def __init__(self, nn_params): super(ImitativePolicy, self).__init__() # Store the parameters: self.hidden_w = nn_params['hid_width'] self.depth = nn_params['hid_depth'] self.n_in_input = nn_params['dx'] self.n_out = nn_params['du'] self.activation = nn_params['activation'] self.d = nn_params['dropout'] self.loss_fnc = nn.MSELoss() # super(ImitativePolicy, self).__init__() # Takes objects from the training parameters layers = [] layers.append(nn.Linear(self.n_in_input, self.hidden_w)) # input layer layers.append(self.activation) layers.append(nn.Dropout(p=self.d)) for d in range(self.depth): # add modules # input layer layers.append(nn.Linear(self.hidden_w, self.hidden_w)) layers.append(self.activation) layers.append(nn.Dropout(p=self.d)) # output layer layers.append(nn.Linear(self.hidden_w, self.n_out)) self.features = nn.Sequential(*layers) # Need to scale the state variables again etc # inputs state, output an action (PWMs) self.scalarX = MinMaxScaler(feature_range=(-1, 1)) self.scalarU = MinMaxScaler(feature_range=(-1, 1))
def __init__(self, nn_params): super(GeneralNN, self).__init__() """ Simpler implementation of my other neural net class. After parameter tuning, now just keep the structure and change it if needed. Note that the data passed into this network is only that which is used. """ # Store the parameters: self.prob = nn_params['bayesian_flag'] self.hidden_w = nn_params['hid_width'] self.depth = nn_params['hid_depth'] self.n_in_input = nn_params['du'] self.n_in_state = nn_params['dx'] self.n_in = self.n_in_input + self.n_in_state self.n_out = nn_params['dt'] self.activation = nn_params['activation'] self.d = nn_params['dropout'] self.split_flag = nn_params['split_flag'] self.E = 0 # clarify that these models are not ensembles # Can store with a helper function for when re-loading and figuring out what was trained on self.state_list = [] self.input_list = [] self.change_state_list = [] self.scalarX = StandardScaler()# MinMaxScaler(feature_range=(-1,1))#StandardScaler()# RobustScaler() self.scalarU = MinMaxScaler(feature_range=(-1,1)) self.scalardX = MinMaxScaler(feature_range=(-1,1)) #StandardScaler() #MinMaxScaler(feature_range=(-1,1))#StandardScaler() # RobustScaler(quantile_range=(25.0, 90.0)) # Sets loss function if self.prob: # INIT max/minlogvar if PNN self.max_logvar = torch.nn.Parameter(torch.tensor(1*np.ones([1, self.n_out]),dtype=torch.float, requires_grad=True)) self.min_logvar = torch.nn.Parameter(torch.tensor(-1*np.ones([1, self.n_out]),dtype=torch.float, requires_grad=True)) self.loss_fnc = PNNLoss_Gaussian() self.n_out *= 2 else: self.loss_fnc = nn.MSELoss() # If using split model, initiate here: if self.split_flag: self.features = nn.Sequential( SplitModel(self.n_in, self.n_out, prob = self.prob, width = self.hidden_w, activation = self.activation, dropout = self.d)) else: # create object nicely layers = [] layers.append(('dynm_input_lin', nn.Linear( self.n_in, self.hidden_w))) # input layer layers.append(('dynm_input_act', self.activation)) # layers.append(nn.Dropout(p=self.d)) for d in range(self.depth): # add modules # input layer layers.append( ('dynm_lin_'+str(d), nn.Linear(self.hidden_w, self.hidden_w))) layers.append(('dynm_act_'+str(d), self.activation)) # layers.append(nn.Dropout(p=self.d)) # output layer layers.append(('dynm_out_lin', nn.Linear(self.hidden_w, self.n_out))) # print(*layers) self.features = nn.Sequential(OrderedDict([*layers]))
temp_data_test = DataCSV_All('data/tempAMAL_test.csv', number_classes, sequence_length) data = DataLoader(temp_data_train, batch_size=batch_size, shuffle=True, drop_last=True) data_test = DataLoader(temp_data_test, batch_size=1, shuffle=False, drop_last=True) data_sizes = temp_data_train.data.size() latent_size = 10 model = RNN(1, latent_size, 1) loss = nn.MSELoss() optim = torch.optim.Adam(model.parameters(), lr=10**-3) iterations = 1000 #GPU model.to(device) loss.to(device) writer = SummaryWriter() for i in range(iterations): train_loss = 0 nt = 0 for x in data:
def __init__(self, nn_params): super(GeneralNN, self).__init__() # Store the parameters: self.prob = nn_params['bayesian_flag'] self.hidden_w = nn_params['hid_width'] self.depth = nn_params['hid_depth'] self.n_in_input = nn_params['du'] self.n_in_state = nn_params['dx'] self.n_in = self.n_in_input + self.n_in_state self.n_out = nn_params['dt'] self.activation = nn_params['activation'] self.d = nn_params['dropout'] self.split_flag = nn_params['split_flag'] self.epsilon = nn_params['epsilon'] self.E = 0 # Can store with a helper function for when re-loading and figuring out what was trained on self.state_list = [] self.input_list = [] self.change_state_list = [] self.scalarX = StandardScaler( ) # MinMaxScaler(feature_range=(-1,1))#StandardScaler()# RobustScaler() self.scalarU = MinMaxScaler(feature_range=(-1, 1)) self.scalardX = MinMaxScaler( feature_range=(-1, 1) ) #StandardScaler() #MinMaxScaler(feature_range=(-1,1))#StandardScaler() # RobustScaler(quantile_range=(25.0, 90.0)) # Sets loss function if self.prob: # INIT max/minlogvar if PNN self.max_logvar = torch.nn.Parameter( torch.tensor(1 * np.ones([1, self.n_out]), dtype=torch.float, requires_grad=True)) self.min_logvar = torch.nn.Parameter( torch.tensor(-1 * np.ones([1, self.n_out]), dtype=torch.float, requires_grad=True)) self.loss_fnc = PNNLoss_Gaussian() self.n_out *= 2 else: self.loss_fnc = nn.MSELoss() layers = [] layers.append( ('dynm_input_lin', nn.Linear(self.n_in, self.hidden_w))) # input layer layers.append(('dynm_input_act', self.activation)) layers.append(('dynm_input_dropout', nn.Dropout(p=self.d))) for d in range(self.depth): layers.append( ('dynm_lin_' + str(d), nn.Linear(self.hidden_w, self.hidden_w))) layers.append(('dynm_act_' + str(d), self.activation)) layers.append(('dynm_dropout_' + str(d), nn.Dropout(p=self.d))) layers.append(('dynm_out_lin', nn.Linear(self.hidden_w, self.n_out))) self.features = nn.Sequential(OrderedDict([*layers]))