def loss(self, predictions, targets): """Compute the necessary loss for training. Args: Returns: """ self.reproduction_loss = l1_loss( predictions, targets) # l2_loss(predictions, targets) # self.prior_loss = vae_loss(self.z_mean, self.z_logvar, prior_weight = 0.0001) # return [self.reproduction_loss, self.prior_loss] return self.reproduction_loss
def loss(self, predictions, flow_motion, flow_mask, targets, lambda_motion, lambda_mask): """Compute the necessary loss for training. Args: Returns: """ # corrected regularized loss self.reproduction_loss = l1_loss(predictions, targets) \ # + lambda_motion * l1_regularizer(flow_motion) \ # + lambda_mask * l1_regularizer(flow_mask) return self.reproduction_loss
def l1loss(self, predictions, targets): self.reproduction_loss = l1_loss(predictions, targets) return self.reproduction_loss