            apply_grads_adam(m, v, g, p, p_size, opt_st.lr.value, self.b1,
                             self.b2, self.e)

        elif self.optimizer_type == "adamax" and self.optimizer_mode == "shared":
            beta_1 = .9
            beta_2 = .999
            lr = opt_st.lr.value

            p = np.frombuffer(shared_vars.vars, ctypes.c_float)
            p_size = shared_vars.size
            m = np.frombuffer(opt_st.ms, ctypes.c_float)
            u = np.frombuffer(opt_st.vs, ctypes.c_float)

            apply_grads_adamax(m, u, g, p, p_size, lr, beta_1, beta_2, T)

        else:  #local or shared rmsprop/momentum
            lr = self.decay_lr()
            if (self.optimizer_mode == "local"):
                m = opt_st
            else:  #shared
                m = np.frombuffer(opt_st.vars, ctypes.c_float)

            p = np.frombuffer(shared_vars.vars, ctypes.c_float)
            p_size = shared_vars.size
            _type = 0 if self.optimizer_type == "momentum" else 1

            apply_grads_mom_rmsprop(m, g, p, p_size, _type, lr, self.alpha,
                                    self.e)
Пример #2
0
    def _apply_gradients_to_shared_memory_vars(self, grads, opt_st):
            #Flatten grads
            offset = 0
            for g in grads:
                self.flat_grads[offset:offset + g.size] = g.reshape(-1)
                offset += g.size
            g = self.flat_grads
            
            if self.optimizer_type == "adam" and self.optimizer_mode == "shared":
                p = np.frombuffer(self.learning_vars.vars, ctypes.c_float)
                p_size = self.learning_vars.size
                m = np.frombuffer(opt_st.ms, ctypes.c_float)
                v = np.frombuffer(opt_st.vs, ctypes.c_float)
                T = self.global_step.value() 
                opt_st.lr.value =  1.0 * opt_st.lr.value * (1 - self.b2**T)**0.5 / (1 - self.b1**T) 
                
                apply_grads_adam(m, v, g, p, p_size, opt_st.lr.value, self.b1, self.b2, self.e)

            elif self.optimizer_type == "adamax" and self.optimizer_mode == "shared":
                beta_1 = .9
                beta_2 = .999
                lr = opt_st.lr.value

                p = np.frombuffer(self.learning_vars.vars, ctypes.c_float)
                p_size = self.learning_vars.size
                m = np.frombuffer(opt_st.ms, ctypes.c_float)
                u = np.frombuffer(opt_st.vs, ctypes.c_float)
                T = self.global_step.value()

                apply_grads_adamax(m, u, g, p, p_size, lr, beta_1, beta_2, T)
                    
            else: #local or shared rmsprop/momentum
                lr = self.decay_lr()
                if (self.optimizer_mode == "local"):
                    m = opt_st
                else: #shared 
                    m = np.frombuffer(opt_st.vars, ctypes.c_float)
                
                p = np.frombuffer(self.learning_vars.vars, ctypes.c_float)
                p_size = self.learning_vars.size
                _type = 0 if self.optimizer_type == "momentum" else 1
                
                #print "BEFORE", "RMSPROP m", m[0], "GRAD", g[0], self.flat_grads[0], self.flat_grads2[0]
                apply_grads_mom_rmsprop(m, g, p, p_size, _type, lr, self.alpha, self.e)