Пример #1
0
def vrocli(verbose=False):
    """ vRealize Automation coder/command line interface
    """
    if verbose:
        logger.setLevel(logging.DEBUG)
    else:
        logger.setLevel(logging.INFO)
Пример #2
0
def main(_):
    if tf.gfile.Exists(FLAGS.log_dir):
        tf.gfile.DeleteRecursively(FLAGS.log_dir)
    tf.gfile.MakeDirs(FLAGS.log_dir)
    if FLAGS.debug:
        logger.setLevel(logging.DEBUG)
    run_training(FLAGS.debug)
Пример #3
0
def main():
    # parse cli args
    args = parse_args(sys.argv[1:])

    # set log level
    if args.verbose is 1:
        logger.setLevel(logging.INFO)
    elif args.verbose > 1:
        logger.setLevel(logging.DEBUG)

    args.func(args)
Пример #4
0
def init_inference_session(args):
    options = aclruntime.session_options()
    if args.acl_json_path != None:
        options.acl_json_path = args.acl_json_path
    if args.debug == True:
        logger.setLevel(logging.DEBUG)
        options.log_level = 1
    session = aclruntime.InferenceSession(args.model, args.device_id, options)

    set_session_options(session, args)
    logger.debug("session info:{}".format(session))
    return session
Пример #5
0
def main():

    cherrypy.config.update({
        'log.screen': True,
        'log.access_file': '',
        'log.error_file': ''
    })

    telebot.logger.setLevel(logging.INFO)
    logger.setLevel(logging.INFO)

    sh = logging.StreamHandler()
    sh.setLevel(logging.INFO)

    fh = logging.FileHandler('alphabot.log', encoding='utf-8')
    fh.setLevel(logging.INFO)

    formatter = logging.Formatter(u'[%(asctime)s]: %(message)s')
    sh.setFormatter(formatter)
    fh.setFormatter(formatter)

    logger.addHandler(sh)
    logger.addHandler(fh)
    '''
    Automatic posting of birthday greetings in chat
    '''
    t1 = threading.Thread(target=birthday_method)
    t1.daemon = True
    t1.start()

    bot.set_update_listener(listener)

    # logger.info("Waiting 5 minutes before the start...")
    # print("Start")
    # threading.Timer(5*60, onStartProcessing).start()

    # cherrypy.quickstart(WebhookServer(), config.WEBHOOK_URL_PATH, {'/': {}})
    telegram_polling()
Пример #6
0
class Parameters:
    program_dir = Path(abspath(__file__)).parents[1]
    config_dir = 'config'
    config_name = 'default_config.json'
    config_path = join(program_dir, config_dir, config_name)

    #try to load the config file
    try:
        #load json file here
        config_dict = load_json_file(config_path)
    except FileNotFoundError:
        logger.critical(f'config file was not found at: {config_path}')
        exit(1)

    except Exception as e:
        logger.critical(f'failed to load config file: {e}')
        exit(1)

    if is_valid_config(config_dict):
        #set all parameters here
        root_dir = Path(abspath(__file__)).parents[1]
        whiskybroker_base_url = config_dict['whiskybroker base url']
        email_address = config_dict['email address']
        data_dir = join(root_dir, config_dict['data dir'])

        logging_level, status = get_logging_level_from_parameter(
            config_dict['general logging level'])
        #TODO: maybe change the below logging to debug
        logging.info(f'logging level parsing status: {status}')
        logger.info(f'setting general logging level to: {logging_level}')
        logger.setLevel(logging_level)

    else:
        #TODO: check why the config dict was not valid, and return any missing keys/wrong values
        logger.critical(f'config file contained something wrong...')
        exit(1)
Пример #7
0
def main(argv=None):
    opts = create_parser().parse_args(argv)
    opts.users = None

    logger.setLevel(getattr(logging, opts.loglevel))
    logger_handler.setLevel(getattr(logging, opts.loglevel))

    try:
        cloud = cloud_connect(opts.config)
        if opts.cmd == 'vms':
            print "\n".join(sorted(cloud))
        else:
            if opts.cmd == 'start':
                for name in opts.vmnames:
                    cloud.start_vm(name, opts.users, opts.prepare)
            elif opts.cmd == 'stop':
                for name in opts.vmnames:
                    cloud.stop_vm(name, timeout1=opts.wait_time)
            elif opts.cmd == 'login':
                assert len(opts.vmnames) == 1
                cloud.login_to_vm(opts.vmnames[0], opts.users)
            elif opts.cmd == 'list':
                for domain in cloud.list_vms():
                    try:
                        all_ips = ", ".join(cloud.get_vm_ips(domain.name()))
                    except socket.error as err:
                        if err.errno != errno.EPERM:
                            raise
                        all_ips = "Not enought permissions for arp-scan"
                    print "{0:>5} {1:<15} => {2}".format(
                        domain.ID(), domain.name(), all_ips)
            elif opts.cmd == 'wait_ip':
                tend = time.time() + opts.wait_time
                for vmname in opts.vmnames:
                    while True:
                        try:
                            ips = list(cloud.get_vm_ips(vmname))
                        except socket.error as err:
                            if err.errno != errno.EPERM:
                                raise
                            print "Not enought permissions for arp-scan"
                            return 1

                        if len(ips) != 0:
                            print "{0:<15} => {1}".format(
                                vmname, " ".join(ips))
                            break

                        if time.time() >= tend:
                            print "VM {0} don't get ip in time".format(vmname)
                            return 1

                        time.sleep(0.01)

            elif opts.cmd == 'wait_ssh':
                tend = time.time() + opts.wait_time
                for vmname in opts.vmnames:
                    while True:
                        try:
                            ip = cloud.get_vm_ssh_ip(vmname)
                        except socket.error as err:
                            if err.errno != errno.EPERM:
                                raise
                            print "Not enought permissions for arp-scan"
                            return 1

                        if ip is not None:
                            print "{0:<15} => {1}".format(vmname, ip)
                            break

                        if time.time() >= tend:
                            templ = "VM {0} don't start ssh server in time"
                            print templ.format(vmname)
                            return 1

                        time.sleep(0.01)

            else:
                print >> sys.stderr, "Error : Unknown cmd {0}".format(opts.cmd)
    except CloudError as err:
        print >> sys.stderr, err
        return 1
    return 0
Пример #8
0

def model_test(X, Y, method):
    amount = 0
    times = 0
    for cv_data, cv_target, test_data, test_target in SAMPLE.iter_sample_data(
            X, Y, method):
        times += 1
        model = LogisticRegression(delta=0.01, alpha=0.01)
        model.fit(cv_data, cv_target)
        predict_y = model.predict(test_data)
        amount += FORMULA.cal(predict_y, test_target)

    return float(amount) / times


if __name__ == '__main__':
    filename = "../data/iris.csv"
    X, Y = FU.load_iris_data(filename)
    X = StandardScaler().fit_transform(X)
    X = FORMULA.plus_one(X)

    LOGGER.setLevel(LOGGER.LEVEL_NORMAL)
    print u"10折交叉法:", model_test(X, Y, 10)
    print u"留一法:", model_test(X, Y, 1)

    # model.draw_data(X, Y)
    # model.draw_line(X)
    # model.draw_loss()
    # plt.show()
Пример #9
0
        ret[band] = [hpx,maglim]
    return ret


if __name__ == "__main__":
    import argparse
    description = __doc__
    parser = argparse.ArgumentParser(description=description)
    parser.add_argument('config',nargs='?')
    parser.add_argument('-n','--nside',default=NSIDE,type=int)
    parser.add_argument('-v','--verbose',action='store_true')
    parser.add_argument('-s','--survey',default='des')
    args = parser.parse_args()

    if args.verbose:
        logger.setLevel(logger.INFO)
    
    if args.config:
        config = yaml.load(open(args.config))
        BANDS = config['bands']

    NSIDE = args.nside

    outdir = mkdir('release/depth')

    infiles = sorted(glob.glob('cat/cat_hpx_*.fits'))
    
    p = Pool(maxtasksperchild=1,processes=20)
    out = p.map(depth,infiles)

    skymaps = dict()
Пример #10
0
import os
import logging

import numpy as np
import tensorflow as tf
from tensorflow.python.ops import rnn_cell, rnn
from tensorflow.python.platform import gfile

from utils import r2_score, mean_squared_error
from utils import logger, Print, PrintMess

logger.setLevel("CRITICAL")
logging.disable("INFO")
tf.app.flags.DEFINE_boolean("print_twice", False, "Work interactively or not?")
tf.app.flags.DEFINE_float("learning_rate", 0.001, "Learning Rate")
tf.app.flags.DEFINE_float("max_grad_norm", 1., "Clipping gradient norm")
tf.app.flags.DEFINE_float("init_scale", .1, "Norm of initial weights")
tf.app.flags.DEFINE_integer("hidden_dim", 100, "hidden size of Neural net")
tf.app.flags.DEFINE_integer("num_layers", 2, "Number of layers in neural net")
tf.app.flags.DEFINE_integer("input_dim", 1, "Dimension of the target")
tf.app.flags.DEFINE_integer("output_dim", 1, "Dimension of the target")
tf.app.flags.DEFINE_integer("batch_size", 128, "Batch Size for SGD")
tf.app.flags.DEFINE_integer("n_iter", 100000, "Number of Iteration")
tf.app.flags.DEFINE_integer("n_valid", 5000, "Number of obs for valid set")
tf.app.flags.DEFINE_integer("freq_mess", 100, "Print a message every ... iter")
tf.app.flags.DEFINE_integer("seed", 2, "Random Number Seed")
tf.app.flags.DEFINE_string("task", "poly_eval", """Choose the task from
                            poly_eval, poly_der_eval, and poly_div,
                            newton_eval""")
tf.app.flags.DEFINE_string("train_degrees", "5,10,15", "The degrees to train")
tf.app.flags.DEFINE_string("valid_degrees", "20", "The single degree to valid")
Пример #11
0
def main(argv=None):
    opts = create_parser().parse_args(argv)
    opts.users = None

    logger.setLevel(getattr(logging, opts.loglevel))
    logger_handler.setLevel(getattr(logging, opts.loglevel))

    try:
        cloud = cloud_connect(opts.config)
        if opts.cmd == 'vms':
            print "\n".join(sorted(cloud))
        else:
            if opts.cmd == 'start':
                for name in opts.vmnames:
                    cloud.start_vm(name, opts.users, opts.prepare)
            elif opts.cmd == 'stop':
                for name in opts.vmnames:
                    cloud.stop_vm(name, timeout1=opts.wait_time)
            elif opts.cmd == 'login':
                assert len(opts.vmnames) == 1
                cloud.login_to_vm(opts.vmnames[0], opts.users)
            elif opts.cmd == 'list':
                for domain in cloud.list_vms():
                    try:
                        all_ips = ", ".join(cloud.get_vm_ips(domain.name()))
                    except socket.error as err:
                        if err.errno != errno.EPERM:
                            raise
                        all_ips = "Not enought permissions for arp-scan"
                    print "{0:>5} {1:<15} => {2}".format(domain.ID(),
                                                         domain.name(),
                                                         all_ips)
            elif opts.cmd == 'wait_ip':
                tend = time.time() + opts.wait_time
                for vmname in opts.vmnames:
                    while True:
                        try:
                            ips = list(cloud.get_vm_ips(vmname))
                        except socket.error as err:
                            if err.errno != errno.EPERM:
                                raise
                            print "Not enought permissions for arp-scan"
                            return 1

                        if len(ips) != 0:
                            print "{0:<15} => {1}".format(vmname,
                                                          " ".join(ips))
                            break

                        if time.time() >= tend:
                            print "VM {0} don't get ip in time".format(vmname)
                            return 1

                        time.sleep(0.01)

            elif opts.cmd == 'wait_ssh':
                tend = time.time() + opts.wait_time
                for vmname in opts.vmnames:
                    while True:
                        try:
                            ip = cloud.get_vm_ssh_ip(vmname)
                        except socket.error as err:
                            if err.errno != errno.EPERM:
                                raise
                            print "Not enought permissions for arp-scan"
                            return 1

                        if ip is not None:
                            print "{0:<15} => {1}".format(vmname, ip)
                            break

                        if time.time() >= tend:
                            templ = "VM {0} don't start ssh server in time"
                            print templ.format(vmname)
                            return 1

                        time.sleep(0.01)

            else:
                print >>sys.stderr, "Error : Unknown cmd {0}".format(opts.cmd)
    except CloudError as err:
        print >>sys.stderr, err
        return 1
    return 0
Пример #12
0
import os
import logging

import numpy as np
import tensorflow as tf
from tensorflow.python.ops import rnn_cell, rnn
from tensorflow.python.platform import gfile

from utils import r2_score, mean_squared_error
from utils import logger, Print, PrintMess

logger.setLevel("CRITICAL")
logging.disable("INFO")
tf.app.flags.DEFINE_boolean("print_twice", False, "Work interactively or not?")
tf.app.flags.DEFINE_float("learning_rate", 0.001, "Learning Rate")
tf.app.flags.DEFINE_float("max_grad_norm", 1., "Clipping gradient norm")
tf.app.flags.DEFINE_float("init_scale", .1, "Norm of initial weights")
tf.app.flags.DEFINE_integer("hidden_dim", 100, "hidden size of Neural net")
tf.app.flags.DEFINE_integer("num_layers", 2, "Number of layers in neural net")
tf.app.flags.DEFINE_integer("input_dim", 1, "Dimension of the target")
tf.app.flags.DEFINE_integer("output_dim", 1, "Dimension of the target")
tf.app.flags.DEFINE_integer("batch_size", 128, "Batch Size for SGD")
tf.app.flags.DEFINE_integer("n_iter", 100000, "Number of Iteration")
tf.app.flags.DEFINE_integer("n_valid", 5000, "Number of obs for valid set")
tf.app.flags.DEFINE_integer("freq_mess", 100, "Print a message every ... iter")
tf.app.flags.DEFINE_integer("seed", 2, "Random Number Seed")
tf.app.flags.DEFINE_string(
    "task", "poly_eval", """Choose the task from
                            poly_eval, poly_der_eval, and poly_div,
                            newton_eval""")
tf.app.flags.DEFINE_string("train_degrees", "5,10,15", "The degrees to train")
Пример #13
0
                        '--verbose',
                        action='count',
                        help='Increase verbosity')
    parser.add_argument('-l',
                        '--limit',
                        type=int,
                        default=10,
                        help='Number of results')
    parser.add_argument('-u',
                        '--url',
                        default='https://news.ycombinator.com/rss',
                        help='Starting page')

    args = parser.parse_args()
    if args.verbose:
        logger.setLevel('DEBUG' if args.verbose > 1 else 'INFO')

    db = DB('db')
    action, *extra = args.action
    if action == 'complete':
        for item in extra:
            for suggestion in db.complete(item):
                print(item, suggestion)
    elif action == 'search':
        for doc in db.search(extra):
            print(doc)
    elif action == 'crawl':
        crawl(db, args.url)
    elif action == 'insert':
        fragments = TextParser.get_text(args.url)
        db.insert(args.url, list(fragments))