def __getitem__(self, index): datafiles = self.files[index] image = Image.open(datafiles["img"]).convert('RGB') label = Image.open(datafiles["label"]) size = np.asarray(image).shape name = datafiles["name"] composed_transforms = transforms.Compose([ tr.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), tr.ToTensor()]) sample = {'image': image, 'label': label} sampled = composed_transforms(sample) image, label = sampled['image'], sampled['label'] return image, label, np.array(size), name
def __getitem__(self, index): datafiles = self.files[index] image = Image.open(datafiles["img"]).convert('RGB') label = Image.open(datafiles["label"]) size = np.asarray(image).shape name = datafiles["name"] composed_transforms = transforms.Compose([ tr.RandomHorizontalFlip(), # tr.RandomRotate(180), tr.RandomScaleCrop(base_size=self.base_size, crop_size=self.crop_size, fill=255), tr.RandomGaussianBlur(), tr.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), tr.ToTensor()]) sample = {'image': image, 'label': label} sampled = composed_transforms(sample) image, label = sampled['image'], sampled['label'] return image, label, np.array(size), name