def main(): # Test case: Test the ABS model with a single process and 1500 loans on pro rata mode # Assets are from 'Loans.csv' # Liabilities: # tranches.addTranche('StandardTranche', '0.8', '0.05', '1') # tranches.addTranche('StandardTranche', '0.2', '0.08', '2') # Run the Waterfall 1 time to get a CSV output of the transactions # on 'liabilities_prorata_1500loans.csv' ############################################### # Set logging level logging.getLogger().setLevel(logging.DEBUG) ############################################### loans1500 = LoanPool( loansImportCSV('MA4176_31418DUA8_COLLAT_ISSUANCE.csv')) tranches = StructuredSecurities(loans1500.totalPrincipal()) tranches.addTranche('StandardTranche', '0.5', '0.02500', '1') tranches.addTranche('StandardTranche', '0.5', '0.03125', '2') print(f'Pro Rata mode:') tranches.setMode('Pro Rata') ledger, tranchesMetrics = simulateWaterfall(loans1500, tranches, 1) spvExportCSV(ledger, 'liabilities_prorata_FannieMaeData.csv') for tranche in tranches.tranches: print(f'{tranche}\n' f' IRR = {tranche.r}\n' f' DIRR = {tranche.dirr}\n' f' DIRR(letter) = {tranche.dirrLetter}\n' f' AL = {tranche.al}')
def main(): # Test case: Test the ABS model with a single process and 1500 loans on sequential mode # Assets are from 'Loans.csv' # Liabilities: # tranches.addTranche('StandardTranche', '0.8', '0.05', '1') # tranches.addTranche('StandardTranche', '0.2', '0.08', '2') # Run the Waterfall 1 time to get a CSV output of the transactions # on 'liabilities_sequential_1500loans.csv' ############################################### # Set logging level logging.getLogger().setLevel(logging.DEBUG) ############################################### loans1500 = LoanPool(loansImportCSV('Loans.csv')) tranches = StructuredSecurities(loans1500.totalPrincipal()) tranches.addTranche('StandardTranche', '0.8', '0.05', '1') tranches.addTranche('StandardTranche', '0.2', '0.08', '2') tranches.setMode('Sequential') ledger, tranchesMetrics = simulateWaterfall(loans1500, tranches, 1) spvExportCSV(ledger, 'liabilities_sequential_1500loans.csv') for tranche in tranches.tranches: print(f'{tranche}\n' f' IRR = {tranche.r}\n' f' DIRR = {tranche.dirr}\n' f' DIRR(letter) = {tranche.dirrLetter}\n' f' AL = {tranche.al}')
def main(): # Test case: Test the ABS model with Monte Carlo on 1500 loans, on multiprocessing, sequential mode # Assets are from Loans.csv # Liabilities: originally start with these below tranches # tranches.addTranche('StandardTranche', '0.8', '0.05', '1') # tranches.addTranche('StandardTranche', '0.2', '0.08', '2') # Optimize tranches' rates based on a yield curve to get diff = 50 bps or less. # Print optimized rate on screen and run the Waterfall 1 time to get a CSV output of the transactions # on 'liabilities_sequential_montecarlo_multiprocessing_1500loans.csv' ############################################### # Set logging level logging.getLogger().setLevel(logging.DEBUG) random.seed(1) ############################################### loansFannie = LoanPool( loansImportCSV('MA4176_31418DUA8_COLLAT_ISSUANCE.csv')) tranches = StructuredSecurities(loansFannie.totalPrincipal()) tranches.addTranche('StandardTranche', '0.5', '0.02500', '1') tranches.addTranche('StandardTranche', '0.5', '0.03125', '2') tranches.setMode('Sequential') newTrancheRate = runMonte(loansFannie, tranches, 0.005, 2000, 20) print(f'My new tranche rate is = {newTrancheRate}') # Run the Waterfall once to generate CSV output of transactions. tranches = StructuredSecurities(loansFannie.totalPrincipal()) tranches.addTranche('StandardTranche', '0.5', newTrancheRate[0], '1') tranches.addTranche('StandardTranche', '0.5', newTrancheRate[1], '2') tranches.setMode('Sequential') ledger, tranchesMetrics = simulateWaterfall(loansFannie, tranches, 1) spvExportCSV( ledger, 'liabilities_sequential_montecarlo_multiprocessing_FannieMae.csv') for tranche in tranches.tranches: print(f'{tranche}\n' f' IRR = {tranche.r}\n' f' DIRR = {tranche.dirr}\n' f' DIRR(letter) = {tranche.dirrLetter}\n' f' AL = {tranche.al}')
def main(): # Test case: Test the ABS model with Monte Carlo on 1500 loans on single process, pro rata mode # Assets are from Loans.csv # Liabilities: originally start with these below tranches # tranches.addTranche('StandardTranche', '0.8', '0.05', '1') # tranches.addTranche('StandardTranche', '0.2', '0.08', '2') # nsim = 10 # numProcesses = 1 # Optimize tranches' rates based on a yield curve to get diff = 1000 bps or less. # Print optimized rate on screen and run the Waterfall 1 time to get a CSV output of the transactions # on 'liabilities_prorata_montecarlo_singleprocess_1500loans.csv' ############################################### # Set logging level logging.getLogger().setLevel(logging.DEBUG) ############################################### loans1500 = LoanPool(loansImportCSV('Loans.csv')) tranches = StructuredSecurities(loans1500.totalPrincipal()) tranches.addTranche('StandardTranche', '0.8', '0.05', '1') tranches.addTranche('StandardTranche', '0.2', '0.08', '2') tranches.setMode('Pro Rata') newTrancheRate = runMonte(loans1500, tranches, 0.1, 10, 1) print(f'My new tranche rate is = {newTrancheRate}') # Run the Waterfall once to generate CSV output of transactions. tranches = StructuredSecurities(loans1500.totalPrincipal()) tranches.addTranche('StandardTranche', '0.8', newTrancheRate[0], '1') tranches.addTranche('StandardTranche', '0.2', newTrancheRate[1], '2') tranches.setMode('Pro Rata') ledger, tranchesMetrics = simulateWaterfall(loans1500, tranches, 1) spvExportCSV(ledger, 'liabilities_prorata_montecarlo_singleprocess_1500loans.csv') for tranche in tranches.tranches: print(f'{tranche}\n' f' IRR = {tranche.r}\n' f' DIRR = {tranche.dirr}\n' f' DIRR(letter) = {tranche.dirrLetter}\n' f' AL = {tranche.al}')