Пример #1
0
    def training_step(self, batch: TokensBatch, batch_idx: int) -> Dict:
        # (batch size, output size)
        logits = self(batch.tokens, batch.tokens_per_label)
        loss = F.nll_loss(logits, batch.labels)
        log: Dict[str, Union[float, torch.Tensor]] = {"train/loss": loss}
        with torch.no_grad():
            _, preds = logits.max(dim=1)
            statistic = Statistic().calculate_statistic(
                batch.labels,
                preds,
                2,
            )
            batch_matric = statistic.calculate_metrics(group="train")
            log.update(batch_matric)
            self.log_dict(log)
            self.log("f1",
                     batch_matric["train/f1"],
                     prog_bar=True,
                     logger=False)

        return {"loss": loss, "statistic": statistic}
Пример #2
0
    def training_step(self, batch: PathContextBatch,
                      batch_idx: int) -> Dict:  # type: ignore
        # [batch size; num_classes]
        logits = self(batch.contexts, batch.contexts_per_label)
        loss = F.cross_entropy(logits, batch.labels)
        log = {"train/loss": loss}
        with torch.no_grad():
            _, preds = logits.max(dim=1)
            statistic = Statistic().calculate_statistic(
                batch.labels,
                preds,
                2,
            )
            batch_matric = statistic.calculate_metrics(group="train")
            log.update(batch_matric)
            self.log_dict(log)
            self.log("f1",
                     batch_matric["train/f1"],
                     prog_bar=True,
                     logger=False)

        return {"loss": loss, "statistic": statistic}