Пример #1
0
    def test_cubic(self):
        # SETUP
        # Make it a cubic predictor
        self.polynomial_predictor = PolynomialPredictor(num_states_to_track=5, poly_degree=3)
        # Feed in states that match a parabola going through (-1, 1), (0, 0), (1, 1), (2, 1), (3, 1)
        self.polynomial_predictor.add_person_state(PersonState(-1, 1))
        time.sleep(1)
        self.polynomial_predictor.add_person_state(origin_person_state)
        time.sleep(1)
        self.polynomial_predictor.add_person_state(PersonState(1, 1))
        time.sleep(1)
        self.polynomial_predictor.add_person_state(PersonState(2, 1))
        time.sleep(1)
        self.polynomial_predictor.add_person_state(PersonState(3, 1))

        # EXECUTE
        predicted_states = self.polynomial_predictor.predict_next_person_state(second_intervals)

        # VERIFY
        assert len(predicted_states) == len(second_intervals)
        prev_x = 1
        prev_y = 1
        for predicted_state in predicted_states:
            # Very loose. Fix me?
            assert predicted_state.x > prev_x
            assert predicted_state.y < prev_y
            prev_x = predicted_state.x
            prev_y = predicted_state.y

        # Plot things for visual inspection
        self.polynomial_predictor.plot_projections(predicted_states)
Пример #2
0
    def test_three_states_given(self):
        # SETUP
        # Feed in states that match a parabola going through (-1, 1), (0, 0) and (1, 1)
        self.polynomial_predictor.add_person_state(PersonState(-1, 1))
        time.sleep(1)
        self.polynomial_predictor.add_person_state(origin_person_state)
        time.sleep(1)
        self.polynomial_predictor.add_person_state(PersonState(1, 1))

        # EXECUTE
        predicted_states = self.polynomial_predictor.predict_next_person_state(second_intervals)

        # VERIFY
        # Given states provided, should predict somewhere along the parabola.
        assert len(predicted_states) == len(second_intervals)
        prev_x = 1
        prev_y = 1
        for predicted_state in predicted_states:
            # Very loose. Fix me?
            assert predicted_state.x > prev_x
            assert predicted_state.y > prev_y
            prev_x = predicted_state.x
            prev_y = predicted_state.y

        # Plot things for visual inspection
        self.polynomial_predictor.plot_projections(predicted_states)
Пример #3
0
    def test_cubic_periodic_extrapolation(self):
        # SETUP
        self.spline_predictor = SplinePredictor(bc_type='natural', extrapolation_type='periodic')
        # Feed in states going through (-1, 1), (0, 0), (1, 1), (2, 1), (3, 1)
        self.spline_predictor.add_person_state(PersonState(-1, 1))
        time.sleep(1)
        self.spline_predictor.add_person_state(origin_person_state)
        time.sleep(1)
        self.spline_predictor.add_person_state(PersonState(1, 1))
        time.sleep(1)
        self.spline_predictor.add_person_state(PersonState(2, 1))
        time.sleep(1)
        self.spline_predictor.add_person_state(PersonState(3, 1))

        # EXECUTE
        predicted_states = self.spline_predictor.predict_next_person_state(second_intervals)

        # VERIFY
        assert len(predicted_states) == len(second_intervals)
        prev_x = 1
        for predicted_state in predicted_states:
            # Very loose. Fix me?
            assert predicted_state.x > prev_x
            prev_x = predicted_state.x

        # Plot things for visual inspection
        self.spline_predictor.plot_projections(predicted_states)
Пример #4
0
    def test_cubic_standard(self):
        # SETUP
        # All default (not-a-knot and normal extrapolation based on last interval)
        self.spline_predictor = SplinePredictor()
        # Feed in states going through (-1, 1), (0, 0), (1, 1), (2, 1), (3, 1)
        self.spline_predictor.add_person_state(PersonState(-1, 1))
        time.sleep(1)
        self.spline_predictor.add_person_state(origin_person_state)
        time.sleep(1)
        self.spline_predictor.add_person_state(PersonState(1, 1))
        time.sleep(1)
        self.spline_predictor.add_person_state(PersonState(2, 1))
        time.sleep(1)
        self.spline_predictor.add_person_state(PersonState(3, 1))

        # EXECUTE
        predicted_states = self.spline_predictor.predict_next_person_state(second_intervals)

        # VERIFY
        assert len(predicted_states) == len(second_intervals)
        prev_x = 1
        for predicted_state in predicted_states:
            # Very loose. Fix me?
            assert predicted_state.x > prev_x
            prev_x = predicted_state.x

        # Plot things for visual inspection
        self.spline_predictor.plot_projections(predicted_states)
Пример #5
0
    def predict_next_person_state(self, time_deltas_to_predict):
        # Translate time_deltas into global times
        current_time = time.time()
        times_to_predict = [
            time_delta + current_time for time_delta in time_deltas_to_predict
        ]

        num_datapoints = len(self.person_states)
        if num_datapoints == 0:
            print("ERROR: cannot predict if not given any past data")
            return None
        if num_datapoints == 1:
            print(
                "WARNING: asked to predict but only given a single past datapoint."
            )
            return [self.person_states[0][0] for _ in times_to_predict]
        oldest_state, oldest_time = self.person_states[0]
        newest_state, newest_time = self.person_states[-1]

        delta_x_per_sec = (newest_state.x - oldest_state.x) / (newest_time -
                                                               oldest_time)
        delta_y_per_sec = (newest_state.y - oldest_state.y) / (newest_time -
                                                               oldest_time)

        # Project for each of the requested times
        projections = []
        for time_to_predict in times_to_predict:
            x = newest_state.x + delta_x_per_sec * (time_to_predict -
                                                    newest_time)
            y = newest_state.y + delta_y_per_sec * (time_to_predict -
                                                    newest_time)
            projections.append(PersonState(x, y))
        return projections
    def test_waypoint_visualization_with_ngon_generator(self):
        # initialize the drone state
        waypoint_generator = NGonWaypointGenerator(n=6, radius=4)
        gamma = 0.9
        cinematic_controller = CinematicController(
            waypoint_generator=waypoint_generator, bb_filter_gamma=gamma)
        cinematic_controller.update_latest_drone_state(origin_drone_state)
        cinematic_controller.update_latest_bbs([bb_10_10_0_0])

        # initialize the drone waypoints
        waypoints = cinematic_controller.generate_waypoints()

        # initialize the person state
        person_state = PersonState(4, 0)

        # initialize the environment
        environment = Environment()
        environment.add_obstacles([[(6, 0), (4, 2), (6, 2)],
                                   [(7, -4), (8, -3), (9, -3), (9, -5),
                                    (8, -3.5)], [(-5, -2), (0, -5), (0, -2)]])

        # initialize visualization object and plot
        viz = WaypointVisualization(waypoints, [person_state], environment)
        viz.plot('plots/test_waypoint_visualization_with_ngon_generator.png')

        # check that file was saved properly
        assert os.path.isfile(
            'plots/test_waypoint_visualization_with_ngon_generator.png')
Пример #7
0
    def test_cubic_many_datapoints(self):
        # SETUP
        self.spline_predictor = SplinePredictor(num_states_to_track=100, bc_type='natural')
        # Feed in tons of states.
        self.spline_predictor.add_person_state(PersonState(-1, 1))
        time.sleep(1)
        self.spline_predictor.add_person_state(origin_person_state)
        time.sleep(1)
        self.spline_predictor.add_person_state(PersonState(1, 1))
        time.sleep(1)
        self.spline_predictor.add_person_state(PersonState(2, 1))
        time.sleep(1)
        self.spline_predictor.add_person_state(PersonState(3, 1))
        time.sleep(1)
        self.spline_predictor.add_person_state(PersonState(4, 2))
        time.sleep(1)
        self.spline_predictor.add_person_state(PersonState(5, 1))

        # EXECUTE
        predicted_states = self.spline_predictor.predict_next_person_state(second_intervals)

        # VERIFY
        assert len(predicted_states) == len(second_intervals)
        prev_x = 1
        for predicted_state in predicted_states:
            # Very loose. Fix me?
            assert predicted_state.x > prev_x
            prev_x = predicted_state.x

        # Plot things for visual inspection
        self.spline_predictor.plot_projections(predicted_states)
Пример #8
0
    def predict_next_person_state(self, time_deltas_to_predict):
        num_datapoints = len(self.person_states)
        if num_datapoints == 0:
            print("ERROR: cannot predict if not given any past data")
            return None
        if num_datapoints == 1:
            print(
                "WARNING: asked to predict but only given a single past datapoint."
            )
            return [self.person_states[0][0] for _ in time_deltas_to_predict]

        # Estimate the distance covered so we can back out the velocity
        distance_covered = 0
        for i in range(len(self.person_states) - 1):
            current_state = self.person_states[i][0]
            next_state = self.person_states[i + 1][0]
            distance_covered += np.sqrt((current_state.x - next_state.x)**2 +
                                        (current_state.y - next_state.y)**2)
        oldest_state, oldest_time = self.person_states[0]
        newest_state, newest_time = self.person_states[-1]
        projected_speed = distance_covered / (newest_time - oldest_time)

        # Project for each of the requested times
        projections = []
        step_size_x = 0.00001  # The smaller the better resolution, but also slower computationally.
        for time_delta in time_deltas_to_predict:
            distance_to_cover = time_delta * projected_speed
            # Inch forward along the curve
            previous_x = newest_state.x
            previous_y = newest_state.y
            projected_x = previous_x + step_size_x
            projected_y = self.poly(projected_x)
            distance_projected = 0
            # Obviously, this is a numerical method that's inexact, and what I'm doing will always overshoot
            # instead of finding an unbiased estimate, and it's computationally inefficient because I'm
            # stepping forward linearly instead of growing step size exponentially. It's super easy to implement
            # and understand, at least.
            while distance_projected < distance_to_cover:
                projected_x = previous_x + step_size_x
                projected_y = self.poly(projected_x)
                distance_projected += np.sqrt(step_size_x**2 +
                                              (projected_y - previous_y)**2)
                previous_x = projected_x
                previous_y = projected_y
            print("Overshot distance by:",
                  distance_projected - distance_to_cover)
            projections.append(PersonState(projected_x, projected_y))
        return projections
    def generate_waypoints(self,
                           bounding_box,
                           drone_state,
                           person_predictor=None):
        current_x, current_y, current_z = drone_state.get_position()
        current_roll, current_pitch, current_yaw = drone_state.get_attitude()
        # Compute the desired center of the n-gon.
        # Note how we could easily adapt this code to use the person as the center if we can
        # somehow get a person's position from the bounding box.
        center_x = current_x + math.cos(current_yaw) * self.radius
        center_y = current_y + math.sin(current_yaw) * self.radius

        time_to_project = 10
        timesteps = [i * time_to_project / self.n for i in range(self.n + 1)]
        current_person_state = PersonState(center_x, center_y)
        predicted_person_states = [
            current_person_state for _ in range(self.n + 1)
        ]
        if person_predictor is not None:
            predicted_person_states = person_predictor.predict_next_person_state(
                timesteps)

        target_waypoints = []
        angle_per_segment = 2.0 * math.pi / self.n
        for i in range(
                1, self.n +
                1):  # Don't include current state as a starting waypoint
            predicted_person_state = predicted_person_states[i]
            # new_x = math.cos(angle_per_segment * i + math.pi + current_yaw) * self.radius + center_x
            # new_y = math.sin(angle_per_segment * i + math.pi + current_yaw) * self.radius + center_y
            new_x = math.cos(angle_per_segment * i + math.pi + current_yaw
                             ) * self.radius + predicted_person_state.x
            new_y = math.sin(angle_per_segment * i + math.pi + current_yaw
                             ) * self.radius + predicted_person_state.y
            new_theta = current_yaw + i * angle_per_segment  # Check if need to crop to be within [-2pi, 2pi]

            target_waypoints.append(
                DroneState(new_x, new_y, current_z, current_roll,
                           current_pitch, new_theta, 0, 0, 0, 0, 0,
                           0))  # All velocities are 0
        # target_waypoints.append(drone_state)  # end up back where you started.
        return target_waypoints
 def update_latest_bbs(self, all_bounding_boxes):
     if all_bounding_boxes is None or len(all_bounding_boxes) == 0:
         print("Error, no bounding boxes provided. This case is not handled.")
         print("For now, assume that the bounding box just disappeared, so don't change the tracked"
               " bounding box at all. Other valid approaches would be to set the latest value to"
               " null but not update teh smoothed bounding box.")
         self.latest_bounding_box = None
         self.smoothed_bounding_box = None
         return
     best_match_bb = self.identify_best_bb_match(all_bounding_boxes)
     self.latest_bounding_box = best_match_bb
     # Set the smoothed bounding box, looking out for initialization
     # conditions.
     if self.smoothed_bounding_box is None:
         self.smoothed_bounding_box = best_match_bb
     else:
         self.smoothed_bounding_box = self.compute_low_pass_filter_bb()
     # Compute a person state from the bounding box
     if self.person_predictor is not None:
         person_state = PersonState.get_person_state_from_bb(self.latest_drone_state, self.smoothed_bounding_box)
         self.person_predictor.add_person_state(person_state)
Пример #11
0
    def test_weights(self):
        # SETUP
        # Override the weight factor for the weighted polynomial predictor (but keep self.pp unchanged)
        weighted_polynomial_predictor = PolynomialPredictor(num_states_to_track=4, poly_degree=2, weight_decay_factor=4)
        # Feed in states that match a parabola going through (-1, 1), (0, 0), (1, 1), (2, 0)
        self.polynomial_predictor.add_person_state(PersonState(-1, 1))
        weighted_polynomial_predictor.add_person_state(PersonState(-1, 1))
        time.sleep(1)
        self.polynomial_predictor.add_person_state(origin_person_state)
        weighted_polynomial_predictor.add_person_state(origin_person_state)
        time.sleep(1)
        self.polynomial_predictor.add_person_state(PersonState(1, 1))
        weighted_polynomial_predictor.add_person_state(PersonState(1, 1))
        time.sleep(1)
        self.polynomial_predictor.add_person_state(PersonState(2, 0))
        weighted_polynomial_predictor.add_person_state(PersonState(2, 0))

        # EXECUTE
        predicted_states = self.polynomial_predictor.predict_next_person_state(second_intervals)
        weighted_predicted_states = weighted_polynomial_predictor.predict_next_person_state(second_intervals)

        # VERIFY
        assert len(predicted_states) == len(second_intervals)
        assert len(weighted_predicted_states) == len(second_intervals)
        prev_x = 2
        prev_y = 0
        weighted_prev_x = 2
        weighted_prev_y = 0
        for i, predicted_state in enumerate(predicted_states):
            weighted_predicted_state = weighted_predicted_states[i]
            # Very loose. Fix me?
            assert predicted_state.x > prev_x
            assert predicted_state.y < prev_y
            prev_x = predicted_state.x
            prev_y = predicted_state.y

            assert weighted_predicted_state.x > weighted_prev_x
            assert weighted_predicted_state.y < weighted_prev_y
            weighted_prev_x = weighted_predicted_state.x
            weighted_prev_y = weighted_predicted_state.y

        # Plot things for visual inspection
        self.polynomial_predictor.plot_projections(predicted_states)
        weighted_polynomial_predictor.plot_projections(weighted_predicted_states)
import time
import unittest
from person_detection.person_predictor.linear_predictor import LinearPredictor
from utils.person_state import PersonState

# Define a few helpful variables common across a few tests
origin_person_state = PersonState(0, 0)
x10_person_state = PersonState(10, 0)
ten_second_intervals = [10, 20, 30, 40, 50, 60]


class TestLinearPredictor(unittest.TestCase):
    # Before every test, reset the LinearPredictor object that will be tested.
    def setUp(self):
        self.linear_predictor = LinearPredictor()

    def test_one_state_given(self):
        # SETUP
        self.linear_predictor.add_person_state(origin_person_state)

        # EXECUTE
        predicted_states = self.linear_predictor.predict_next_person_state(
            ten_second_intervals)

        # VERIFY
        # Given only a single state, the best prediction over any time horizon is to stay in the same place.
        assert len(predicted_states) == len(ten_second_intervals)
        for predicted_state in predicted_states:
            assert predicted_state == origin_person_state

    def test_two_states_given(self):
Пример #13
0
import time
import unittest
from person_detection.person_predictor.polynomial_predictor import PolynomialPredictor
from utils.person_state import PersonState


# Define a few helpful variables common across a few tests
origin_person_state = PersonState(0, 0)
second_intervals = [1, 2, 3, 4, 5, 6]


class TestPolynomialPredictor(unittest.TestCase):
    # Before every test, reset the PolynomialPredictor object that will be tested.
    def setUp(self):
        self.polynomial_predictor = PolynomialPredictor()

    def test_one_state_given(self):
        # SETUP
        self.polynomial_predictor.add_person_state(origin_person_state)

        # EXECUTE
        predicted_states = self.polynomial_predictor.predict_next_person_state(second_intervals)

        # VERIFY
        # Given only a single state, the best prediction over any time horizon is to stay in the same place.
        assert len(predicted_states) == len(second_intervals)
        for predicted_state in predicted_states:
            assert predicted_state == origin_person_state

    def test_three_states_given(self):
        # SETUP