def log_epoch_stats(self, cur_epoch): """ Log the stats of the current epoch. Args: cur_epoch (int): the number of current epoch. """ eta_sec = self.iter_timer.seconds() * ( self.MAX_ITERS - (cur_epoch + 1) * self.epoch_iters) eta = str(datetime.timedelta(seconds=int(eta_sec))) stats = { "_type": "train_epoch", "epoch": "{}/{}".format(cur_epoch + 1, self.MAX_EPOCH), "time_diff": self.iter_timer.seconds(), "eta": eta, "lr": self.lr, "gpu_mem": int(np.ceil(misc.gpu_mem_usage())), } if not self._cfg.DATA.MULTI_LABEL: top1_err = self.num_top1_mis / self.num_samples top5_err = self.num_top5_mis / self.num_samples avg_loss = self.loss_total / self.num_samples stats["top1_err"] = top1_err stats["top5_err"] = top5_err stats["loss"] = avg_loss logging.log_json_stats(stats)
def log_epoch_stats(self, cur_epoch): """ Log the stats of the current epoch. Args: cur_epoch (int): the number of current epoch. """ mem_usage = misc.gpu_mem_usage() stats = { "_type": "val_epoch", "epoch": "{}/{}".format(cur_epoch + 1, self.MAX_EPOCH), "time_diff": self.iter_timer.seconds(), "gpu_mem": int(np.ceil(mem_usage)), } if self._cfg.DATA.MULTI_LABEL: stats["map"] = get_map( torch.cat(self.all_preds).cpu().numpy(), torch.cat(self.all_labels).cpu().numpy(), ) self.max_map = max(self.max_map, stats["map"]) stats["max_map"] = self.max_map else: top1_err = self.num_top1_mis / self.num_samples top5_err = self.num_top5_mis / self.num_samples self.min_top1_err = min(self.min_top1_err, top1_err) self.min_top5_err = min(self.min_top5_err, top5_err) stats["top1_err"] = top1_err stats["top5_err"] = top5_err stats["min_top1_err"] = self.min_top1_err stats["min_top5_err"] = self.min_top5_err logging.log_json_stats(stats) return stats
def log_iter_stats(self, cur_epoch, cur_iter, global_iter): """ log the stats of the current iteration. Args: cur_epoch (int): the number of current epoch. cur_iter (int): the number of current iteration in current epoch. global_iter (int): the number of current iteration in training phase """ if (cur_iter + 1) % self._cfg.LOG_PERIOD != 0: return eta_sec = self.iter_timer.seconds() * ( self.MAX_ITERS - (cur_epoch * self.epoch_iters + cur_iter + 1)) eta = str(datetime.timedelta(seconds=int(eta_sec))) stats = { "_type": "train_iter", "global_iter": "{}/{}".format(global_iter, self.MAX_ITERS), "epoch": "{}/{}".format(cur_epoch + 1, self.MAX_EPOCH), "iter": "{}/{}".format(cur_iter + 1, self.epoch_iters), "time_diff": self.iter_timer.seconds(), "eta": eta, "loss": self.loss.get_win_median(), "lr": self.lr, "gpu_mem": int(np.ceil(misc.gpu_mem_usage())), } if not self._cfg.DATA.MULTI_LABEL: stats["top1_err"] = self.mb_top1_err.get_win_median() stats["top5_err"] = self.mb_top5_err.get_win_median() logging.log_json_stats(stats)
def log_epoch_stats(self, cur_epoch): """ Log the stats of the current epoch. Args: cur_epoch (int): the number of current epoch. """ if self.mode in ["val", "test"]: self.finalize_metrics(log=False) stats = { "_type": "{}_epoch".format(self.mode), "cur_epoch": "{}".format(cur_epoch + 1), "mode": self.mode, "map": self.full_map, "gpu_mem": "{:.2f} GB".format(misc.gpu_mem_usage()), "RAM": "{:.2f}/{:.2f} GB".format(*misc.cpu_mem_usage()), } logging.log_json_stats(stats)
def log_epoch_stats(self, cur_epoch): """ Log the stats of the current epoch. Args: cur_epoch (int): the number of current epoch. """ eta_sec = self.iter_timer.seconds() * ( self.MAX_EPOCH - (cur_epoch + 1) * self.epoch_iters) eta = str(datetime.timedelta(seconds=int(eta_sec))) mem_usage = misc.gpu_mem_usage() stats = { "_type": "train_epoch", "epoch": "{}/{}".format(cur_epoch + 1, self._cfg.SOLVER.MAX_EPOCH), "time_diff": self.iter_timer.seconds(), "eta": eta, "mem": int(np.ceil(mem_usage)), } infos = {k: v.get_global_avg() for k, v in self.infos} stats.update(infos) logging.log_json_stats(stats)
def log_iter_stats(self, cur_epoch, cur_iter): """ log the stats of the current iteration. Args: cur_epoch (int): the number of current epoch. cur_iter (int): the number of current iteration. """ if (cur_iter + 1) % self._cfg.LOG_PERIOD != 0: return eta_sec = self.iter_timer.seconds() * (self.max_iter - cur_iter - 1) eta = str(datetime.timedelta(seconds=int(eta_sec))) stats = { "_type": "val_iter", "epoch": "{}/{}".format(cur_epoch + 1, self._cfg.SOLVER.MAX_EPOCH), "iter": "{}/{}".format(cur_iter + 1, self.max_iter), "time_diff": self.iter_timer.seconds(), "eta": eta, "gpu_mem": "{:.2f} GB".format(misc.gpu_mem_usage()), } if not self._cfg.DATA.MULTI_LABEL: stats["top1_err"] = self.mb_top1_err.get_win_median() stats["top5_err"] = self.mb_top5_err.get_win_median() logging.log_json_stats(stats)
def log_iter_stats(self, cur_epoch, cur_iter): """ log the stats of the current iteration. Args: cur_epoch (int): the number of current epoch. cur_iter (int): the number of current iteration. """ if (cur_iter + 1) % self._cfg.LOG_PERIOD != 0: return eta_sec = self.iter_timer.seconds() * ( self.MAX_EPOCH - (cur_epoch * self.epoch_iters + cur_iter + 1)) eta = str(datetime.timedelta(seconds=int(eta_sec))) mem_usage = misc.gpu_mem_usage() stats = { "_type": "train_iter", "epoch": "{}/{}".format(cur_epoch + 1, self._cfg.SOLVER.MAX_EPOCH), "iter": "{}/{}".format(cur_iter + 1, self.epoch_iters), "time_diff": self.iter_timer.seconds(), "eta": eta, "mem": int(np.ceil(mem_usage)), } infos = {k: v.get_win_avg() for k, v in self.infos} stats.update(infos) logging.log_json_stats(stats)