############################################################################## ############################################################################## csv_path = "../csv/" in_csv_names = [ "r125-density-iter" + str(i) + "-results.csv" for i in range(1, iternum + 1) ] # Read files df_csvs = [ pd.read_csv(csv_path + in_csv_name, index_col=0) for in_csv_name in in_csv_names ] dfs = [ prepare_df_density(df_csv, R125, liquid_density_threshold)[0] for df_csv in df_csvs ] def main(): #seaborn.set_palette("Set2") seaborn.set_palette("colorblind") # Create a dataframe with one row per parameter set dfs_paramsets = [prepare_df_density_errors(df, R125) for df in dfs] name = "mape_liq_density" fig, ax = plt.subplots() axins = inset_axes(ax, width="100%",
] df_csv = pd.concat(df_csvs) df_vle = prepare_df_vle(df_csv, R125) # Read liquid density files max_density_iter = 4 in_csv_names = [ "r125-density-iter" + str(i) + "-results.csv" for i in range(1, max_density_iter + 1) ] df_csvs = [ pd.read_csv(csv_path + in_csv_name, index_col=0) for in_csv_name in in_csv_names ] df_csv = pd.concat(df_csvs) df_all, df_liquid, df_vapor = prepare_df_density(df_csv, R125, liquid_density_threshold) ### Fit GP models to VLE data # Create training/test set param_names = list(R125.param_names) + ["temperature"] property_names = ["sim_liq_density", "sim_vap_density", "sim_Pvap", "sim_Hvap"] vle_models = {} for property_name in property_names: # Get train/test x_train, y_train, x_test, y_test = shuffle_and_split( df_vle, param_names, property_name, shuffle_seed=gp_shuffle_seed) # Fit model vle_models[property_name] = run_gpflow_scipy( x_train,