class AlphaZeroHexNetwork: def __init__(self, game, args): # game params self.board_x, self.board_y, depth = game.getDimensions() self.action_size = game.getActionSize() self.args = args self.crafter = Crafter(args) # Neural Net# s: batch_size x board_x x board_y self.input_boards = Input(shape=(self.board_x, self.board_y, depth * self.args.observation_length)) self.pi, self.v = self.build_model(self.input_boards) self.model = Model(inputs=self.input_boards, outputs=[self.pi, self.v]) opt = Adam(args.optimizer.lr_init) if self.args.support_size > 0: self.model.compile(loss=['categorical_crossentropy'] * 2, optimizer=opt) else: self.model.compile( loss=['categorical_crossentropy', 'mean_squared_error'], optimizer=opt) print(self.model.summary()) def build_model(self, x_image): conv = self.crafter.conv_tower(self.args.num_convs, x_image, use_bn=True) res = self.crafter.conv_residual_tower(self.args.num_towers, conv, self.args.residual_left, self.args.residual_right, use_bn=True) small = self.crafter.activation()(BatchNormalization()(Conv2D( 32, 3, padding='same', use_bias=False)(res))) flat = Flatten()(small) fc = self.crafter.dense_sequence(1, flat) pi = Dense(self.action_size, activation='softmax', name='pi')(fc) v = Dense(1, activation='tanh', name='v')(fc) \ if self.args.support_size == 0 else \ Dense(self.args.support_size * 2 + 1, activation='softmax', name='v')(fc) return pi, v
class MuZeroHexNetwork: def __init__(self, game, args): # Network arguments self.board_x, self.board_y, self.planes = game.getDimensions() self.action_size = game.getActionSize() self.args = args self.crafter = Crafter(args) # s: batch_size x time x state_x x state_y self.observation_history = Input(shape=(self.board_x, self.board_y, self.planes * self.args.observation_length)) # a: one hot encoded vector of shape batch_size x (state_x * state_y) self.action_plane = Input(shape=(self.action_size, )) # s': batch_size x board_x x board_y x 1 self.encoded_state = Input(shape=(self.board_x, self.board_y, self.args.latent_depth)) # Format action vector to plane omit_resign = Lambda(lambda x: x[..., :-1], output_shape=(self.board_x * self.board_y, ), input_shape=(self.action_size, ))( self.action_plane) action_plane = Reshape((self.board_x, self.board_y, 1))(omit_resign) self.s = self.build_encoder(self.observation_history) self.r, self.s_next = self.build_dynamics(self.encoded_state, action_plane) self.pi, self.v = self.build_predictor(self.encoded_state) self.encoder = Model(inputs=self.observation_history, outputs=self.s, name='h') self.dynamics = Model(inputs=[self.encoded_state, self.action_plane], outputs=[self.r, self.s_next], name='g') self.predictor = Model(inputs=self.encoded_state, outputs=[self.pi, self.v], name='f') self.forward = Model(inputs=self.observation_history, outputs=[self.s, *self.predictor(self.s)]) self.recurrent = Model( inputs=[self.encoded_state, self.action_plane], outputs=[self.r, self.s_next, *self.predictor(self.s_next)]) # Decoder functionality. self.decoded_observations = self.build_decoder(self.encoded_state) self.decoder = Model(inputs=self.encoded_state, outputs=self.decoded_observations, name='decoder') def build_encoder(self, observations): conv = self.crafter.conv_tower(self.args.num_convs, observations, use_bn=False) res = self.crafter.conv_residual_tower(self.args.num_towers, conv, self.args.residual_left, self.args.residual_right, use_bn=False) latent_state = self.crafter.activation()( (Conv2D(self.args.latent_depth, 3, padding='same', use_bias=False)(res))) latent_state = MinMaxScaler()(latent_state) return latent_state def build_dynamics(self, encoded_state, action_plane): stacked = Concatenate(axis=-1)([encoded_state, action_plane]) reshaped = Reshape( (self.board_x, self.board_y, 1 + self.args.latent_depth))(stacked) conv = self.crafter.conv_tower(self.args.num_convs, reshaped, use_bn=False) res = self.crafter.conv_residual_tower(self.args.num_towers, conv, self.args.residual_left, self.args.residual_right, use_bn=False) latent_state = self.crafter.activation()( (Conv2D(self.args.latent_depth, 3, padding='same')(res))) latent_state = MinMaxScaler()(latent_state) flat = Flatten()(latent_state) # Cancel gradient/ predictions as r is not trained in boardgames. r = Dense(self.args.support_size * 2 + 1, name='r')(flat) r = Lambda(lambda x: x * 0)(r) return r, latent_state def build_predictor(self, latent_state): out_tensor = self.crafter.conv_tower(self.args.num_convs, latent_state, use_bn=False) small = self.crafter.activation()((Conv2D(32, 3, padding='same', use_bias=False)(out_tensor))) flat = Flatten()(small) fc = self.crafter.dense_sequence(1, flat) pi = Dense(self.action_size, activation='softmax', name='pi')(fc) v = Dense(1, activation='tanh', name='v')(fc) \ if self.args.support_size == 0 else \ Dense(self.args.support_size * 2 + 1, activation='softmax', name='v')(fc) return pi, v def build_decoder(self, latent_state): conv = self.crafter.conv_tower(self.args.num_convs, latent_state, use_bn=False) res = self.crafter.conv_residual_tower(self.args.num_towers, conv, self.args.residual_left, self.args.residual_right, use_bn=False) o = Conv2D(self.planes * self.args.observation_length, 3, padding='same')(res) return o