print(len(dvpi0p16.index)) bin_size = [100,100] xvals2 = df['Mpi0'] xvals = dvpi0p16['Mpi0'] x_name = "Gamma-Gamma Invariant Mass (GeV)" output_dir = "figures/" #ranges = "none" ranges = [0,0.3,100] make_histos.plot_1dhist(xvals,[x_name,],ranges=ranges,second_x=None,annotation=None, saveplot=False,pics_dir=output_dir,plot_title="Reconstructed Pion Mass, NF Sampled", density=False,proton_line=0.135,first_color="blue",xlabel_1="NF Data") sys.exit() x_data = df["Mpi0"] y_data = df["pmass"] var_names = ["E Px","E Py"] saveplots = False output_dir = "figures/" title = "Pi Mass vs EPx" filename = title units = ["GeV","Gev"] ranges = [[0,.3,100],[.9,.96,100]] #interactive(True) make_histos.plot_2dhist(x_data,y_data,var_names,ranges,colorbar=False,
#x_name = "Gamma-Gamma Invariant Mass (GeV)" x_name = "Reconstructed Pion Mass (GeV)" #ranges = "none" #ranges = [12,28,100] ranges = [.02, .3, 100] print("PLOTTTING") make_histos.plot_1dhist( xvals3, [ x_name, ], ranges=ranges, second_x=xvals2, annotation="yes", third_x=xvals, xlabel_3="QT-3-Feature Model", saveplot=False, pics_dir=output_dir, plot_title= "Reconstructed Pion Mass, (4 Feature) and (3 Feature with QT) NF Models vs. Standard Simulations", density=True, proton_line=0.135, first_color="red", xlabel_1="Physics Recon. Data", xlabel_2="4-Feature Model") sys.exit() df_4 = pd.read_pickle("4_feature_pion.pkl") ic(df_4) #df = df_4.head(50000)
print(df) print(df2) #sys.exit() bin_size = [100, 100] xvals = df["emass2"] x_name = "px E" output_dir = "./" #ranges = "none" ranges = [-0.2, 0.2, 100] make_histos.plot_1dhist(xvals, [ x_name, ], ranges=ranges, second_x=None, saveplot=False, pics_dir=output_dir, plot_title="Squared Electron Mass, NF Model", density=False) x_data = df[1] y_data = df[2] var_names = ["E Px", "E Py"] saveplots = False output_dir = "." title = "Electron X vs. Y Mom., NF Model" filename = title units = ["GeV", "Gev"] ranges = [[-1.5, 1.5, 100], [-1.5, 1.5, 100]]
filename="gen-recon_{}", units=["GeV", "GeV"]) # plt.scatter(df["recon_{}".format(name)],df["recon_{}".format(name)]-df["nf_{}".format(name)]) # plt.scatter(df["recon_{}".format(name)],df["nf_{}".format(name)]) #plt.title("Recon vs. NF, {}".format(name)) #plt.xlabel("Recon") #plt.ylabel("NF") #plt.show() ic(df_ps.mean()) df_ps.to_pickle("4_feature_pion_QT_INV.pkl") make_histos.plot_1dhist(df_ps['recon_Mpi0'], [ 'nf pion mass', ], ranges=[0.02, 0.4, 150], second_x=df_ps['nf_Mpi0'], first_color='red') # # make_histos.plot_1dhist(xvals_1,[x_name,],ranges="none",second_x=xvals_2, # # saveplot=True,pics_dir=output_dir,plot_title="{}, NF 4-Feature Model".format(x_name),density=True, # # annotation=emd_nflow,first_color="red",xlabel_1="Microphysics Data",xlabel_2="NF Model Sample") # dvpi0p = df_nflow_data # #dvpi0p = df_test_data # e=4 # dvpi0p.loc[:,'pmass'] = np.sqrt(dvpi0p[e]**2-dvpi0p[e+1]**2-dvpi0p[e+2]**2-dvpi0p[e+3]**2)/0.938 # dvpi0p.loc[:, "Gpx"] = dvpi0p.loc[:, 9] # dvpi0p.loc[:, "Gpy"] = dvpi0p.loc[:, 10]
dfs = [df0,df1] df = pd.concat(dfs) #print(df) df.hist() zX = df.to_numpy() bin_size = [100,100] xvals = df[1] x_name = "px E" output_dir = "./" make_histos.plot_1dhist(xvals,[x_name,],ranges="none",second_x="none", saveplot=False,pics_dir=output_dir,plot_title=x_name) # pairs = [(0,1),(1,2),(0,4),(8,12),(5,6),(9,10)] # for a,b in pairs: # fig, ax = plt.subplots(figsize =(10, 7)) # plt.hist2d(zX[:,a], zX[:,b],bins =bin_size,norm=mpl.colors.LogNorm())# cmap = plt.cm.nipy_spectral) # #plt.xlim([-2,2]) # #plt.ylim([-2,2]) # #plt.colorbar() # plotname = "finalplotname2.jpeg" # plt.show() if run_2:
print(df2) #sys.exit() bin_size = [100, 100] xvals = df["pmass"] x_name = "NF Model Proton Mass" output_dir = "./" #ranges = "none" ranges = [.925, .951, 100] make_histos.plot_1dhist(xvals, [ x_name, ], ranges=ranges, second_x=None, saveplot=False, pics_dir=output_dir, plot_title="Reconstructed Proton Mass, NF Model", density=False, proton_line=True, first_color="green", xlabel_1="NF Data") sys.exit() x_data = df[1] y_data = df[2] var_names = ["E Px", "E Py"] saveplots = True output_dir = "./" title = "Electron $P_X$ vs. $P_Y$, NF 4-Feat. Model" filename = title