Пример #1
0
def train(config):
    base_dir = os.path.join('./results/', args.algo, model_architecture, config.env_id)
    try:
        os.makedirs(base_dir)
    except OSError:
        files = glob.glob(os.path.join(base_dir, '*.*'))
        for f in files:
            os.remove(f)
    
    log_dir = os.path.join(base_dir, 'logs/')
    try:
        os.makedirs(log_dir)
    except OSError:
        files = glob.glob(os.path.join(log_dir, '*.csv'))+glob.glob(os.path.join(log_dir, '*.png'))
        for f in files:
            os.remove(f)
            
    model_dir = os.path.join(base_dir, 'saved_model/')
    try:
        os.makedirs(model_dir)
    except OSError:
        files = glob.glob(os.path.join(model_dir, '*.dump'))
        for f in files:
            os.remove(f)
    
    #save configuration for later reference
    save_config(config, base_dir)

    seed = np.random.randint(0, int(1e6))

    torch.manual_seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed(seed)

    #torch.set_num_threads(1)

    envs = [make_env_a2c_smb(config.env_id, seed, i, log_dir, stack_frames=config.stack_frames, action_repeat=config.action_repeat, reward_type=config.reward_type) for i in range(config.num_agents)]
    envs = SubprocVecEnv(envs) if config.num_agents > 1 else DummyVecEnv(envs)

    env = make_env_a2c_smb(config.env_id, seed, 16, log_dir, stack_frames=config.stack_frames, action_repeat=config.action_repeat, reward_type=config.reward_type)

    model = Model(env=envs, config=config, log_dir=base_dir)

    obs = envs.reset()
    obs = torch.from_numpy(obs.astype(np.float32)).to(config.device)

    model.config.rollouts.observations[0].copy_(obs)
    
    episode_rewards = np.zeros(config.num_agents, dtype=np.float)
    final_rewards = np.zeros(config.num_agents, dtype=np.float)

    start=timer()

    print_threshold = args.print_threshold

    max_dist = np.zeros(config.num_agents)
    
    for frame_idx in range(1, config.MAX_FRAMES+1):
        for step in range(config.rollout):
            
            with torch.no_grad():
                values, actions, action_log_prob, states = model.get_action(
                                                            model.config.rollouts.observations[step],
                                                            model.config.rollouts.states[step],
                                                            model.config.rollouts.masks[step])
            
            cpu_actions = actions.view(-1).cpu().numpy()
    
            obs, reward, done, info = envs.step(cpu_actions)

            obs = torch.from_numpy(obs.astype(np.float32)).to(config.device)

            episode_rewards += reward
            masks = 1. - done.astype(np.float32)
            final_rewards *= masks
            final_rewards += (1. - masks) * episode_rewards
            episode_rewards *= masks

            for index, inf in enumerate(info):
                if inf['x_pos'] < 60000: #there's a simulator glitch? Ignore this value
                    max_dist[index] = np.max((max_dist[index], inf['x_pos']))
                
                if done[index]:
                    model.save_distance(max_dist[index], (frame_idx-1)*config.rollout*config.num_agents+step*config.num_agents+index)
            max_dist*=masks

            rewards = torch.from_numpy(reward.astype(np.float32)).view(-1, 1).to(config.device)
            masks = torch.from_numpy(masks).to(config.device).view(-1, 1)

            obs *= masks.view(-1, 1, 1, 1)

            model.config.rollouts.insert(obs, states, actions.view(-1, 1), action_log_prob, values, rewards, masks)
            
        with torch.no_grad():
            next_value = model.get_values(model.config.rollouts.observations[-1],
                                model.config.rollouts.states[-1],
                                model.config.rollouts.masks[-1])
            
        value_loss, action_loss, dist_entropy = model.update(model.config.rollouts, next_value)
        
        model.config.rollouts.after_update()

        if frame_idx % print_threshold == 0:
            #save_model
            if frame_idx % (print_threshold*10) == 0:
                model.save_w()
            
            #print
            end = timer()
            total_num_steps = (frame_idx + 1) * config.num_agents * config.rollout
            print("Updates {}, num timesteps {}, FPS {}, max distance {:.1f}, mean/median reward {:.1f}/{:.1f}, min/max reward {:.1f}/{:.1f}, entropy {:.5f}, value loss {:.5f}, policy loss {:.5f}".
                format(frame_idx, total_num_steps,
                       int(total_num_steps / (end - start)),
                       np.mean(max_dist),
                       np.mean(final_rewards),
                       np.median(final_rewards),
                       np.min(final_rewards),
                       np.max(final_rewards), dist_entropy,
                       value_loss, action_loss))
            #plot
            if frame_idx % (print_threshold * 1) == 0:
                try:
                    # Sometimes monitor doesn't properly flush the outputs
                    plot_all_data(log_dir, config.env_id, 'A2C', config.MAX_FRAMES * config.num_agents * config.rollout, bin_size=(10, 10), smooth=1, time=timedelta(seconds=int(timer()-start)), ipynb=False, action_repeat=config.action_repeat)
                except IOError:
                    pass
    #final print
    try:
        # Sometimes monitor doesn't properly flush the outputs
        plot_all_data(log_dir, config.env_id, 'A2C', config.MAX_FRAMES * config.num_agents * config.rollout, bin_size=(10, 10), smooth=1, time=timedelta(seconds=int(timer()-start)), ipynb=False, action_repeat=config.action_repeat)
    except IOError:
        pass
    model.save_w()
    envs.close()
Пример #2
0
        # Learn
        agent.update(prev_observation, action, reward, observation, frame_idx)
        episode_reward += reward

        # Episode End

        if done:
            agent.finish_nstep()
            agent.save_reward(episode_reward)

            observation = env.reset()
            episode_reward = 0

        # Log Info
        if frame_idx % 10000 == 0:
            agent.save_weight()
            try:
                plot_all_data(log_dir,
                              env_id,
                              exp_name,
                              config.MAX_FRAMES,
                              bin_size=(10, 100, 100, 1),
                              save_filename=exp_name + '.png',
                              smooth=1,
                              time=timedelta(seconds=int(timer() - start)),
                              ipynb=False)

            except IOError:
                pass
Пример #3
0
    if done:
        model.finish_nstep()
        model.reset_hx()
        observation = env.reset()
        model.save_reward(episode_reward)
        episode_reward = 0

    if frame_idx % 10000 == 0:
        model.save_w()
        try:
            clear_output(True)
            plot_all_data(log_dir,
                          env_id,
                          'C51',
                          param.MAX_FRAMES,
                          bin_size=(10, 100, 100, 1),
                          smooth=1,
                          time=timedelta(seconds=int(timer() - start)),
                          ipynb=False)
        except IOError:
            pass

model.save_w()
env.close()
plot_all_data(log_dir,
              env_id,
              'C51',
              param.MAX_FRAMES,
              bin_size=(10, 100, 100, 1),
              smooth=1,
              time=timedelta(seconds=int(timer() - start)),