def bootstrap(bootstrap_indexes, BG_img, params, trf, trl, trfc, svm): folder = params["folder"] marginX = params["marginX"] marginY = params["marginY"] neg_weight = params["neg_weight"] method = params["method"] feature = params["feature"] train_features = trf train_labels = trl train_feature_count = trfc print "Starting bootstrapping..." # Bootstrapping for i in tqdm(range(len(bootstrap_indexes))): img = img_read(folder, bootstrap_indexes[i]) #motion_img = read_motion_image(folder, bootstrap_indexes[i], BG_img) bboxes = read_bboxes(folder, bootstrap_indexes[i]) #detections = detect_vehicles(img, motion_img, svm, params) detections = detect_vehicles(img, None, svm, params) hard_negatives = [] for j in detections: if overlaps(j, bboxes) == -1: hard_negatives.append(j) height, width = img.shape hard_negatives = add_bbox_margin(hard_negatives, marginX, marginY, height, width) for j in hard_negatives: img_cut = img[j[0]:j[1], j[2]:j[3]] #motion_img_cut = motion_img[j[0]:j[1], j[2]:j[3]] train_feature_count += 1 #train_features.append(extract(img_cut, motion_img_cut, method, feature)) train_features.append(extract(img_cut, None, method, feature)) train_labels.append(-1) print "Bootstrap finished." return train_features, train_labels
def sw_search(test_indexes, BG_img, params, svm): print "Performing sliding window search" folder = params["folder"] svm_AP = [0] * len(test_indexes) svm_PR = [] svm_RC = [] k = 0 for i in tqdm(range(len(test_indexes))): img = img_read(folder, test_indexes[i]) #motion_img = read_motion_image(folder, test_indexes[i], BG_img) bboxes = read_bboxes(folder, test_indexes[i]) #detections = detect_vehicles(img, motion_img, svm, params) detections = detect_vehicles(img, None, svm, params) detections = non_max_suppression(detections, 0.01) #index = 0 for j in detections: img = cv2.rectangle(img, (j[2], j[0]), (j[3], j[1]), (0, 255, 0), 1) cv2.putText(img, str(j[4])[:5], (int(j[2]), int(j[0])), cv2.FONT_HERSHEY_SIMPLEX, 0.4, (0, 255, 255)) filename = "detection{:0>5d}.png".format(k) cv2.imwrite(filename, img) svm_AP[k], pr, rc = compute_detection_AP(detections, bboxes) k += 1 svm_PR.append(pr) svm_RC.append(rc) print "Sliding window search is done!" return svm_AP, svm_PR, svm_RC
def sw_search(test_indexes, BG_img, params, svm): print "Performing sliding window search" folder = params["folder"] svm_AP = [0] * len(test_indexes) svm_PR = [] svm_RC = [] k = 0 for i in tqdm(range(len(test_indexes))): img = img_read(folder, test_indexes[i]) #motion_img = read_motion_image(folder, test_indexes[i], BG_img) bboxes = read_bboxes(folder, test_indexes[i]) #detections = detect_vehicles(img, motion_img, svm, params) detections = detect_vehicles(img, None, svm, params) detections = non_max_suppression(detections, 0.01) #index = 0 for j in detections: img = cv2.rectangle(img,(j[2],j[0]),(j[3],j[1]),(0,255,0),1) cv2.putText(img, str(j[4])[:5], (int(j[2]),int(j[0])), cv2.FONT_HERSHEY_SIMPLEX, 0.4, (0,255,255)) filename = "detection{:0>5d}.png".format(k) cv2.imwrite(filename, img) svm_AP[k], pr, rc = compute_detection_AP(detections, bboxes) k += 1 svm_PR.append(pr) svm_RC.append(rc) print "Sliding window search is done!" return svm_AP, svm_PR, svm_RC