Пример #1
0
    def run_worker(self):
        ds_1, mesh_1, candidates = self.inputs
        dists = np.asarray([parent.load() for parent in self.parents()])
        min_idx = np.argmin(dists)
        ds_2, mesh_2 = candidates[min_idx * 2], candidates[min_idx * 2 + 1]

        pc1 = SamplerTask(self.fs, (ds_1, mesh_1)).load()
        pc2 = SamplerTask(self.fs, (ds_2, mesh_2)).load()
        T, _, _ = icp.icp(pc1, pc2)
        return (min_idx, mesh_2, T)
Пример #2
0
def calculate_metrics(models,
                      batches,
                      pcl_gt_scaled,
                      pred_scaled,
                      indices=None):

    if FLAGS.visualize:
        iters = range(batches)
    else:
        iters = tqdm(range(batches))

    epoch_chamfer = 0.
    epoch_forward = 0.
    epoch_backward = 0.
    epoch_emd = 0.

    ph_gt = tf.placeholder(tf.float32, (BATCH_SIZE, NUM_EVAL_POINTS, 3),
                           name='ph_gt')
    ph_pr = tf.placeholder(tf.float32, (BATCH_SIZE, NUM_EVAL_POINTS, 3),
                           name='ph_pr')

    dists_forward, dists_backward, chamfer_distance = get_chamfer_metrics(
        ph_gt, ph_pr)
    emd = get_emd_metrics(ph_gt, ph_pr, BATCH_SIZE, NUM_EVAL_POINTS)

    for cnt in iters:
        start = time.time()

        if FLAGS.dataset == 'shapenet':
            batch_ip, batch_gt = fetch_batch_shapenet(models, indices, cnt,
                                                      BATCH_SIZE)
        elif FLAGS.dataset == 'pix3d':
            batch_ip, batch_gt = fetch_batch_pix3d(models, cnt, BATCH_SIZE)

        _gt_scaled, _pr_scaled = sess.run([pcl_gt_scaled, pred_scaled],
                                          feed_dict={
                                              pcl_gt: batch_gt,
                                              img_inp: batch_ip
                                          })

        _pr_scaled_icp = []

        for i in xrange(BATCH_SIZE):
            rand_indices = np.random.permutation(NUM_POINTS)[:NUM_EVAL_POINTS]
            T, _, _ = icp(_gt_scaled[i],
                          _pr_scaled[i][rand_indices],
                          tolerance=1e-10,
                          max_iterations=1000)
            _pr_scaled_icp.append(
                np.matmul(_pr_scaled[i][rand_indices], T[:3, :3]) - T[:3, 3])

        _pr_scaled_icp = np.array(_pr_scaled_icp).astype('float32')

        C, F, B, E = sess.run(
            [chamfer_distance, dists_forward, dists_backward, emd],
            feed_dict={
                ph_gt: _gt_scaled,
                ph_pr: _pr_scaled_icp
            })

        epoch_chamfer += C.mean() / batches
        epoch_forward += F.mean() / batches
        epoch_backward += B.mean() / batches
        epoch_emd += E.mean() / batches

        if FLAGS.visualize:
            for i in xrange(BATCH_SIZE):
                print '-' * 50
                print C[i], F[i], B[i], E[i]
                print '-' * 50
                cv2.imshow('', batch_ip[i])

                print 'Displaying Gt scaled 1k'
                show3d_balls.showpoints(_gt_scaled[i], ballradius=3)
                print 'Displaying Pr scaled icp 1k'
                show3d_balls.showpoints(_pr_scaled_icp[i], ballradius=3)

        if cnt % 10 == 0:
            print '%d / %d' % (cnt, batches)

    if not FLAGS.visualize:
        log_values(csv_path, epoch_chamfer, epoch_forward, epoch_backward,
                   epoch_emd)

    return
Пример #3
0
 def run_worker(self):
     pc1, pc2 = [parent.load() for parent in self.parents()]
     T, _, _ = icp.icp(pc1, pc2)
     return T
Пример #4
0
def register_imgs(img1_rgb,
                  img2_rgb,
                  img1_depth,
                  img2_depth,
                  scale=1.,
                  filter_pts_frac=1.,
                  partial_set_frac=1.,
                  img1_pts=None,
                  img2_pts=None,
                  plot=False):
    """
    Perform global image registration given the RGB and depth of two images by

        1. Performing global registration by extracting keypoints from RGB images
        2. Performing local registration by ICP

    :param img1_rgb: (h, w, 3) image
    :param img2_rgb: (h, w, 3) image
    :param img1_depth: (h, w) depth image
    :param img2_depth: (h, w) depth image
    :param scale: scaling factor for loading point clouds (see in-depth explanation in depth_to_voxel() function)
    :param filter_pts_frac: fraction of all the points to use when performing ICP. Must be in range (0, 1], though
                            choosing a good value would depend on the density of the depth we are working with.
    :param partial_set_frac: fraction of expected overlap between the two images when performing ICP. Must be in
                             range (0, 1]. In the case of video data, this value should usually be close to 1,
                             though maybe not exactly 1, since we can expect a high overlap between frames of a
                             video. Alternatively, if we are taking one frame from every couple of frames, this
                             value should be slightly lower.
    :param img1_pts: (h x w, 3) points, optional. If this is given, scale is not needed for image 1.
    :param img2_pts: (h x w, 3) points, optional. If this is given, scale is not needed for image 1.
    :param plot: True to draw matches, False otherwise
    :return: image 1 point cloud,
             image 2 point cloud,
             4x4 transformation matrix that maps image 1 to image 2
    """
    # convert depth to point cloud
    if img1_pts is None:
        img1_pts = depth_to_voxel(img1_depth, scale=scale)
    if img2_pts is None:
        img2_pts = depth_to_voxel(img2_depth, scale=scale)

    # find RGB matches
    kp1, kp2, matches = generate_keypoints_and_match(img1_rgb, img2_rgb)
    matches = np.array([(m.queryIdx, m.trainIdx) for m in matches])
    _, matches = ransac_loop(img1_rgb, img2_rgb, kp1, kp2, matches)

    # draw matches
    if plot:
        np_kp1 = np.array([(kp.pt[1], kp.pt[0]) for kp in kp1])
        np_kp2 = np.array([(kp.pt[1], kp.pt[0]) for kp in kp2])
        draw_matches(img1_rgb,
                     img2_rgb,
                     np_kp1,
                     np_kp2,
                     matches,
                     title="Matches after RANSAC")

    # get 3D coordinates of matches
    kp1, kp2 = get_key_points_from_matches(kp1, kp2, matches)
    img1_kp = [(p[0], p[1], img1_depth[p[1], p[0]]) for p in kp1]
    img2_kp = [(p[0], p[1], img2_depth[p[1], p[0]]) for p in kp2]

    # remove 0 entries
    zipped = zip(img1_kp, img2_kp)
    zipped = [z for z in zipped if z[0][2] != 0 and z[1][2] != 0]
    img1_kp, img2_kp = zip(*zipped)

    img1_kp = np.array(img1_kp)
    img2_kp = np.array(img2_kp)

    # find transformation
    h = homo_rigid_transform_3d(img1_kp, img2_kp)
    img2_new = get_transformed_points(img1_pts, h)

    # filter points (since we have a dense point cloud)
    pts_idx1 = np.random.choice(img2_new.shape[0],
                                int(img2_new.shape[0] * filter_pts_frac),
                                replace=False)
    pts_idx2 = np.random.choice(img2_pts.shape[0],
                                int(img2_pts.shape[0] * filter_pts_frac),
                                replace=False)

    # ICP for fine registration
    t, _, iter_to_converge = icp(img2_new[pts_idx1],
                                 img2_pts[pts_idx2],
                                 tolerance=0.001,
                                 max_iterations=100,
                                 partial_set_size=partial_set_frac)

    # return point clouds and transformation
    return img1_pts, img2_pts, np.dot(h, t)
Пример #5
0
    cam_params = np.loadtxt(view_path)
    idx = int(float(file_list_sub[2][:-4]))
    cam_params = cam_params[idx]
    cam_mat, cam_pos = camera_info(cam_params)
    pcl_pred = np.dot(pcl_pred, cam_mat) + cam_pos
    x = np.expand_dims(pcl_pred[:, 0], axis=1)
    y = np.expand_dims(pcl_pred[:, 1], axis=1)
    z = np.expand_dims(pcl_pred[:, 2], axis=1)
    pcl_pred = np.concatenate((-y, -z, x), axis=1)
    pcl_pred = pcl_pred / 0.57
    # load gt
    gt_path = data_dir + 'ShapeNet_pointclouds/' + class_id + '/' + file_list_sub[
        1] + '/pointcloud_1024.npy'
    pcl_gt = np.load(gt_path)

    # Perform Scaling
    pcl_gt_scaled, pcl_pred_scaled = sess.run([xyz3_scaleds, xyz4_scaleds],
                                              feed_dict={
                                                  xyz1: pcl_gt,
                                                  xyz2: pcl_pred
                                              })

    T, _, _ = icp(pcl_gt_scaled,
                  pcl_pred_scaled,
                  tolerance=1e-10,
                  max_iterations=1000)
    pcl_pred_icp = np.matmul(pcl_pred_scaled, T[:3, :3]) - T[:3, 3]

    np.savetxt(eval_path + file_list[19:-4] + '_pred.npy', pcl_pred_icp)
    np.savetxt(eval_path + file_list[19:-4] + '_gt.npy', pcl_gt_scaled)
Пример #6
0
	for cnt in iters:
		start = time.time()

		batch_ip, batch_gt = fetch_batch_shapenet(models, indices, cnt, BATCH_SIZE)

		_gt_scaled, _pr_scaled = sess.run(
			[pcl_gt_scaled, pred_scaled], 
			feed_dict={pcl_in:batch_ip, pcl_gt:batch_gt, img_inp:batch_img}
		)

		_pr_scaled_icp = []

		for i in xrange(BATCH_SIZE):
			rand_indices = np.random.permutation(NUM_POINTS)[:NUM_EVAL_POINTS]
			T, _, _ = icp(_gt_scaled[i], _pr_scaled[i][rand_indices], tolerance=1e-10, max_iterations=1000)
			_pr_scaled_icp.append(np.matmul(_pr_scaled[i][rand_indices], T[:3,:3]) - T[:3, 3])

		_pr_scaled_icp = np.array(_pr_scaled_icp).astype('float32')

		C,F,B,E = sess.run(
			[chamfer_distance, dists_forward, dists_backward, emd], 
			feed_dict={ph_gt:_gt_scaled, ph_pr:_pr_scaled_icp}
		)

		epoch_chamfer += C.mean() / batches
		epoch_forward += F.mean() / batches
		epoch_backward += B.mean() / batches
		epoch_emd += E.mean() / batches

		if FLAGS.visualize: