Пример #1
0
def main():
    # Parse command line arguments
    args = parse_commandline_arguments()

    # Fetch .uff model path
    ssd_model_uff_path = PATHS.get_model_uff_path(MODEL_NAME)
    # Set up all TensorRT data structures needed for inference
    trt_inference_wrapper = TRTInference(
        args.trt_engine_path,
        ssd_model_uff_path,
        trt_engine_datatype=args.trt_engine_datatype,
        batch_size=args.max_batch_size)

    # Start measuring time
    inference_start_time = time.time()

    # Get TensorRT SSD model output
    detection_out, keep_count_out = \
        trt_inference_wrapper.infer(args.input_img_path)

    # Make PIL.Image for drawing bounding boxes and
    # let analyze_prediction() draw them based on model output
    img_pil = Image.open(args.input_img_path)
    prediction_fields = len(TRT_PREDICTION_LAYOUT)
    for det in range(int(keep_count_out[0])):
        analyze_prediction(detection_out, det * prediction_fields, img_pil)

    # Output total [img load + inference + drawing bboxes] time
    print("Total time taken for one image: {} ms\n".format(
        int(round((time.time() - inference_start_time) * 1000))))

    # Save output image and output path
    img_pil.save(args.output)
    print("Saved output image to: {}".format(args.output))
Пример #2
0
def main():
    # Parse command line arguments
    args = parse_commandline_arguments()

    # Fetch .uff model path
    ssd_model_uff_path = PATHS.get_model_uff_path(MODEL_NAME)
    # convert from .pb if needed, using prepare_ssd_model
    if not os.path.exists(ssd_model_uff_path):
        model_utils.prepare_ssd_model(MODEL_NAME)
Пример #3
0
def main():
    # Parse command line arguments
    args = parse_commandline_arguments()

    # Loading FlattenConcat plugin library using CDLL has a side
    # effect of loading FlattenConcat plugin into internal TensorRT
    # PluginRegistry data structure. This will be needed when parsing
    # network into UFF, since some operations will need to use this plugin
    try:
        ctypes.CDLL(PATHS.get_flatten_concat_plugin_path())
    except:
        print(
            "Error: {}\n{}\n{}".format(
                "Could not find {}".format(PATHS.get_flatten_concat_plugin_path()),
                "Make sure you have compiled FlattenConcat custom plugin layer",
                "For more details, check README.md"
            )
        )
        sys.exit(1)

    # Fetch .uff model path, convert from .pb
    # if needed, using prepare_ssd_model
    ssd_model_uff_path = PATHS.get_model_uff_path(MODEL_NAME)
    if not os.path.exists(ssd_model_uff_path):
        model_utils.prepare_ssd_model(MODEL_NAME)

    # Set up all TensorRT data structures needed for inference
    trt_inference_wrapper = inference_utils.TRTInference(
        args.trt_engine_path, ssd_model_uff_path,
        trt_engine_datatype=args.trt_engine_datatype,
        batch_size=args.max_batch_size)

    # Start measuring time
    inference_start_time = time.time()

    # Get TensorRT SSD model output
    detection_out, keep_count_out = \
        trt_inference_wrapper.infer(args.input_img_path)

    # Make PIL.Image for drawing bounding boxes and
    # let analyze_prediction() draw them based on model output
    img_pil = Image.open(args.input_img_path)
    prediction_fields = len(TRT_PREDICTION_LAYOUT)
    for det in range(int(keep_count_out[0])):
        analyze_prediction(detection_out, det * prediction_fields, img_pil)

    # Output total [img load + inference + drawing bboxes] time
    print("Total time taken for one image: {} ms\n".format(
        int(round((time.time() - inference_start_time) * 1000))))

    # Save output image and output path
    img_pil.save(args.output)
    print("Saved output image to: {}".format(args.output))
def main():

    # Parse command line arguments
    args = parse_commandline_arguments()

    # Fetch .uff model path, convert from .pb
    # if needed, using prepare_ssd_model
    ssd_model_uff_path = PATHS.get_model_uff_path(MODEL_NAME)
    if not os.path.exists(ssd_model_uff_path):
        model_utils.prepare_ssd_model(MODEL_NAME)

    # Set up all TensorRT data structures needed for inference
    trt_inference_wrapper = inference_utils.TRTInference(
        args.trt_engine_path,
        ssd_model_uff_path,
        trt_engine_datatype=args.trt_engine_datatype,
        calib_dataset=args.calib_dataset,
        batch_size=args.max_batch_size)

    print("TRT ENGINE PATH", args.trt_engine_path)

    if args.camera == True:
        print('Running webcam:', args.camera)
        # Define the video stream
        cap = cv2.VideoCapture(
            0)  # Change only if you have more than one webcams

        # Loop for running inference on frames from the webcam
        while True:
            # Read frame from camera (and expand its dimensions to fit)
            ret, image_np = cap.read()

            # Actually run inference
            detection_out, keep_count_out = trt_inference_wrapper.infer_webcam(
                image_np)

            # Overlay the bounding boxes on the image
            # let analyze_prediction() draw them based on model output
            img_pil = Image.fromarray(image_np)
            prediction_fields = len(TRT_PREDICTION_LAYOUT)
            for det in range(int(keep_count_out[0])):
                analyze_prediction(detection_out, det * prediction_fields,
                                   img_pil)
            final_img = np.asarray(img_pil)

            # Display output
            cv2.imshow('object detection', final_img)

            if cv2.waitKey(25) & 0xFF == ord('q'):
                cv2.destroyAllWindows()
                break
Пример #5
0
def main():
    # Parse command line arguments
    #解析命令行参数,具体参考本文件下的实现
    args = parse_commandline_arguments()

    # Fetch .uff model path, convert from .pb
    # if needed, using prepare_ssd_model
    #获取相应的uff模型的路径
    #get_model_uff_path参考utils/paths.py下的实现
    ssd_model_uff_path = PATHS.get_model_uff_path(MODEL_NAME)
    #如果不存在uff模型
    if not os.path.exists(ssd_model_uff_path):
        #从pb模型完成到uff模型的转换
        #prepare_ssd_model参考utils/model.py下的实现
        model_utils.prepare_ssd_model(MODEL_NAME)

    # Set up all TensorRT data structures needed for inference
    #建立推理所需要的数据结构
    #具体参考utils/inference.py下的实现
    trt_inference_wrapper = inference_utils.TRTInference(
        args.trt_engine_path, ssd_model_uff_path,
        trt_engine_datatype=args.trt_engine_datatype,
        batch_size=args.max_batch_size)

    # Start measuring time
    inference_start_time = time.time()

    # Get TensorRT SSD model output
    #获取相应的推理输出
    #参考utils/inference.py
    detection_out, keep_count_out = \
        trt_inference_wrapper.infer(args.input_img_path)

    # Make PIL.Image for drawing bounding boxes and
    # let analyze_prediction() draw them based on model output
    img_pil = Image.open(args.input_img_path)
    prediction_fields = len(TRT_PREDICTION_LAYOUT)
    for det in range(int(keep_count_out[0])):
        #analyze_prediction参考本文件的实现
        analyze_prediction(detection_out, det * prediction_fields, img_pil)

    # Output total [img load + inference + drawing bboxes] time
    print("Total time taken for one image: {} ms\n".format(
        int(round((time.time() - inference_start_time) * 1000))))

    # Save output image and output path
    #保存相应的结果
    img_pil.save(args.output)
    print("Saved output image to: {}".format(args.output))
Пример #6
0
def prepare_ssd_model(model_name="ssd_inception_v2_coco_2017_11_17", silent=False):
    """Downloads pretrained object detection model and converts it to UFF.

    The model is downloaded from Tensorflow object detection model zoo.
    Currently only ssd_inception_v2_coco_2017_11_17 model is supported
    due to model_to_uff() using logic specific to that network when converting.

    Args:
        model_name (str): chosen object detection model
        silent (bool): if True, writes progress messages to stdout
    """
    if model_name != "ssd_inception_v2_coco_2017_11_17":
        raise NotImplementedError(
            "Model {} is not supported yet".format(model_name))
    download_model(model_name, silent)
    ssd_pb_path = PATHS.get_model_pb_path(model_name)
    ssd_uff_path = PATHS.get_model_uff_path(model_name)
    model_to_uff(ssd_pb_path, ssd_uff_path, silent)
    # PluginRegistry data structure. This will be needed when parsing
    # network into UFF, since some operations will need to use this plugin
    try:
        ctypes.CDLL(PATHS.get_flatten_concat_plugin_path())
    except FileNotFoundError:
        print("Error: {}\n{}\n{}".format(
            "Could not find {}".format(PATHS.get_flatten_concat_plugin_path()),
            "Make sure you have compiled FlattenConcat custom plugin layer",
            "For more details, check README.md"))
        sys.exit(1)

    # Fetch frozen model .pb path...
    ssd_model_pb_path = PATHS.get_model_pb_path(MODEL_NAME)
    # ...and .uff path, if needed (converting .pb to .uff if not already done)
    if parsed['inference_backend'] == 'tensorrt':
        ssd_model_uff_path = PATHS.get_model_uff_path(MODEL_NAME)
        if not os.path.exists(ssd_model_uff_path):
            model_utils.prepare_ssd_model(MODEL_NAME)

    # This block of code sets up and performs inference, if needed
    if not skip_inference:
        # Preprocess VOC dataset if necessary by resizing images
        preprocess_voc()

        # Fetch image list and input .ppm files path
        with open(PATHS.get_voc_image_set_path(), 'r') as f:
            voc_image_numbers = f.readlines()
            voc_image_numbers = [line.strip() for line in voc_image_numbers]
        voc_image_path = PATHS.get_voc_ppm_img_path()

        # Tensorflow and TensorRT paths are a little bit different,
Пример #8
0
def main():
    # Parse command line arguments
    parsed = parse_commandline_arguments()

    # Check if inference should be skipped (if model inference
    # results are already computed, we don't need to recompute
    # them for VOC mAP computation)
    skip_inference = should_skip_inference(parsed)
    # And if inference will not be skipped, then we
    # create files to store its results in
    detection_files = {}
    if not skip_inference:
        for voc_class in VOC_CLASSES:
            detection_files[voc_class] = open(
                os.path.join(parsed['results_dir'],
                             'det_test_{}.txt'.format(voc_class)), 'w')

    # Fetch frozen model .pb path...
    ssd_model_pb_path = PATHS.get_model_pb_path(MODEL_NAME)
    # ...and .uff path, if needed (converting .pb to .uff if not already done)
    if parsed['inference_backend'] == 'tensorrt':
        ssd_model_uff_path = PATHS.get_model_uff_path(MODEL_NAME)

    # This block of code sets up and performs inference, if needed
    if not skip_inference:
        # Preprocess VOC dataset if necessary by resizing images
        preprocess_voc()

        # Fetch image list and input .ppm files path
        with open(PATHS.get_voc_image_set_path(), 'r') as f:
            voc_image_numbers = f.readlines()
            voc_image_numbers = [line.strip() for line in voc_image_numbers]
        voc_image_path = PATHS.get_voc_ppm_img_path()

        # Tensorflow and TensorRT paths are a little bit different,
        # so we must treat each one individually
        if parsed['inference_backend'] == 'tensorrt':
            # TRTInference initialization initializes
            # all TensorRT structures, creates engine if it doesn't
            # already exist and finally saves it to file for future uses
            from utils.inference_trt import TRTInference
            trt_inference_wrapper = TRTInference(parsed['trt_engine_path'],
                                                 ssd_model_uff_path,
                                                 parsed['trt_engine_datatype'],
                                                 parsed['max_batch_size'])
            # Outputs from TensorRT are handled differently than
            # outputs from Tensorflow, that's why we use another
            # function to produce the detections from them
            produce_tensorrt_detections(detection_files, trt_inference_wrapper,
                                        parsed['max_batch_size'],
                                        voc_image_numbers, voc_image_path)
        elif parsed['inference_backend'] == 'tensorflow':
            # In case of Tensorflow all we need to
            # initialize inference is frozen model...
            from utils.inference_tf import TensorflowInference
            tf_inference_wrapper = TensorflowInference(ssd_model_pb_path)
            # ...and after initializing it, we can
            # proceed to producing detections
            produce_tensorflow_detections(detection_files,
                                          tf_inference_wrapper,
                                          parsed['max_batch_size'],
                                          voc_image_numbers, voc_image_path)

    # Flush detection to files to make sure evaluation is correct
    for key in detection_files:
        detection_files[key].flush()

    # Do mAP computation based on saved detections
    voc_mAP_utils.do_python_eval(parsed['results_dir'])

    # Close detection files, they are not needed anymore
    for key in detection_files:
        detection_files[key].close()
Пример #9
0
def main(max_time, min_time, sum_time, num):

    # Parse command line arguments
    args = parse_commandline_arguments()
    outputdir_path = args.outpath
    inputdir_path = args.inpath
    # Fetch .uff model path, convert from .pb
    # if needed, using prepare_ssd_model
    ssd_model_uff_path = PATHS.get_model_uff_path(MODEL_NAME)
    if not os.path.exists(ssd_model_uff_path):
        model_utils.prepare_ssd_model(MODEL_NAME)

    # Set up all TensorRT data structures needed for inference
    trt_inference_wrapper = inference_utils.TRTInference(
        args.trt_engine_path,
        ssd_model_uff_path,
        trt_engine_datatype=args.trt_engine_datatype,
        calib_dataset=args.calib_dataset,
        batch_size=args.max_batch_size)
    ARGS = 3
    print("TRT ENGINE PATH", args.trt_engine_path)

    if args.camera == True:
        #if True:
        #print('Running webcam:', args.camera)
        # Define the video stream
        #cap = cv2.VideoCapture(0)
        #cap = cv2.VideoCapture('animal.webm')  # Change only if you have more than one webcams
        cap = cv2.VideoCapture(
            inputdir_path)  # Change only if you have more than one webcams
        if (cap.isOpened() == False):
            print("Error opening video stream or file")
            exit()
        else:
            print("success!")
        # Default resolutions of the frame are obtained.The default resolutions are system dependent.

# We convert the resolutions from float to integer.
        frame_width = int(cap.get(3))
        frame_height = int(cap.get(4))
        fps = cap.get(cv2.CAP_PROP_FPS)

        # Define the codec and create VideoWriter object.The output is stored in 'outpy.avi' file.
        out = cv2.VideoWriter(str(outputdir_path + "/output.avi"),
                              cv2.VideoWriter_fourcc(*'XVID'), fps,
                              (frame_width, frame_height))

        # Loop for running inference on frames from the webcam
        while True:
            # Read frame from camera (and expand its dimensions to fit)
            ret, image_np = cap.read()
            if not ret:
                print("Video played.")
                break
            # Actually run inference
            cur, detection_out, keep_count_out = trt_inference_wrapper.infer_webcam(
                image_np)
            max_time = max(max_time, cur)
            min_time = min(min_time, cur)
            sum_time += cur
            num += 1

            # Overlay the bounding boxes on the image
            # let analyze_prediction() draw them based on model output
            img_pil = Image.fromarray(image_np)
            prediction_fields = len(TRT_PREDICTION_LAYOUT)
            for det in range(int(keep_count_out[0])):
                analyze_prediction(detection_out, det * prediction_fields,
                                   img_pil)
            final_img = np.asarray(img_pil)

            out.write(final_img)
        return outputdir_path, max_time, min_time, sum_time, num